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ABSTRACT The time correlation function of the shape fluctuations of large (>10Inm), cylindrical, hydrated,
phospholipid-membrane vesicles consisting of one bimolecular layer was measured. The restoring force of the
membrane was due to the excess curvature of a membrane element. A value for the curvature elastic modulus, Kc, was
obtained from the mean-square amplitude of the normal modes of the fluctuations using the equipartition theorem. An
expression for the correlation time was found by solving the dynamics of the membrane's relaxation against the low
Reynolds number viscous drag of the surrounding fluid. The amplitudes and correlation times of the fundamental
bending mode of the cylindrical vesicles both yield Kc = 1-2 x 10- 12 ergs.

INTRODUCTION

Phospholipid vesicles whose walls consist of a single bilayer
are currently of interest as models of cell membranes
(1-4), as systems of two-dimensional intermolecular
ordering (5-8), and for their material properties (9-15).
The equilibrium shape of a flaccid vesicle, for a given area
and volume, is determined by the minimization of the
elastic energy due to the curvature of a membrane element
(1 1,16). These calculations have also shown that the shape
of the red blood cell can be explained by considering only
the curvature energy of its membrane (11,16). We suggest
that, for small deformations of long wavelength, the domi-
nant mechanical parameter of the membrane in flaccid
eucaryotic cells is also the curvature elastic modulus.

Theoretically, the magnitude of the phospholipid mem-
brane's curvature elastic modulus could be deduced by
measuring the shape of the vesicle as a function of the
hydrostatic pressure excess of the water exterior to the
vesicle over that interior to the vesicle. Because the curva-
ture modulus is very small (12,17), the required pressure
excess is only 1l 0- dyn/cm2, which is too small to
measure. However, the smallness of the curvature modulus
means that there are many thermally accessible shapes
having the same area and volume that are within kbT of the
equilibrium configuration of the flaccid vesicle. For this
reason, the shapes of thin-walled vesicles are observed to
fluctuate (5,12); this is believed to be the same phenome-
non as the so-called "flicker" of red blood cells (17-19).

Measurements of these thermal excitations have been
used to deduce a value for the curvature elastic modulus,
Kc, of red blood cells and artificial vesicles. Brochard and
Lennon (17) measured the frequency spectrum of the
fluctuations of the central thickness (a peristaltic mode) of
the red blood cell and found Kc - 3 x 10-13ergs. Servuss et
al. measured the mean-square amplitude of the bends of

long unilamellar cylindrical vesicles and found Kc - 2 x
10- 2 ergs (12). Surprisingly, the artificial vesicles appear
to have a larger curvature elastic modulus despite the fact
that the membrane of the red blood cell consists of lipids
similar to those in the artificial membrane with the addi-
tion of cholesterol, integral proteins, and a polymeric
protein cortex. Because some of the integral proteins are
attached to the spectrin-actin polymeric network (20, 21)
beneath the cell membrane, this structure is expected to
affect the behavior of the red cell membrane. The experi-
ments of Evans and co-workers show the importance of the
cytoskeleton network in resisting shear deformations and
large-scale area changes (22, 23). However, the network
might be expected to stiffen the membrane, not to decrease
Kc. This discrepancy between the experiments on red blood
cells and on artificial vesicles motivated this work.

The red blood cell experiments measured the dynamics
of a peristaltic mode and were analyzed using a planar
membrane approximation. The artificial membrane exper-
iment measured the amplitude of a bending mode. In the
present work, we extend the second study to include the
dynamics of the fluctuations by measuring the time corre-
lation function of the fundamental bending mode in tubu-
lar vesicles. We use a linear response theory to deduce
values for the curvature elastic modulus from both the
amplitudes and the spectra of the fluctuations.

The form of the curvature elastic energy of a vesicle is
(9,10)

2 (RI R2+ (1)

where dA is an area element of the membrane and RI and
R2 are the two principal radii of curvature (24). Eq. 1
assumes that the two sides of the membrane bilayer are
identical. If this were not true, the membrane might
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spontaneously curve; this can be taken into account by
subtracting a constant from the curvature sum before
squaring (10,1 1 ).

The fluctuations are treated by supposing that the only
important contribution to the excess energy of a thermally
fluctuating vesicle is from the curvature elastic energy
(5,12). When the shape of the fluctuating vesicle can be
expanded in a set of normal modes that are linearly
independent of the functions describing the equilibrium
shape, the equipartition theorem gives the average excess
curvature energy per mode as kbT/2. The expression for
the curvature energy of each mode is roughly Kc Q4 (U2 )
A (25), where Uand Q are, respectively, the amplitude and
wave number of a mode, and A is the area of a vesicle. The
brackets denote an ensemble (or time) average. A mea-
surement of the mean-square amplitude of a mode, (12),
will yield a value for Kc. Each of the independent modes
contributing to the description of the shape of the vesicle
possesses a characteristic correlation time, Tc. The time
correlation function (26) of a mode is

(U(T)U(O)) = (U2 ) e nrC (2)

An expression for the correlation time of a mode is
obtained by solving the dynamical problem of the vesicle
excited into a normal mode and relaxing back to its
equilibrium shape. In this process, the restoring force of the
membrane's curvature elasticity is balanced by the viscous
resistance of the surrounding fluid. The membrane fluid is
also viscous, but for long wavelength fluctuations its resis-
tance to shearing is negligible (14, 15) compared with that
of the surrounding fluid. The restoring force is given by the
negative of the functional derivative of the curvature
energy with respect to the fluctuation amplitude U:

5E
F= -

bU (3)

The motion of the surrounding fluid is described by the
linearized Navier-Stokes equations and the continuity
equation. The small size of the vesicles (10 ,um) and the
long relaxation times (- 1 s) allow the inertia of the fluid to
be neglected. The problem falls then into the regime of low
Reynolds number hydrodynamics (27). The velocity of the
fluid at the membrane is equated to the membrane veloci-
ty, the elastic restoring force is balanced by the viscous
drag of the fluid, and the resulting expressions solved for TC
as a function of Kc.

The amplitude and the correlation time of a bending
mode in long cylindrical vesicles was measured. We found
Kc - 1-2 x 10-12 ergs, in agreement with Servuss et al.
(12). The approximations made in our theory for the long
tubes were too crude for us to apply the theory to measure
Kc from the peristaltic fluctuations.

In another paper, we report theoretical and experimen-
tal (Schneider, M. B., J. T. Jenkins, and W. W. Webb,

manuscript in preparation) measurements on quasi-spheri-
cal vesicles. We again find Kc - 1-2 x 10 12 ergs.

THEORY

We consider here the dynamics of the bending modes of long cylindrical
vesicles. With L the tube length and a the tube radius, we treat tubes for
which L >> a. We measured the time correlation function of the
displacement u(t) of the mid-section of the tube from the midpoint of the
line connecting the two ends of the tube (Fig. 1).
To find an expression for the time correlation function, (u(r)u(O)),

we calculate two extremes, the fluctuations of a long string (u _ a) and
the fluctuations of a long sausage (a >> u). The calculations for u _ a
and a >> u give identical expressions for the amplitude of the fluctuations
and differ by a factor of 2 in their correlation times. The observations
reported are for cylinders with ( u2) a2.

L>> u _ a
This is the limit that Servuss et al. (12) considered. We first calculate the
curvature energy (Eq. 1) of a curved tube and express it in terms of a set
of normal modes. To find R, and R2, the principal radii of curvature in Eq.
1, we consider a bend in the cylinder such that the cylinder remains in a
plane (Fig. 2 a) and the cross section remains circular. Taking R as the
radius of curvature of the axis of the cylinder and defining the outward
normal as positive, it can be seen from Fig. 2 b that RI = -a and R2 =
- (a cos t + R)/cos ,. Also, from Fig. 2 a, dA = aR2cos(r - t)dtdw and
dz = R dw. Consequently, the free energy of the bent cylinder is

Etot Ifl L12 f 1 COSt 12
' 2 L/2 a R+a acos|

a
- (R + acos4)-d dz. (4)

R
We consider only those cylinders for which R | L. Then, upon using L
>> a and R I>> a, expanding in powers of a/R, keeping the quadratic
terms, integrating over (, and subtracting rKcL/a (the curvature energy
of the straight cylinder), the free energy due to bending is

E
a KC ir L/2 dz

2 L/2R2 (5)

This is Eq. 5 in Servuss et al.(12).
Suppose the cylinder always remains in the xz plane and its equilib-

rium position is along the z axis between -L/2 and L/2. The x coordinate
of the position of the cylindrical axis, w(z,t), may be expanded in a

A

LM
/

B

FIGURE 1 Sketch of a measurement on a cylindrical vesicle. (The
fluctuation amplitude is exaggerated for clarity.) (A) The measured
quantities u(t) and L(t) are defined as shown. The dotted line in A is the
path used for the fluorescence intensity vs. distance sketch in B.
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The time correlation function (w(z,)w(z,O) ) can be expressed as a
sum of the time correlation functions of the linearly independent Fourier
amplitudes, ( Wm(T) Wm(O) ). The expression for the time correlation
function is determined from Eq. 6 and Eq. 2 with U = Wmcos(rmz/L) as

( W(z,,r) W(z, O)) = rn-I ( CW,)Cos( L )e (8)

where Tm is the correlation time of the mth mode. Setting the energy per
mode equal to kbT/2 in Eq. 7, we obtain the contribution to the
correlation function amplitude per mode as

(W,2) 2kbT L
L2 Kcir5'in a

(9)

To find the correlation time, we calculated the velocities of the membrane
and the fluid, the restoring force of the membrane, and the drag force of
the fluid as the vesicle relaxes back into its equilibrium shape from its
excited state, described by Eq. 6.

The elastic restoring force per unit length is given by the negative of
the functional derivative of the free energy (Eqs. 3,6,7):

a4w XMr 4 rmz
F= aKcr-inc0(10)=a Kc 7 - K AW. Cos L.(10

The viscous drag is calculated in the low Reynolds number limit by
placing two series of point velocity sources along but normal to the axis of
the cylinder in such a way that the Stokeslet source, which decays like the
inverse of the distance, is proportional to and in the direction of the elastic
restoring force at that point. The dipole source decays like the inverse of
the distance cubed and does not generate a pressure field, so there is no
restoring force associated with it. The strength of the dipole source is
chosen so that the boundary conditions on the fluid velocity are satisfied
on the surface of the cylinder (Fig. 3) (28,29).

For an infinitely long circular cylinder, the slow decay of the Stokeslet
sources leads to the Stokes paradox. That is, there is no solution to the
creeping-motion limit of the Navier-Stokes equations that satisfies the
boundary conditions on the velocity both at the surface of the cylinder and
at infinity. However, if the cylinder has a finite length, the velocity field
will decay inversely with distance at distances on the order of the length of
the cylinder and longer (27-29).

Lighthill (29) has calculated the viscous drag for a finite straight
cylinder moving normal to its axis with a velocity V. He finds that the

FIGURE 2 Notation used in the calculations for the fluctuations of a

cylindrical vesicle for case 1 (u - a). (A) The xz plane. The experimen-
tally measured quantity is u(t) = w(O,t) - w(L/2,t). (B) The xy plane for
(-L/2) - z _ (L/2). RI and R2 are the principal radii of curvature.

Fourier series in z. If the length along the z axis of an element of cylinder
is unchanged (to first order) during the bending, then R = 9w/Gz2.
Because we did not observe distortions at the end points of the vesicles, we
concluded that the hemispherical ends remain unstressed during the
fluctuations and, therefore, the appropriate boundary condition is that the
curvature at the end points is zero. (Note that on the average the cylinder
does not translate or rotate.) Then

w(z, t) = E Wm cos (irmz/L),
m-O

(6)

where Wm = Wm(t). In this normal mode expansion, the m = 0 term
describes the displacement of the end points of the cylinder. The
curvature energy may be expressed as

aKc Ir L/2 a 12]d2 a c EL - ]4
E1 y-iJdz aKiL- W2. (7)

A 2cos$

A,

B 2 cosQ a3
A3

sin Q A a3

FIGURE 3 (A) Stokeslet velocity source showing slow decay of the
velocity field. (B) Dipole velocity source. The velocity fields are rotation-
ally symmetric around the axis of the velocity sources. The velocity
sources, 57 and 9, are placed along but perpendicular to the axis of the
cylindrical vesicle.
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viscous force per unit length, FmO,, acting at the point on the axis a
distance c from one end of the cylinder and b from the other end is

-8 gr V
Fnorm " '

I+ In (4cb/a') (11)

If the axis of the cylinder is curved with wavelength X, then the point
sources are linearly aligned only for a distance of roughly 0.09 X. In this
case, Lighthill (29) replaces cb in Eq. 11 with (0.09 A)2. We emphasize
that this is valid only if the amplitude of the undulation, while small
compared with the wavelength, is not small compared with the radius of
the cylinder, because the correction to the velocity field at the surface of
the cylinder is on the order of w/a.

Using V = Ow/Ot = 2;[OWm(t)J/Ot cos(lr mz/L) in Eq. 11, and
equating Eq. 11 to Eq. 10, we find Wm(t) = Wme'tl'. where

4r L 3 1 L

TK [rm 7rfln [L/(am)] - 0.521 am'
(12)

and we have set cb = (0.09 2L/m)2.
We measured the time correlation function, (u(t)u(O) ), of the

displacement of the midsection of the tube from the midpoint of the line
connecting the two ends, where u(t) = w(O,t) - w(L/2,t). The measured
correlation function is thus given by Eq. 8 with z = 0. Because both
( W. ) given by Eq. 9 and Tm given by Eq. 12 are proportional to 1/m4,
the m = 1 term dominates, yielding

(U(T)U(O)) 2kbT L _,/r,
L2~= 'Kcir a

(1 3a)

and
B

I4nr L 3 1
KT=- ir [In (L/a) - 0.52] /

(1 3b)

L>> a>> u

In this limit, we first consider the general case of small fluctuations of a

"'sausage-like" vesicle. The types of fluctuations include pure bending
modes (the cross-sectional area of a piece of tube perpendicular to the
tube's axis remains constant as the position of the axis fluctuates), pure
peristaltic modes (the cross-sectional area is increased or decreased but
the axis of the cylinder remains stationary), and mixed modes. We adopt
a cylindrical polar coordinate system with p, A, and z, respectively, the
radial, circumferential, and longitudinal coordinates. The axis of the
undeformed vesicle is along the z axis, and it is assumed that the axis
remain in the xz plane (Fig. 4). We first allow only deformations, s(4,,z,t),
in the radial direction. The fluctuating shapes can be expanded in the
series

(sin qz) (cos ki4,)
s(1, z, t) = E E Sqk(t)

q k=O (cos qz) (sin k4,)

u (t)

y

is(k,z,t)

X

(14)

To find the curvature energy (Eq. 1) of the fluctuating vesicle in Fig. 4,
notice that 1/R, = (-1 + 02s/s2)/p. But p = a + s, so 1/RI = (-1/a)
+ (s/a2) + 025/0s1 and I /R2 = 82s/0z2, where the outward normal is
again taken as positive. The membrane's compressibility is negligible, so

the area element remains constant and the curvature elastic energy of the
bent cylinder above that of the straight equilibrium cylinder is

E = (1/2)KcJJi(2 + V25) ad4,tdz.
L2 0\a

Using the expression in Eq. 14, this may be written as

q k-o 4 L a2 LL2

(15)

FIGURE 4 Notation used in the calculations for the fluctuations of a

cylindrical vesicle for the case where (u << a). (A) The xz plane. The
experimentally measured quantity is u(t) = s(O,O,t) - s(O,L/2,t). (B)
The xy pl.ne for (-L/2) - z (L/2). The fluctuation in the radial
direction is s(6t,z,t).

Finally, upon taking the ensemble average and setting the average energy
in each mode equal to kbT/2, we obtain

qk) 2kbTL 1

L2 Kc7r a [(1- k2)/a2 - q212 -
(17)

(16) For the pure peristaltic mode (k = 0), q must be in integral multiples of
2wr/L to conserve volume. The instabilities in this mode, occurring for
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values of L/a = 2wrm, where m is an integer, correspond to the breakup of
a long fluid cylinder into spherical drops (30). A result of this instability is
the "strings of pearls" often observed both in preparations of lipid vesicles
(31, 32) and in tethers of the red cell membrane at temperatures above
510C (33) (the thermal transition temperature of the spectrin). The
predicted amplitudes of the pure peristaltic fluctuations of a stable
cylinder are very sensitive to the proximity of L/a to multiples of 27.
Because L/a could not be accurately determined for the cylindrical
vesicles we observed, our theory cannot be used to obtain a value for the
curvature elastic modulus from measurements of this mode.

The pure bending modes have k = 1. Again, the ends of the cylinder
remain unstressed, so these modes have zero curvature at the ends. Only
the cosine terms with q, an integral multiple of ir/L, appear in Eq. 14. The
appropriate expression for the apparent amplitude of the bend of the
cylindrical axis in the plane at z = 0 (Fig. 4) will involve only odd values of
k, but it is clear from Eq. 17 that only the pure bending mode with k = I
and q = w/L will make a significant contribution to the measurement.
To calculate the relaxation time for this mode, we calculate the elastic

restoring force due to curvature, equate it to the radial component of the
viscous stress tensor of the creeping fluid, and require that the radial
velocity of the fluid at the cylindrical surface be equal to ds/dt.
The radial restoring force per unit membrane area is given by the

negative of the functional derivative of the free energy in Eq. 15:

Fnm = -Kc(V4s + 2V2s/a2 + s/a4) p (18)

where A is the unit vector in the radial direction. For the bending mode of
interest,

'IV4 rzT.norm =---z -Kc S1(t) Cos V/ Cos -A (19)

Taylor (34) has solved the creeping motion equations for the fluid
outside of an undulating cylinder of finite length. The problem he
considers is the same as ours except that he employs slightly different
boundary conditions. Instead of describing the k = 1 mode as a pure
radial displacement (which preserves the circular cross section to first
order), he uses radial and tangential displacements such that the net
displacement of every point on a circular cross section is identical. The
radial component of his displacement is identical to ours, and, because a
displacement and restoring force along the 4' direction have, to first order,
no influence on our problem, our calculation can be modified to use his
results.

If the displacement in the radial direction is SI ,cos4' cos(7rz/L), to have
the cylinder move as shown in Fig. 4, the displacement in the 4' direction
must be -SIIsin4' cos(7rz/L). If the wavelength, 2L, is long compared
with the radius of the cylinder, then, by symmetry, the restoring force at
4' - 0 must be the same as the restoring force at 4' = r/2 because both
membrane elements move identically. The tangential restoring force of
the membrane is then

Ft.n= KC - SII(t) sin 4' cos -' , (20)

where F'I is the unit normal vector in the circumferential direction.
In this limit, when the circular cross section moves with velocity V,

Taylor's expressions for the normal and tangential components of the
viscous force per unit area at p = a are (34)

2-q 1 i
o Csrznorm a In (Lla) 0.53 L (21a)

and

2= 1 7rZ.
Utan Vsin Lcos- (21b)a In (Lla) 0.53 L

respectively.

At the cylinder surface, V = cs/lt = - 1/rI1) SI le-'I" l. Upon setting
Eq. 21a equal to Eq. 19 or Eq. 21b equal to Eq. 20, we find S,,(t) =
SI et/T, where

2r) L 3 1

Kc _r 7r[ln (L/a) - 0.53] (L/a).
(22a)

The correlation function measured is, then, of u(t) = s(0,0,t) -
s(0,L/2,t). From Eqs. 14, 17, and 22, this is, with q = r/L,

(u(,r)u(0)) = 2kbT (Lla) e-T/7"
Kcr5 /

(22b)

where Tr I is given by Eq. 22a.
This is identical to the expression in Eq. 13 except that the relaxation

times differ by a factor of 2. This is not surprising because in the
derivation of Eq. 13 it is assumed that, because u _ a, the Stokeslet
sources are linear over a distance 0.18 L. If u << a, the Stokeslet sources
are linear over a longer distance, so (cb)'/2 > 0.18L in Eq. 11, thus
reducing the drag per unit length and also the relaxation time (Eq. 13).

Experimentally, the region of interest is (u2 ) 1/2 a. Because this
range is intermediate to the two limiting theories that yield identical
theoretical expressions for the measured correlation function except for a
factor of 2 in the expressions for Ic, the numerical coefficient is simply
taken as the average of the limiting values. That is,

(u(T)U(0)u ) 2kbTL_ rl/c
L-2 Kc7r5 a

(23a)

where

3tq L 3 1 L
I

Kc br ir[ln (L/a) - 0.53] a
(23b)

Wall Effects
The previous calculations for the viscous drag of the fluid assumes that
the cylinder is moving in an infinitely large container. A nearby wall
modifies the velocity field because all velocities must vanish at the wall. In
our experiments, the vesicles are in glass containers. The average distance
to the wall parallel to the plane in which the cylinder fluctuates is -L. In
the absence of a wall, the velocity field around a straight circular cylinder
moving perpendicular to its axis does not decay as fast as I/p until the
linear array of Stokeslet sources look like a point source, i.e., when p = L
(27-29). The effect of a wall is an increase of the viscous drag on the
cylinder (27,29) and therefore an increase in the relaxation time.

For a tube undulating in a plane parallel to a distant wall with u i a
the array of Stokeslet sources is linear for a distance -0.18L; so for
distances greater than this from the cylinder, the velocity field is expected
to decay like 0.18 L/p (29). When u << a, in the absence of a wall, the
velocity field decays like a/p at p - 0.3L, and it decays faster than evIP/L
for p 2 0.6L (34). In both cases, in the absence of a wall, the velocity field
will have significantly decayed at distances -L. Therefore, we assume
that a wall at a distance L from the plane of the fluctuating cylinder has
no measurable effect on the relaxation time.

MATERIALS AND METHODS

Vesicles were formed from a stock solution containing 50 mg egg
phosphotidylcholine (Applied Science Div., Milton Roy Co., Laboratory
Group, State College, PA) in 5 ml 2:1 vol/vol chloroform/methanol and
5 x 10-4 mol fraction 3,3'-dihexadecylindocarbocyanine iodide (diI) (35),
a fluorescent lipid analogue (a generous gift of Dr. Alan S. Waggoner,
Carnegie Mellon Univ.). Sometimes the lipid and dye were desalted by
adding some water, shaking gently, and decanting the water. After
repeating the procedure two times, the solvent was evaporated and fresh
solvent added. A 10-sul drop of this solution was placed on a glass slide that
had been cleaned in hot chromic-sulfuric acid. The slide was held at 400C
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until the solvent had evaporated. A 100-,ul drop of deionized, doubly
distilled water was gently placed on the lipid deposit and the specimen was
left in a water saturated atmosphere for -1 h. A good supply of
thin-layered vesicles was obtained by sampling the solution with a 50-aUm
path length microslide (Vitro Dynamics, Inc., Rockaway, NJ) near the
opaque lipid deposit. The ends of the microslide were then sealed onto a
glass slide with Torr Seal (Varian, Palo Alta, Ca.) to prevent evaporation.
For a better yield of the larger vesicles, the contents of the microslide was
allowed to swell overnight. This method produced several thin-walled
isolated long tubes per microslide plus many other types of vesicles that
were usually attached to each other.

Experimental Procedure
If the outside walls of the microslide are extremely clean, the vesicles can
be observed using phase contrast microscopy (36, 37), but the most
convenient way we have found to observe single bilayer vesicles is with
fluorescence microscopy. A 100-W high-pressure mercury lamp attached
to a Zeiss Universal microscope (Carl Zeiss, Inc., Thornwood, NY) was
used to excite the fluorescence of the dye molecules in the vesicle walls.
An intensity of -0.1 MuW/Mm2 fell in the center of the illuminated field of
a 40x microscope objective. To provide applicable data on deformations
for the two-dimensional theories, only cylindrical vesicles that were in
focus over their entire length during the observations were analyzed. The
depth of field of the microscope objective was -2 gm. The time course of
the fluctuations of the chosen cylindrical vesicle was observed with a
DAGE-MTI (Michigan City, IN) 650 SIT television camera that was
mounted on the microscope. The television signal was recorded on video
tape using a reel-to-reel video tape recorder (Panasonic Co., Div. Matsu-
shita Electric Corp. of America, Secaucus, NJ, model NV-8030) (Fig. 5).
For analysis, the timing in the signal from the video tape recorder played
at real time speed was adjusted by a time-base corrector (Microtime, Inc.,
Bloomfield, CT, model 2020) so that the video signal could be read into
the 6-bit digitizer of an Image Processing System (Grinnell Systems, San
Jose, CA) and stored in the hard disk memory (Kennedy, Monrovia, CA,
Model S303) of a DEC-LSI 11/20 computer system (Digital Equipment
Corp., Maynard, MA) (Fig. 5). The computer had enough memory to
store 175 (quarter) frames.

Each frame was analyzed by recalling it into the Grinnell memory
bank, displaying it on a television monitor, and manually positioning a
cursor at each end and at the center of the cylinder's axis. The computer
read the location of the cursor and calculated L(t) and u(t) for that frame
(Fig. 1). For consistency, the length of the cylinder was defined as shown
in Fig. 1. The diameter of the cylinder was measured in the first frame of
the series. If N is the total number of consecutive video frames analyzed
and the frames are spaced At seconds apart, the correlation function is
calculated from the formula

Nj U(iAt)U(iAt + jAt) (24)
G(jAt) = Z 24

i-i N-]

The number of bilayers in the vesicle's wall is measured by obtaining a
density tracing of the fluorescence intensity vs. distance from the cylinder
axis along a line that is normal to the cylinder axis (Fig. 1 b). The
maximum brightness in the tracing across a cylinder of a given diameter
is proportional to the number of bilayers in the wall. To calibrate the
number of bilayers, density tracings of -10 thin-walled cylinders were
taken each day for each vesicle preparation. Those vesicles with the lowest
level fluorescence intensity were assumed to be single bilayers. The
fluorescence intensity of thin multibilayer vesicles was observed to be
approximately an integer multiple of that of single bilayer vesicles with
the same diameter.
We are theoretically limited to a choice of vesicles with an Lla ratio of

less than -20 (assuming Kc - 10 12 ergs) because the theoretical
approximations require (( u2 ) /L2)'1/2 << 1 (Eqs. 9, 17). To be considered
a cylinder, L/a must be greater than -10. The total time of observation,
and hence the maximum measurable correlation time was experimentally

FIGURE 5 Schematic diagram of the experimental apparatus. The light
from the mercury (Hg) lamp enters the vertical illuminator of a Zeiss
Universal microscope (Carl Zeiss, Inc.) and is reflected downward by the
dichroic mirror (DM) through the objective (OBJ) and onto the fluores-
cent sample (SAM) in the object plane of the microscope. Fluorescence is
collected by the objective; it passes upward through the dichroic mirror
and barrier filter (BF), which absorbs the mercury light, and is imaged at
the focal plane of the microscope. A lens refocuses the fluorescent image
onto the television camera (TV Cam). The image is recorded on video
tape by the tape recorder (Tape rec), and simultaneously watched on the
television monitor (TV Mon). The data to be analyzed are stored in the
computer by passing the signal from the video tape recorder through a
time base corrector (TBC), which corrects the timing in the signal so that
the signal can be read into the image processing system (VIDEO IPS).
The signal is digitized by the 6-bit digitizer in the IPS, and the computer
stores the image of the vesicle every At seconds in the hard disk storage.
To analyze an image, the computer recalls the image into one of the
memory banks of the IPS. The image in the memory bank is displayed in
the television monitor, and is analyzed as described in the text.

limited by the slow photobleaching of the dye in the membranes during
the observation. If all 175 frames were to be collected, the longest time
possible between frames was -7 s, because the dye photobleaches in -20
min. Because the computer could not store the frames any faster than
every 0.9 s, the minimum time of observation was also limited. Thus, the
measurable range of values for the correlation time, rc, is 5 s ' rc ;g 50 S.
Because Lla is theoretically fixed (to within a factor of 2) and rc -

L3(L/a) (Eqs. 13, 22), we were limited to measuring tubes of length 14
ur _ L I 32 gm. The lower limit on L was very hard to reach because the
amplitude of the fluctuations was quite small (Eqs. 13, 23).

RESULTS

A typical set of data is shown in Fig. 6 a. The bars
represent the error in locating the position in the digitized
television image of the axis of the cylinder at the center and
end points of the cylinder (Fig. 1). The correlation func-
tion, G(jAt), calculated from the data is shown in Fig. 6 b.
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FIGURE 6 The data and calculated correlation function for a cylindrical
vesicle whose length is 28 um and whose length-to-diameter ratio is 7.8.
(A) u(t) vs. t. (B) The calculated correlation function.

The error bars, (o)1/2, for G( jAt) (Eq. 24) are determined
from the formula

a2(jAt) =

2NAt r1 + 2e c + [(2 t+C ) ( At-C - ( )

2(NAt/rc)2
. e-2iA/Tc (25)

where rc is the correlation time (38). Because G(jAt) is a
random variable, the error in its measurement is expected
to be N-'N/2; however, adjacent points in the sum used to
calculate G(jAt) (Eq. 24) are correlated over a time Tc.
Therefore, the total number of independent time intervals
in Eq. 24 is NAt/rc not N, so the error should be
-(NAt/rc)- 1/2, as Eq. 25 implies. Because the computer
limits N to 175 points, or -17 correlation times, the
curvature elastic modulus is measurable to within a factor
of 2.

A weighted, linearized, least-squares routine (39) is
used to fit the correlation function to an exponential decay,
treating the amplitude and time as independent variables.
The fit is also shown in Fig. 6 b.
The results for several cylindrical vesicles with the most

complete measurements are shown in Table I. The esti-
mated errors for Kc, determined independently from the
amplitude and the time, correspond to one standard devia-
tion. (The probability that the parameter falls within the
indicated range of error is -68% [391.) All additional data
with larger uncertainties were consistent with these results.
The vesicles were usually in the center of the 50-gm path
length microslides so the effect of the wall on the viscous
damping was neglected. We found (u2) /2-_ a. The
assumption of small fluctuations (L >> u) is justified.
Separate values are given for the curvature elastic modulus
deduced from the measured relaxation times (Eq. 23) and
the amplitude. Using just the mean values in Table I, the
average and standard deviations for Kc from the four
cylinders are

Kc(time) = 1.7 ± 0.7 x 10-'2ergs

Kc(amp) = 1.2 ± 0.5 x 1I0-2 ergs. (26)

It is concluded from all of the measurements that Kc - 1-2
x 10- 2ergs.

Servuss et al. (12) found the curvature elastic modulus
of similar long cylindrical tubes by measuring the mean-
square value of the difference in slope between the two tube
ends. If our normal mode expansion (Eq. 6) for the shape
of the cylinder was used rather than the one in reference
12, then our expression for the curvature elastic modulus
was 0.81 times the expression found in reference 12. This
put their value for Kc within our error. Values for Kc
within our error were obtained whether the amplitude of
the W was measured directly, as above, or whether we
repeat the Servuss et al. experiment.

CONCLUSIONS

We have used a video imaging technique to measure the
time correlation function of the fundamental bending
mode of long cylindrical phospholipid vesicles. From these
experiments, we found that the values of the curvature
elastic modulus deduced separately from the correlation

TABLE I
RESULTS ON CYLINDRICAL VESICLES

L L/a (u2)'12/a No.of Kc (1O2 ergs)
layers Amplitude Time

ALm
31.0 14.8 0.87 1 1.1 ± 0.1 2.7 ± 0.5
29.9 18.1 1.2 1 1.1 ± 0.3 0.94 ± 0.4
24.4 13.6 1.0 1 0.7 ± 0.1 1.4 ± 0.3
27.9 15.7 0.7 1 1.9 ± 0.5 1.7 ± 0.6
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amplitude and time are in agreement, and, therefore,
either measurement is sufficient to determine the curva-
ture modulus. We conclude that Kc - 1-2 x 10-12 ergs.

It would be interesting to use this method to deduce
values for the temperature and composition dependence of
the curvature modulus of phospholipid membranes in
regimes of physiological interest. Because small-amplitude
bending deformations (at constant area) of flaccid mem-
branes should be dominated by the curvature modulus, a
similiar analysis (Schneider et al., manuscript in prepara-
tion) should be applicable to describe some of the mechan-
ics of eucaryotic cell membranes. Thus, several distinctive
cell membrane properties may be modulated by the tem-
perature and composition dependence of the curvature
modulus or its asymmetry. Large-scale deformations and
deformations of nonflaccid cells would involve other prop-
erties of the cell membrane, particularly the cytoskeleton,
and other membrane properties such as its shear modulus
and area stretching modulus (22, 23).
We have observed that the amplitude of the fluctuations

of vesicles made from a pure phosphatidylcholine seemed
to increase on cooling to the vicinity of the gel phase
transition temperature. These larger-amplitude fluctua-
tions accompanied, perhaps, with local fluctuations in
membrane asymmetry (spontaneous curvature) may be
responsible for the enhanced membrane fusion frequently
reported for lipid vesicles near phase transitions.
The success of the theoretical mechanics we have used to

describe the bending mode fluctuations is encouraging, but
these theories do not apply to the peristaltic fluctuations of
the long tubes, because they do not accomodate the
predicted instability in their present form. We have
observed stable peristaltic fluctuations in cylindrical vesi-
cles. We believe that a more detailed theory, analogous to
the one we have developed in Schneider et al. (in prepara-
tion) for quasi-spherical vesicles, that better approximates
the actual shapes and that strictly conserves the area and
volume of the vesicle during the fluctuations, would be able
to describe the peristaltic fluctuations.

Jenkins (16) has used a curvature elastic theory to
calculate the equilibrium shapes of axisymmetric vesicles
as a function of their area and volume. In another manu-
script, Schneider et al. (in preparation), we extend his work
to describe the thermal fluctuations of a quasi-spherical
vesicle. We find that the expression for the correlation time
contains a contribution from the two-dimensional hydro-
static pressure in the plane of the membrane. We believe
that a similar analysis applied to the experimental results
of Brochard and Lennon (17) would show the effective
curvature elastic modulus of the red blood cell to be close to
that of our artificial vesicles. This conjecture is supported
by recent work of Evans (40) who used nonlinear deforma-
tions of the red blood cell to determine a value for the
curvature modulus. He found Kc 1.8 x 10-12 ergs, in
agreement with Eq. 26. This result seems surprising in view
of the known membrane asymmetry and characteristic

spectrin-actin cortex of the red blood cell that dominates its
mechanics in large deformations. Perhaps this cortex
serves in small mechanical deformations to modulate the
effective two-dimensional pressure in the plane of the lipid
membrane or to induce an effective asymmetry across the
membrane or spontaneous curvature.
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