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ABSTRACT We examined the effects of brief current pulses on the pacemaker oscillations of the Purkinje fiber using
the model of McAllister, Noble, and Tsien (1975. J. Physiol. [Lond.]. 251:1-57). This model was used to construct
phase-response curves for brief electric stimuli to find “black holes,” where rhythmic activity of the Purkinje fiber
ceases. In our computer simulation, a brief current stimulus of the right magnitude and timing annihilated oscillations
in membrane potential. The model also revealed a sequence of alternating periodic and chaotic regimes as the strength
of a steady bias current is varied. We compared the results of our computer simulations with experimental work on
Purkinje fibers and pointed out the importance of modeling results of this kind for understanding cardiac arrhythmias.

INTRODUCTION

Some biological oscillators, such as circadian oscillators
and neuronal pacemakers, have been shown to be suscepti-
ble to phase resetting, and some even lose their regular
rhythm when a stimulus of critical magnitude, timing, and
duration is applied (1-3). Jalife and Antzelevitch have
found that the spontaneous firing can be terminated in cat
sinus nodes and in isolated dog Purkinje fibers (having
maximum diastolic potentials of about —60 mV) by giving
a brief current stimulus at the right moment. The same
phenomenon has also been observed experimentally in
membrane oscillators, including repetitive firing in space
clamped axons maintained in low Ca?* artificial sea water
(6), as well as in normal sea water (3).

In the past, computational investigations (7-9) to study
the abolition of a rhythmic action-potential train by depo-
larizing or hyperpolarizing short shocks were carried out,
using the Hodgkin and Huxley equations (10) which
represent quantitive expressions for the squid axon mem-
brane. Analysis of these equations has identified the
regions where values of kinetic parameters produce limit-
cycle behavior and a “black hole” where oscillations in
membrane potential cease (7-9).

The experimental demonstration of similar oscillatory
responses in squid axon, sinoatrial node, and Purkinje fiber
suggested to us the possibility that a similar analysis could
be applied to a system of equations describing a cardiac
pacemaker. Identifying regions where oscillations are anni-
hilated has obvious clinical application in regard to sudden
death by cardiac arrest (11).

For our modeling, we have used the quantitative descrip-
tion of electrical activity of the Purkinje fiber formulated
by McAllister et al. (12). This model consists of a system of
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10 first-order, simultaneous, nonlinear differential equa-
tions that include a Hodgkin-Huxley type sodium conduc-
tance, three time-dependent outward potassium currents, a
transient outward chloride current, a secondary inward
current carried by calcium and sodium ions, and a leak
current. Using this model, we demonstrate the existence of
a black hole, that is annihilation of rhythmic activity in a
numerical solution of the system of equations. The close
agreement between theory and experiment suggests that
this model provides a sound basis for understanding the
phase-resetting dynamics of the heart.

METHOD AND RESULTS

The dynamic behavior shown in Figs. 1-6 is the result of
numerically solving a system of first-order, simultaneous,
nonlinear, differential equations (12). The calculations
were performed in double precision on a DEC 10 computer
(Digital Equipment Corp., Maynard, MA) using a Gear
algorithm (13), with the absolute and relative error toler-
ances set at 107'%. McAllister et al. (12) gave two expres-
sions for the transient chloride current. Our results shown
here, except those of Fig. 6, are based on Eqs. 25 and 26
(i.e., the equations for a, and 8,) of their paper. The values
of the parameters used in the computation are given in
their Tables 1A and 1B, except 0.000253 was used for a,
which is the value given by Eq. 16 of the same reference.
(We believe that the a; value given in Table 1A is in error
by a factor of 10.)

Fig. 1-4 show phase-resetting behavior of a Purkinje-
fiber pacemaker with brief current pulses, where the
maximum diastolic potential (i.e., the absolute minimum
value) of the fiber was reduced to about —82 mV with the
application of a bias depolarizing current of +1.625
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uA/cm? Figs. 5 and 6 show the dynamic behavior of the
fiber when a bias current of long duration was applied at
different phases of the “original” cycle (i.e., the Purkinje
fiber in the absence of a bias current).

As shown in Fig. 1a, a small brief depolarization
current perturbation of +0.1 uA/cm’ with a duration of
200 ms given to the cell at a certain point along its
oscillation cycle (indicated in the figure by an arrow at
—17.1 mV of the repolarizing phase) delayed the subse-
quent oscillations by 7.6% of a cycle. A larger current
perturbation, +0.4 uA /cm?, of the same duration, applied
at the same point in the oscillation cycle, resulted in a sharp
decrease in the oscillatory amplitude (slow approach to a
steady state), as shown in Fig. 1 b. A still larger perturba-
tion, +2 uA /cm? merely advanced the subsequent oscilla-
tions by 4% of a cycle (Fig. 1 ¢). Pacemaker activity in our
simulation was restored from an almost inactive Purkinje
fiber (Fig. 1 b) by applying a brief hyperpolarizing pulse of
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sufficiently large magnitude (i.e., —2 uA/cm?). See Fig.
1 d. Here, the initial condition was set at the point
indicated by the arrow shown in Fig. 1 b. The trend shown
in Fig. 1 agrees quite well with the experimental findings of
Jalife and Antzelevitch (5).

A brief current of +0.4 uA/cm?, applied a little later in
the phase than that of Fig. 1, resulted in a permanent
cessation of periodic rhythm, with membrane voltage
rapidly (compared with Fig. 1 b) approaching the steady
state value. This is shown in Fig. 2 a, where a brief electric
stimulus of +0.4 A /cm® was applied at —32.6 mV of the
repolarizing phase. Fig. 2 b shows the total ionic current vs.
membrane potential, showing the path leading to the
attractor basin of the steady state, when spontaneous firing
of the cell was kicked off its stable cycle by a brief electric
stimulus. A brief current of —2 pA /cm? (applied at the 30
s in Fig. 2 a) restored the rhythmic activity of a resting
Purkinje fiber (as in Fig. 1 d). Note from both Figs. 2 a
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FIGURE1 Membrane potential (in millvolts) vs. (in seconds), showing phase-resetting behavior of a Purkinje fiber pacemaker, using current
pulses of the same duration (200 ms) but different magnitudes (from top to bottom: 0.1, 0.4, 2, and -2 wA/cm?). Perturbing pulses are
delivered at —17.1 mV of the repolarizing phase as shown by arrows in the figure. The maximum diastolic potential was reduced to about —82
mV by the application of a bias depolarizing current of +1.625 nA/ cm?, held constant for the entire duration.
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FIGURE 2 The path leading to the attractor basin of the steady state from the limit cycle, when +0.4 uA /cm? of a brief depolarizing current
pulse was applied at the arrow (i.e., at —32.6 mV) to the same cell but a little later in the phase than that of Fig. 1 5 show membrane potential
vs. time and the spiral current-voltage trajectory, respectively. The second jump on the top left after the arrow in b is due to the termination of

the brief stimulus.

and 2 b that, as a brief pulse was applied to the rhythmic
fiber, the amplitude (of membrane potential in Fig. 2 a and
of total ionic current in Fig. 2 b) instantaneously decreased
and then increased slightly for the next few cycles, eventu-
ally approaching the steady state value. Note also that the
steady state potential of annihilation (—32.63 mV) was not
in the plateau range of membrane potential.

Fig. 3 shows the phase-resetting curve (PRC) of the
same cell; the curve was generated by scanning the pace-
maker cycle with a brief current pulse of +0.1 (Fig. 3 a)
and —0.5 uA/cm? (Fig. 3 b), both with a duration of 200
ms. Here, the spontaneous cycle was defined as the frac-
tional time into a normal cycle period, such that the phase
at the maximum diastolic potential (MDP) was taken to be
zero. The new cycle length (i.e., from the MDP just before
the stimulus to the first MDP afterwards, where the MDP
of this fiber is —82 mV) minus the basic cycle length
(1,150 ms) divided by the basic cycle length gives ABCL.

When a brief depolarizing pulse was applied at a point
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lying between 55 and 75% (see Fig. 3 a) of the spontaneous
cycle, the amplitude of membrane potential instanta-
neously decreased and slowly went toward a steady state.
When a brief hyperpolarizing current was applied at a
point lying between 25 and 45% (see Fig. 3 b), the mem-
brane potential behaved in the same manner. For other
phases of the spontaneous cycle, a nonannihilating repeti-
tive rhythmic activity resumed with unaltered frequency
but with phase resetting. In other words, if a positive
stimulus was applied soon after the MDP, the only effect
was to advance the next beat slightly. If the stimulus was
given just before the “vulnerable phase,” the effect was to
delay the next beat by a significant amount. If the stimulus
was given during the vulnerable phase, the fiber stopped
firing and did not resume its activity. If the stimulus was
given after this phase, the next beat was also delayed
slightly. Such a delay. (after the vulnerable phase) is
opposite to what is observed experimentally by Jalife and
Antzelevitch (5). Also, our PRC for depolarizing pulses
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FIGURE 3  Phase resetting curve generated by scanning different points in the pacemaker cycle of the same cell using a current pulse of +0.1
(a)and —0.5 A /cm’ for 200 ms. Here, ABCL stands for the basic cycle length difference, in which positive and negative ABCL mean delayed
and accelerated phases, respectively. The spontaneous cycle on the x-axis is defined as the fractional time into a normal cycle period, so that

the phase at the MDP is taken to be zero.

was very different from that in the experimental observa-
tion (5). A possible explanation for the discrepancy is given
in the next section.

For hyperpolarizing stimuli, there was an advance in
phase resetting when the stimulus was given after the
vulnerable phase (see Fig. 3 b). Our PRC for hyperpolariz-
ing pulses was very similar to that observed in the experi-
mental sinus node preparations (4); however, the position
of the black hole was quite different. Unfortunately, no
experiment using hyperpolarizing stimuli has been
reported on the Purkinje fiber to verify Fig. 3 b.

Fig. 4 shows two black holes obtained by applying
current pulses of various magnitude and of 200 ms dura-
tion to the same cell at intervals along the pacemaker cycle.
Here, the numbers in both Figs. 4 a and 4 b refer to the
percent ABCL, and the contour lines in Fig. 4 b represent
isochrons, which connect points with the same ABCL. The
stippled areas in Fig. 4 a include all the ABCL values
>100%. On the boundary of the black holes, a stimulus
yielded instantaneous decrease in amplitude (as in Fig.
1 b), which either grew to the large amplitude oscillation
after more than 30 s or decayed to the steady state within
20 s. As in studies using the Hodgkin-Huxley equations,
the Purkinje fiber was sensitive to both excitatory and
inhibitory stimuli. Unlike the Hodgkin-Huxley case, how-
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ever, the response of the Purkinje fiber to negative pertur-
bations was quite different from its response to positive
ones. We found that the bottom boundary of the black hole
was located at —5 uA/cm’ of stimuli (not shown here).
But, there was another black hole with the stimuli strength
greater than —30 pA /cm’. Between —5 to—30 uA/cm? a
hyperpolarizing stimulus given during the vulnerable
phase yielded the small amplitude oscillation of the type
shown in Fig. 1 b, which lasted for a long period of time
and finally grew into the large-amplitude oscillation.

As shown in Fig. 4, the McAllister et al. (12) model
predicts the existence of bistability in the Purkinje fiber; a
stable, continuous oscillation and a time-independent, sta-
ble steady state. Bistability can also be demonstrated by
the application of a steady bias current at different phases
of the “original” Purkinje fiber cycle. This is shown in Fig.
S, where the top trace was obtained by starting a bias
current of +1.625 uA/cm’ immediately after the MDP,
i.e,, at —87.16 mV. The second trace was obtained by
starting the same current at +9.15 mV and the third one at
—28.38 mV, both during the downstroke of the action
potential. The middle trace (and also Fig. 1 b) should not
be interpreted as evidence of a third stable response (the
third stability being a stable, small-amplitude maintained
oscillation, oscillating between —48 and —17 mV with a
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FIGURE 4 Stimuli vs. spontaneous cycle, obtained by giving both negative and positive brief current pulses. As in Fig. 1-3, the MDP of the
fiber is reduced to —82 mV with a bias current of +1.625 uA /cm’. The numbers shown in a and b refer to the percent ABCL at the point in
the cycle given on the x-axis where a brief stimulus, whose magnitude is given on the y-axis was applied. The contour lines in b are isochrons
representing lines of constant ABCL. The stippled areas are the regions where ABCL takes the value >100%.

period of 670 ms). We found that this mode of oscillation
either very slowly approached a steady state or grew to a
higher amplitude oscillation, when a sufficient time was
given to the computation.

We may obtain much more complex phase resetting by

using Eqgs. 27 and 28 of reference 12 with the application of
a steady, depolarizing bias current. This is shown by Fig. 6,
where an alternating periodic-chaotic transition sequence
was achieved as the bias current was increased from 1.40 to
1.58 uA/cm? all of them starting at —87.045 mV of the
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FIGURE 5 Dynamic behavior of Purkinje fiber obtained by applying a steady bias current of +1.625 uA/cm? at different phases of the
“original” pacemaker cycle. From the rop to bottom trace, a continuous steady bias current is started at —87.16, +9.15 and —28.38 mV,

respectively.

depolarizing phase. As in Figs. 1-5, a stable, steady state
and black holes also existed in this Purkinje fiber. This was
demonstrated by starting the same bias currents during the
repolarizing phase (not shown here). Above the threshold
value of 1.59 uA/cm?, only a stable steady state existed in
this fiber.

A closer inspection of Fig. 6 reveals the following
observations. A time series for a pure one-spike periodic
state was obtained with the application of a bias current of
1.40 pA /cm? (shown in Fig. 6 a), for a three-spike periodic
state with 1.52 uA /cm?® (shown in Fig. 6 ¢), for a four-spike
periodic state with 1.545 uA /cm?, (shown in Fig. 6 e), and
for a seven-spike periodic state with 1.57 uA/cm? (shown
in Fig. 6 g). The time series for the chaotic states that
occurred between these pure periodic states is also shown in
every other trace: A random appearance of one and 2
spikes was achieved with the application of a bias current
of 1.45 pA/cm’ (shown in Fig. 6 b), three and four spikes
with 1.53 A /cm? (shown in Fig. 6 d), four and five spikes
with 1.55 uA/cm? (shown in Fig. 6 f), and 9, 10, and 11
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spikes with 1.58 uA /cm? (shown in Fig. 6 h). This type of
bursting-spiking electrical oscillatory pattern has been
experimentally observed in a preparation of Purkinje fiber
with Tyrode’s solution containing cesium (14). Alternating
periodic-chaotic transition sequences similar to those in
Fig. 6 have been observed in the experiments on the
Belousov-Zhabotinskii reaction in a stirred-flow reactor, as
the resident time increases (15, 16).

DISCUSSION

Jalife and Antzelevitch (5) observed that a spontaneously
beating dog Purkinje fiber, mounted in a sucrose-gap
chamber, fires with an average BCL of 1,600 ms and MDP
of —82 mV. When a sufficiently brief current is applied at
various phase points of the rhythmic cycle, the ABCL
decreases smoothly over one natural period as the sponta-
neous cycle is increased, thus showing a weak rescheduling
(1, 2). Our computation, on the other hand, shows that the
theoretical Purkinje fiber had a cycle length of 1,300 ms
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and MDP of —87.2 mV. The theory also yielded a weak  continuously depolarized with a steady bias current, Jalife
rescheduling, in agreement with the experiment, as a brief ~ and Antzelevitch observed that the MDP decreased to
current was applied at various phase points of the natural —60 mV and that the pacemaker was beating at an
period (not shown here). average BLC of 1,450 ms at steady state. They were able to

When the membrane potential of the pacemaker was  terminate the rhythmic cycle of this preparation (i.e., the
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Purkinje fiber with the MDP of —60 mV) by applying a
brief current of +0.8 uA for 200 ms. When the membrane
potential was brought to a more negative level (—64 mV to
—91 mV) by decreasing the strength of a bias current, they
could not terminate the pacemaker activity with a single
stimulus, and the PRC’s returned to their original shape.

Our numerical simulations also yielded a continuous
depolarization and shortening of the rhythmic cycle as the
bias current strength was increased. When it exceeded
about + 1.7 uA /cm?, the Purkinje fiber completely stopped
firing. With a constant bias current at around +1.6
uA/cm?, we found the existence of bistability: a stable
continuous oscillation having a period of 1,150 ms oscillat-
ing between —82 and +32 mV and a time-independent,
stable steady state at about —33 mV. As shown in Figs.
1-4, we were also able to terminate the rhythm of a
Purkinje fiber (having a reduced MDP) by applying a brief
current pulse.

We found, however, that the phase-resetting phenome-
non, as shown in Fig. 3 a, for depolarizing pulses was very
different from that of the experiment in reference 5. This
discrepancy may be due to the following possibilities: (a)
the MDP of the theoretical fiber could not be reduced
beyond —82 mV, and therefore the upstroke of the action
potential rose very fast; the MDP of the real fiber could be
reduced to —60 mV, and thus the upstroke rose rather
slowly. (b) The vulnerable phase of the theory appeared
during the downstroke of the action potential, while that of
the experiment appeared just after the MDP. (c) The
McAllister et al. (12) model does not properly account for
the involvement of intracellular calcium ions in oscillatory
current (17,18). A two-way interaction between mem-
brane potential and intracellular calcium ions is essential
to spontaneous firing of Purkinje fiber (17) and other
excitable cells (19-21). (d) As has been pointed out by
Jalife in a personal communication, the McAllister et al.
(12) model assumes that the pacemaker current is outward
and carried by potassium ions. Recent experimental data
(22) suggest that this current is actually inward and
carried by mixture of ions. Finally, (e) the kinetics and
voltage dependence of the various currents in the model
may not be accurate. In fact, by incorporating minor
changes in these parameters of the model, Jalife and
Antzelevitch (personal communication) have been able to
reproduce the experimental PRC quite closely. Although
the above points may not be all the facts responsible for the
discrepancy, we believe that these are the most important
sources.

For hyperpolarizing stimuli, the theoretical vulnerable
phase appeared just after the MDP, and there was an
accelerated phase resetting following this phase. Thus, our
PRC looks very similar to that of the experimental sinus
node (5).

It,appears that a reduction of the MDP is necessary for
the existence of a black hole in phase resetting. When the

“Purkinje fiber was depolarized with the application of a
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bias current, the rapid inward sodium current was consid-
erably inactivated. This depolarized fiber might have
maintained the ability to generate rhythmic activity owing
to the activation of a slow inward current. Rhythmic
activity of a fiber with reduced MDP was sensitive to a
brief stimulus. This result explains how an ectopic rhythm
can arise when the dominant pacemaker impulse is slowed
or accelerated by tissue damage, ischemia, or effect of
neurotransmitters during stress.
- Sinus node and Purkinje fibers are pacemakers capable
of initiating an action potential that activates the whole
heart (23). Fibrillation can develop if a relatively small
electrical stimulus is applied to either the ventricle or to
atria of a normal heart with a proper magnitude and
proper phase (24, 25). According to the topological reason-
ing of Winfree (11, and personal communication), what
matters for fibrillation is starting a rotating wave. That is
done by arranging a convergence in cyclic order of iso-
chrons on the heart. Thus, following his reasoning, if the
coordinates of Fig. 4 are reinterpreted to indicate timing
and magnitude of a gross stimulus applied to the whole
heart (not to a single Purkinje fiber), then even if the
isochrons of every single cell converge only to a mathemati-
cal point, there will be a finite black hole on that gross
diagram, because there will be a range of timing and a
magnitude within which a singularity will be created
somewhere on the heart (personal communication with Dr.
Winfree). According to this view, the black hole is ulti-
mately related to the cause of fibrillation; thus, it is a
challenge to find the precise conditions with a mathemati-
cal model like the McAllister et al. (12) model necessary
for making the black holes as inaccessible as possible.
McAllister et al. (12) model includes expressions for the
ion channels in the cell membrane; by changing appropri-
ate parameters, the effects of channel-blocking drugs and
modulators such as neurotransmitters can be examined on
the molecular scale. Investigating the interactions between
these model parameters and the phase-resetting phenome-
non for a single pacemaker is the first step toward under-

- standing the cause of cardiac arrhythmias. Because fibril-

lation is a property of a spatially distributed system,
extending results from the single-fiber model to networks
of pacemakers would provide models capable of repre-
senting circus behavior, fibrillation, and generation of
black holes and phase resetting over the whole heart (27).

Although our work has been done with the Purkinje

fiber, it demonstrates the resetting character to be

expected from the oscillatory system of any pacemaker
cell. As in the work of Best (7), a phase-stimulus plot like
Fig. 4 provides a way of understanding the dynamic
characteristics of a rhythmic system. Fig. 6 opens up a way
to search for the mechanism of chaos, which apparently
exists in the rhythmic activity of the Purkinje fibers. To our
knowledge, this is the first example that displays a
sequence of alternating periodic and chaotic regimes in
determistic nonlinear equations.
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Our simulations indicate that, given the appropriate
conditions, triggering the initiation and termination of
rhythmic activity of pacemaker cells may be a basic
characteristic of all automatic systems. Our demonstration
that the phase shifting and the annihilation of Purkinje
fiber rhythms can be modeled is a proper step toward
understanding the cause of arrhythmias on a molecular
scale. We thus expect that our simulation work can be used
to predict the initiation of reentrant waves and help us
understand the relationship between the reentrant and
pacemaker mechanisms of cardiac arrhythmias.
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