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ABSTRACT We develop a thermodynamic calculus for the modeling of cell adhesion. By means of this approach, we are
able to compute the end results of competition between the formation of specific macromolecular bridges and
nonspecific repulsion arising from electrostatic forces and osmotic (steric stabilization) forces. Using this calculus also
allows us to derive in a straightforward manner the effects of cell deformability, the Young's modulus for stretching of
bridges, diffusional mobility of receptors, heterogeneity of receptors, variation in receptor number, and the strength of
receptor-receptor binding. The major insight that results from our analysis concerns the existence and characteristics of
two phase transitions corresponding, respectively, to the onset of stable cell adhesion and to the onset of maximum
cell-cell or cell-substrate contact. We are also able to make detailed predictions of the equilibrium contact area,
equilibrium number of bridges, and the cell-cell or cell-substrate separation distance. We illustrate how our approach
can be used to improve the analysis of experimental data, by means of two concrete examples.

INTRODUCTION

There are many well-documented systems in which the
presence of specific molecules (CAMs, SAMs, lectins,
antibodies, etc.) are required for cell-cell or cell-surface
adhesion to occur (Frazier et al., 1982; Edelman, 1983;
Springer and Barondes, 1982). Furthermore, even in
instances where a chemical species responsible for forma-
tion of cell-cell bridges is unknown (e.g., T-killer-target
binding), the specificity of the interactions indicates that
specific receptors are necessary for cell adhesion. The fact
that cells do not stick to each other or to surfaces unless a
substantial number of specific cell-cell bridges can form,
argues for the existence of a repulsive barrier that must
somehow be overcome by bridging molecules. The exis-
tence of a repulsive barrier preventing adhesion is further
emphasized by studies showing that even when numerous
bridging molecules are present, cells must frequently be
forced into close contact by centrifugation before strong
bonding occurs (Capo et al., 1982). Moreover, it was
shown by Grinnell (1974) that centrifugation could bypass
several metabolic steps otherwise required for bonding.

Given the existence of a repulsive barrier, Fig. 1
illustrates a very minimal account of the various kinds of
energetic states that can occur during the interaction of
two cells. If the cells are far apart (Fig. 1 a), then the free
energy of the system will be a simple sum of independent
contributions from the individual cells. In contrast, if the
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cells move closer to each other, the attractive and repulsive
interactions will cause the free energy of the system to
depend on interactions between the cells. Certain configu-
rations will be unfavorable because of the repulsive barrier
(Fig. 1 b). In other configurations the repulsive interaction
will be counterbalanced by the formation of cell-cell
bridges (Fig. 1 c). As illustrated in Fig. 1 c, a configuration
involving redistribution of receptors into the contact region
might be required to achieve a degree of bridging sufficient
to overcome the repulsive barrier.

The complex balance between specific bonding and
nonspecific repulsion that governs the mutual interactions
of two adhering cells is difficult to understand on a simple
intuitive level. The complexity of adhesion argues the need
for a general modeling language applicable to the analysis
of the wide spectrum of natural and experimental systems
in which cell adhesion plays a role. The present work was
motivated by the realization that, despite the manifestly
nonequilibrium nature of real cells, when properly formu-
lated and applied, a variety of thermodynamic concepts
can provide a basis for such a modeling language.

An equilibrium thermodynamic language for describing
cell-cell interactions must tacitly assume that the chemical
and physical processes included in the description, equili-
brate on time scales that are short compared with the
scales required for metabolic changes that tend to drive the
system away from equilibrium. In particular, Fig. 1 implies
that the times required for passive processes (e.g., diffusion
of receptors into the contact region, variation of the
cell-cell separation distance, and formation of cell-cell
bridges [Bell, 1978, 1979]) are in some sense fast com-
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FIGURE 1 When two cells first come into contact, the free energy is
increased (center) and only after receptors have accumulated in the
contact area (right) is the free energy below that of the separated cells.

pared with the time scales of metabolically powered pro-
cesses (e.g., synthesis of new receptors, modulation of
cyotskeletal architecture, changes in the repulsive barrier).
We cannot claim to have proven that this fundamental
requirement for a thermodynamic model is met in every
instance of cell adhesion; nevertheless, it is a sufficiently
mild requirement that we will proceed with the analysis
and judge its validity by empirical comparison with experi-
ment.

To illustrate the thermodynamic approach to the model-
ing of adhesion, we first present the detailed formulation
and analysis of a representative example called adhesion
model No. 1 (AM-1). We will then indicate how the
various elements ofAM- I can be varied and generalized to
create a very large class of related models each applicable
to different circumstances. Finally, we attempt to demon-
strate the analytical and predictive utility of our approach
by comparing the predictions of AM-I and related models
with data on adhesion of cells under various experimental
circumstances.

ADHESION MODEL NO. 1

Free Energy Function
Consider two cells with mutually complementary receptors and assume
that the receptors on each cell are freely mobile in the entire plane of the
membrane and that the receptors constitute a minor fraction of the total
membrane mass. This implies that receptors will behave as ideal solute
particles in the lipid bilayer and that unless cell-cell contact induces
redistribution into the contact region, the receptors will be uniformly
distributed over the entire cell surface.

Fig. 2 illustrates our idealized view of the geometry of cell-cell contact.
Within a certain well-defined set of contact points JAI, the cells are
separated by a small distance S. Outside the contact region the cells are
separated by a distance much greater than S. According to Fig. 2, if x
denotes an arbitrary location on the surfaces of cell I or cell 2, then either
x represents a point belonging to the set of contact points (x E (Al) or x
represents a location outside of the contact region, on the free surfaces of
cells I or 2, (xf [IA,}- JA] or x E [IA2l - JAI]).

Fig. 2 is quite purposely ambiguous about the shape and topology of the
set of contact points and about what happens at the boundary of the
contact region. In AM-I we have neglected a thin transition zone where
the cell-cell separation distance is larger than S and yet is not quite so
large as to be effectively infinite. AM-1 also neglects the possibility that
there might be two or more distinct contact distances (e.g., close contacts
and very-close or focal contacts).

FIGURE 2 Model for the interaction of cell surface molecules in the
region of cell contact. In the contact area, nonspecific repulsion is
mediated by interaction between the hydrophilic polymers associated
with the cell surface. The repulsive forces are counterbalanced by
formation of bridges between mobile surface receptors.

For adhesion to occur, the separation distance within the contact
region must be sufficiently small to allow bonding between the comple-
mentary receptors on the two cells; by definition such bonds cannot form
outside the contact region. We will denote the local surface density of
receptors at a position x, by nl,(x) for receptors on cell No. 1 or n2,(x) for
receptors on cell No. 2. Because receptors can only be in one of two states,
free or bonded, we surmise that for any location

n,,(x) = n,(x) + nb(X) (la)

and

n21(x) = n2(x) + nb(X), (1 b)

where the nj(x), i = 1, 2, are the local surface densities of unattached
receptors and nb(x) is the local surface density of cell-cell bridges.

According to AM-1, bridges cannot occur outside the set JAl; whereas
inside (Al all points are energetically equivalent. This implies that to
maximize entropy, the surface density of cell-cell bridges must be a
positive constant inside the contact region and zero outside the contact
region. Obviously, if A is the area of the set (Al and Nb represents the
absolute number of bridges holding the two cells together, then the
uniform density of bridges in the contact region is

nb(X) = nb= Nb/A x J(Al. (Ic)

In contrast to bound receptors, the free receptors on cell 1 or cell 2 can
exist with equal probability at any point on the cell surface, both inside
and outside the contact region. Thus sufficiently near thermal equilibri-
um, free receptors on cells I and 2 will be uniformly distributed over the
entire cell surface. Using this fact, it is easy to show that if N,,, A,, N2,,
and A2 represent the total numbers of receptors and the total surface areas
of cells I and 2, then

n,(x) = n, = (N,, -Nb)IA Xe {A,} (2a)

and

n2(x) = n2 = (N2, - Nb)/A2 x E (A21. (2b)

We are now in a position to consider the change in Gibbs free energy of
the closed system containing two cells during a process in which the cells
go from a separated state, where they do not interact, to a bound state,

BIOPHYSICAL JOURNAL VOLUME 45 19841052



where nonspecific repulsion and formation of cell-cell bridges occur. For
such a process'

AG = [(NI, - Nb),LI(nj) -N,tj,j(Njt1A )]

+ [(N2t- Nb)-U2(n2) -N2tA2(N2t1A,)]
+ NbAb(nb, S) + Ar(S). (3)

In order of their appearance the various terms in Eq. 3 represent (a) the
free-energy change undergone by unattached receptors on cell No. 1 due
to bond formation (jI [n1I denotes the chemical potential of a free receptor
on cell No. 1), (b) the free-energy change for free receptors on cell No. 2
(192[n2J is the chemical potential of a free receptor on cell No. 2); (c) the
free energy of the cell-cell bridges (Ab[nb,S] is the chemical potential of a
cell-cell bridge), and (d) the work done in overcoming the nonspecific
repulsion between the cells (r[s] in the free energy of nonspecific
repulsion per unit area of contact). Notice, that in light of Eqs. 1, 2a, and
2b, the various terms in Eq. 3 can all be expressed as functions of only
three independent variables Nb, A, and S.

By definition, a state of a closed system will be stable only if it
corresponds to a choice of the independent variables for which AG has a
relative minimum. Thus by finding the minima of Eq. 3 with respect to
Nb, A, and S we can determine the number of distinct stable states of two
adhering cells as well as the most probable equilibrium properties of these
states. However, to proceed with an analysis of the free energy function,
we must first obtain explicit expressions for the chemical potentials and
for the potential energy of nonspecific repulsion.

Chemical Potentials
According to AM-1, the chemical potential for each species of free
receptor can be written in the ideal solution form (e.g., Hill, 1960)

A (ni) = gi+ kThn(ni) i = 1, 2. (4)

In a similar way the chemical potential of cell-cell bridges is given by

Ab(nb, S) = Ab(S) + kThn(nb). (5a)

In Eqs. 4 and 5a, the A4, i = 1, 2, b, represent the chemical potentials of
free or bound receptors at some standard surface density, e.g., 1
molecule/A2. A4 and i0 are simply contants because the internal energy of
free receptors is assumed to be unaffected by the geometry of cell contact;
in contrast 4b(S) is variable because the internal energy of cell-cell
bridges depends quite critically on the cell-cell separation distance.

The physical basis for the S-dependence ofA is illustrated in Fig. 3. As
indicated by this figure, cell-cell bridges must have a natural, unstressed
length that corresponds to a state of minimum internal energy. If the
separation distance is larger or smaller than the unstressed bridge length,
then bonds will be either stretched or compressed. Just as when a spring is
stretched or compressed, deformation of cell-cell bridges must increase
their internal energy leading to the S dependence of A. It is clear from
this analogy with a spring that if L is the natural length of a cell-cell
bridge, then, by Taylor's Theorem

ob(S) = Aob(L) + I/2 K(S - L)2+ ... (5b)
where K is the spring constant for stretching of the bridges. In AM-1 we
neglect the higher order terms in Eq. 5b.

If we imagine that the receptors are typical glycoprotein molecules,
then Fig. 3 can be interpreted as follows. In the unstressed state, Fig. 3 a,
the receptors are viewed as somewhat globular compact structures. With
stress, the binding sites may begin to deform and eventually rupture (Bell,
1978) without noticeable deformation of the receptor as a whole. In this

'More properly, we could write AG = f ,(n)dN, but all terms, depending
on concentration, would be as in Eq. 3.
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FIGURE 3 Cell-cell bridges have an optimum average length, L, for
which chemical potential is minimal.

case, the constant, K, will be relatively large. Alternatively, under stress,
the receptors may begin to unfold or denature. This process might lead to
eventual disruption of the binding site, at least if the site involves
determinants of the molecule that became dispersed during denaturation.
In this case, K could be relatively small, indicating the possibility of
substantial receptor stretching before bond rupture.

By analogy with the classical equilibrium constant for solution phase
rectants, we can define an equilibrium constant for cell-cell bridging at a
given separation distance

K(S) exp {[,U° + go°- gb(S) + kT]/kTl
KL exp [-'/2 K(S - L)2/kT]. (6a)

This equilibrium constant will be shown to determine the density of
cell-cell bonds in the usual way (cf., Eq. lOa).

As intuition suggests, K(S) reaches its maximum value, KL, when the
separation distance is equal to the unstressed length of the bonds.
Physically, KL represents the binding constant for formation of an
unstressed cell-cell bridge. Usually it is sufficient to think of KL as a
constant that depends only on the internal structure of the two receptor
species. However, if a competitive inhibitor of the receptors on one of the
cells is present, then it can be easily shown that the inhibition of binding
can be fully taken into account by defining an effective value of KL that
depends on the concentration of inhibitor; all other parameters of
adhesion remain unaffected. In exact parallel with the effect of inhibition
on ordinary receptor-ligand binding, if I is the inhibitor concentration in
solution and Ki is the dissociation constant of the receptor ligand complex,
then the dependence of the binding constant on I is given by

KL(I) = KL(0)/(1 + I/K;), (6b)
where K(O) -KL is the value of the binding constant in the absence of
inhibition.

Repulsive Potential
F(S) in Eq. 3 represents the mechanical work that must be done against
nonspecific repulsive forces to bring a unit area of membrane from an
infinite separation to a separation distance of S. If the nonspecific
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repulsive force at distance S is given by F(S), then

F(S) =--v(S), (7a)

or equivalently

FP(S) = f F(s)dS. (7b)

According to recent estimates (Bongrand and Bell, 1984; Bongrand et al.,
1982) the attractive electrodynamic forces between cells are negligible
and the repulsive barrier between cells arises mostly from a combination
of two effects (a) electrostatic repulsion between negative charges
associated with the cell surfaces and (b) the so-called steric stabilization
effect. The steric stabilization force is well-known in the theory of colloid
suspensions (Napper, 1977); it arises because cell membranes are coated
by a hydrated layer of long-chain polymer molecules (i.e., the glycocalyx).
As two such polymer-coated surfaces approach each other, the polymer
layers overlap and some of the water of hydration is squeezed out of the
intercellular gap (see Fig. 4). The repulsive force results from a combina-
tion of the osmotic tendency of solvent to return into the intercellular
space, and the steric compression of the polymer chains.

In AM- I we adopt a simple phenomenological equation for r(S) that
is a smoothed representation of an expression derived for idealized
membranes by Bongrand and Bell (1984)

statistical mechanics of chain molecules anchored to rigid surfaces
(Napper, 1977). For typical cell parameters such estimates yield values
for y on the order of 10-'-10-5 dyn (Bongrand and Bell, 1984). The
parameter T is a measure of the combined thickness of the polymer layers
on the two cells; for typical cell-cell or cell-surface interactions r will be
between 5 and 30 nm.

Note that our views regarding the magnitude of the intercellular
repulsion are at variance with the estimates of some earlier authors
(Parsegian, 1973; Nir and Anderson, 1977; Gingell and Vince, 1980) who
had estimated that van der Waals attraction may even overcome a weak
electrostatic repulsion, for cell separations '5 nm. The differences are due
to neglect of steric stabilization effects by these authors and also because
in estimating the electrostatic repulsion, we have assumed a uniform
volume distribution of negative charge (in a 10 nm thick layer outside the
plasma membrane) rather than a surface distribution. Insofar as much of
the charge is associated with sialic acids on glycoproteins and other
extended macromolecules, we believe the volume distribution is a more
reasonable approximation.

Minimization of Free Energy
Although they are free to vary independently, Nb, A, and S must still
satisfy certain a priori constraints. For example, since the separation
distance must be strictly greater than zero, we require that

0<S<oo.
F(S) = exp (- -). (8)

Qualitatively, the repulsive energy falls roughly as the reciprocal of the
separation distance out to a distance r, after which it drops more rapidly.
Both the steric stabilization force and the electrostatic repulsion are
expected to have roughly this shape.

From a descriptive point of view, the parameter y in Eq. 8 is a measure
of the ease with which the polymer layer between cells 1 and 2 can be
compressed. Theoretical estimates of y can be derived by considering the

Large separation distance

Cell #

Smoll seporotion distonce -

b

FIGURE 4 Interaction between the glycocalyces of two neighboring cells
is generally repulsive due to electrostatic repulsion, solvent exclusion, and
polymer compression at small separation distances between the plasma
membranes.

Cell # 2

(9a)

In addition, since the number of cell-cell bridges cannot increase if there
are no free receptors left on one of the cells, we must constrain Nb to
satisfy the inequality

0 _ Nb - min (Nlt,N2t). (9b)

In a similar way, it is clear that the area of contact between two cells
cannot increase if the larger of the two cells has completely surrounded
the smaller. In addition to this obvious restriction, the area of contact
between two cells could be subject to more demanding constraints. For
example, if the cells are of nearly equal area, the contact area cannot
approach the cell area since each cell must have an appreciable interface
with the environment. Moreover, if the cell membranes are supported by
rigid internal structures, then the two surfaces might not be able to
deform or bend sufficiently to increase contact beyond a certain point.
Such a situation probably occurs if contact between cells takes place by
means of a specialized cell extension or pseudopod (e.g., neuron-dendrite
adhesion). In light of this type of possibility, the contact area between two
cells will in general be subject to a constraint of the form

0 _ A Amax min (Al, A2). (9c)

At thermal equilibrium AG will be a minimum with respect to variations
in all the independent variables. However, if A, Nb, and S represent the
values of the independent variables that give the lowest permissible value
of AG, then because of the a priori constraints, these quantities do not
necessarily correspond to the values of the variables that give the absolute
minimum value ofAG (A, Nb, and S). Depending on whether A, Nb, and S
violate one or another of the constraint conditions, the system can display
several different stable modes of behavior (i.e., several phases).

Because AG is a continuously differentiable function Nb, A, and S must
satisfy the three simultaneous equations 8Nb AG = cAG - s5AG = 0.
Using Eqs. 4, Sa, and 8 to express the chemical potentials and the
repulsive potential in terms of Nb, A, and S, the conditions for an absolute
minimum ofAG can be put in the form

Ab (Nit- Nb\ N2, Nb )K(S)A (Al ) ( 2)

Nb F(S) ( y

exp [-S/T]

(lOa)

(lOb)
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and

[d F(S)]

Nb dS y(S + T) exp [-S/IT]
A dS y ) KKTS 2(S-L)

(lOc)

To solve Eqs. 1Oa, b, and c, we first subtract Eq. 10b from 10c. Then,
noting that the resulting expression can be put in the form of a simple
quadratic in S, we conclude that

2S[KTL + K(L+¶)2+-]K (11)

Finally, since Eq. 11 fixes S, Nb, and A can be obtained by solving Eqs.
1Oa and lOb, regarding r(S) and K(S) as known parameters. When this is
done we obtain

Nb= '/2 [N_t + N2t - V(Nl, - N2t)2 + 44(S)] (12a)

and

A=kTN22A2P(S) [N,, + N2,- V(N,,l-N2)2 + 44(S)], (12b)

where t(S) is a nondimensional parameter that measures the ratio of
repulsion to binding

i(S) A,A2r(s)/kTK(S). (13)

Examination of Eqs. 1 2a and b demonstrates that if

c(S) > N,,N2t, (14)

then both A and Nb will be less than zero. Thus if Eq. 14 holds, Eqs. 12a
and b obviously do not give permissible values ofA and Nb.

In a similar way, it can easily be verified from Eq. 12a that if

J(5~rM.(N N' _r(S)A,,.,
t(S) Min(N,t. N2,)- kT

Max(Nt,, N2t)- k()T , (15)

then A > A,,..., in violation of the upper limit of Eq. 9c. On the other hand,
if neither Eq. 14 nor Eq. 15 holds, then the values of 5, Nb, and A, given by
Eqs. 11, 12a, and 12b, will be consistent with all the a priori constraint
conditions; in this case the permissible minimum and the absolute
minimum ofAG coincide.

It is clear from Eqs. 14 and 15, that the nondimensional parameter
t(S) plays a critical role in determining the phase of the thermodynamic
system formed by two adhering cells. This is illustrated geometrically by
considering the typical structure of a phase diagram in the plane defined
by coordinates t(S) and N,t (see Fig. 5). The inequalities, Eq. 14 and 15,
lead to a division of the phase diagram into three regions. The boundary
between regions I and II is formed by the straight line through the origin
t = NAN,,. The boundary between regions II and III is formed by the
straight line with x intercept r(S)A.x/kT and slope (N2 - r[S]A,/
k7) provided that the slope is positive. If the slope is negative, i.e., ifNA '
r(S)A,,.x/kT, then region III simply does not exist and the phase plane
has only the first two regions.

In the first region of phase space, Eq. 14 is satisfied, and Eqs. 12a and
12b predict negative values of A and Nb. Simple inspection shows that,
since AG is an increasing function of Nb and A in region I, the permissible
minimum value of AG occurs when Nb = A = 0. Inspection also shows
that the minimum value of G is independent of S so that S in region I is

- (U)

0) I.-

zC..i
44o

Nit

FIGURE 5 Phase diagram for cell-cell adhesion. For model parameters
in region I, adhesion is not thermodynamically possible. In region II,
adhesion is possible, but the area of contact is <A,,,. In region III, the
contact area is at its maximum value, A,.,

indeterminate in the range 0 _ S -- . It is clear from the nature of this
class of solutions that region I is the portion of phase space in which stable
cell-cell adhesion cannot occur.

In Region II of phase space, the inequalities, Eqs. 14 and 15, are both
violated. In this case the solutions to Eqs. 11-1 2b are permissible so that
Nb= Nb, A =A andS = S.

In the third region of phase space, Eq. 14 is violated but Eq. 15 is
satisfied. In region III AG is minimized by using the constraint condition
A = A,.. in place of Eq. 10b and by solving Eq. 10a and 10c
simultaneously to determine Nb and S. It is unfortunate that unlike the
situation in region II, exact explicit expressions for Nb and S in region III
cannot be obtained. Nevertheless, solutions can easily be computed by
standard numerical methods (e.g., simple functional iteration).

In summary, suppose we are given a prescribed set of properties for two
potentially adhering cells and we wish to calculate the most probable
equilibrium configuration of the system. To do this, we must first
determine the phase of the system by calculating S and c(S) and by
checking inequalities 14 and 15; if Eq. 14 is satisfied and Eq. 15 is
violated, then we are in region I and the most probable state is A = Nb = 0
and S = 0. If 15 is satisfied and Eq. 14 is violated, then we are in region
III and we must numerically solve Eqs. 10a and 10c subject to the
constraint A = A,,,. Finally, if both Eqs. 14 and 15 are violated, then we
are in region II and the most probable equilibrium state is given by S = 5,
A = A, and Nb = Nb (i.e., by Eqs. 11-12b).

VARIATIONS AND GENERALIZATIONS

A number of adhesion models that differ slightly from
AM-I can be generated by considering relatively trivial
variations in formulation. For example, we could consider
nonideal behavior in writing the chemical potentials of the
free and bound receptors (Eqs. 4 and 5a); we could also
consider higher order terms to the expansion of ,ut(S) (Eq.
5b), and we could consider alternative expressions for
parametrizing the repulsive potential between cells. We
have examined many possible variations of this kind. In
general, the results make for messy mathematics without
additional insight. However, in addition to minor varia-
tions, there are many thermodynamic models that propose
fundamental changes in the structure of AM-1. Some of
the more important ways in which other thermodynamic
adhesion models differ from AM- I are the following.

(a) Mobility of receptors - AM-I assumes that the
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receptors on both cells are freely mobile. Another impor-
tant case arises if one of the cells has fixed or immobile
receptors. This latter case is probably important in
instances of cell-surface adhesion (including adhesion of
cells to an extracellular matrix) or in cases of adhesion
between viable cells and gluteraldehyde-fixed cells or latex
beads. An adhesion model in which receptors on one cell or
surface are immobile is given in Dembo and Bell (1984).

(b) Multiplicity of receptors- considering the possible
multiplicity of receptors can give rise to a number of
different special cases. The simplest case arises when there
are two classes of receptors on each cell; class W on cell
No. 1 forms bridges only with class Y on cell No. 2 and
similarly for class X and Z. Obviously the W-Y bridges
will in general have different lengths, spring constants, and
binding constants than the X-Z bridges. In certain
instances competition between the two types of bridges
could give rise to a number of different bound states in
which some regions of contact are held together predomi-
nately by type X-Z bridges and other regions by type W-Y
bridges. Thus multiplicity of receptors is probably impor-
tant in understanding cells (e.g., fibroblasts) that can form
two very different types of adherent regions (e.g., close
contacts and focal contacts). An example of a model in
which each cell has two classes of receptors will be given in
a subsequent paper. A different aspect of receptor multi-
plicity arises in problems of adhesion mediated by lectins,
where the saccharide moieties to which the lectins bind
may be located at various distances from the cell surface,
depending on the structure of the macromolecules of which
they are parts.

(c) Elastic deformation of cells- AM-I assumes that
the adhering cells are sufficiently fluid, that they are able
to deform easily until the area of contact reaches a sharp
upper limit, Amax. After this limit is reached a further
increase in contact is impossible. Obviously, in other
circumstances there might be a more gradual increase in
resistance to cell deformation as the area of contact
increases. In such a case the free energy would include an
additional term representing the work done in producing
elastic deformation as a function of contact area (e.g.,
Evans and Skalak, 1980).

(d) Mobility of the glycocalyx - AM-1 assumes that
the hydrophilic polymer chains that comprise the glycoca-
lyx are somehow anchored at fixed locations in the cell
membrane. If some or all of the chains were free to move
laterally in the plane of the membrane, then during
adhesion, they could theoretically squeeze out of the
contact region leading to a reduction in the repulsive
potential. The amount of squeezing out would depend on
the ease with which material leaving the contact region can
be accommodated on the remainder of the cell surface.

The practical importance of this kind of effect is
difficult to assess on the basis of currently available data.
No redistribution of negative charges was found in the
contact area between yeast and Dictyostelium discoideum

(Ryter and Helio, 1980) as assayed with electron dense
markers (cationized ferritin and colloidal iron hydroxide).
However, it has been shown (Poo, et al., 1978; Jaffee,
1977) that electric fields will produce an accumulation of
lectin receptors towards a pole of the cell. Clearly, lateral
redistribution of the glycocalyx could in theory cause very
large alterations in the repulsive barrier between cells with
profound consequences for cell-cell adhesion.

(e) Excluded volume effects for receptors (and glycoca-
lyx) on the same cell-lattice model- AM-I assumes that
there is no interaction between receptors on the same cell
and that they form a dilute solution in the membrane, even
within the contact area. Hence the chemical potential is
taken to have ideal solution form in Eqs. 4 and 5a.
However, the number of bonds per unit area, as given by
Eq. lOb may then reach very large values. If, for example
r 1l0 ergs/cm2 (cf., Table I), Eq. lOb predicts nb "

2.5/(nm)2 which may exceed the achievable density of
close-packed receptors.

To avoid this difficulty, we have developed a model in
which each membrane is subdivided into a number of
lattice cells, in each of which there is no more than a single
receptor. This model will be published elsewhere. It pro-
vides a straightforward way to avoid unrealistically high
receptor densities. Moreover, if it is assumed that each
lattice cell contains either a receptor or a component of the
repulsive glycocalyx, then the lattice model can also allow
for excluded volume effects between the glycocalyx and the
receptors.

NUMERICAL RESULTS
Table I presents a list of the various parameters that
characterize adhering cells according to adhesion model
No. 1. This table also presents some preliminary estimates
of the parameters. These estimates are subject to consider-
able uncertainty, but they are useful for purposes of
orientation when carrying out illustrative simulations of
various experimental systems. The detailed arguments for
deriving the estimates given in Table I are presented in the
Appendix.

Consider a very general kind of experiment in which the
stable configuration of two adhering cells is observed as
one or another of the parameters in Table I is varied. AM- I
predicts that such an experiment can produce either a
sharp threshold type of transition in the observed configu-
ration if a phase boundary is crossed, or a smooth variation
if the phase of the system remains unchanged. The most
dramatic phase transition predicted by AM-I corresponds
to the onset of adhesion at the region I-region II boundary
(the adhesion boundary). Crossing of the region II-region
III boundary corresponds (the maximum contact bounda-
ry) to the loss of a degree of freedom due to the onset of
maximal contact between the cells. If one cell is much
bigger than the other and if the cells have sufficient
flexibility, then maximal contact implies the occurrence of
phagocytosis.
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TABLE I
ESTIMATED PARAMETER VALUES

Parameter Symbol Best estimate Range§

Surface area of cells I
and 2 Al, A2 2 x 10-6 cm2 10-7-10-4

Maximum contact
area Ax 10-6 Cm2 0-min(A, A2)

Total receptor num-
bers on cells 1 and
2 Nit, N2t 105/cell 10_-107

Compressibility coef-
ficient of the glyco-
calyx y 10-6 dyn _10-4

Thickness coefficient
of the glycocalyx 1rl6cm 0.5-2.0 x 10-6

Binding constant for
formation of un-
strained cell-cell
bridges KL 10-8 Cm2 10-1'_10-5

Unstrained length of
cell-cell bridges L 2 x 106 cm 1-3 x 10-6

Force constant for
stretching of cell-
cell bridges K 0.1 dyn/cm lo-,-lo,

*See the Appendix for detailed discussion.
§Same units as for best estimate.

Fig. 6 shows the predictions of AM-I for how the
equilibrium configuration depends on the total number of
receptors per cell. In this computation all the parameters
except for N,, and N2t were fixed at the values shown in
Table I; we then varied the values of N,, and N2, as shown,
keeping the ration N,,/N2t = 1. To conveniently display the
equilibrium configurations of the cells, Fig. 6 makes use of
three nondimensional variables. These are (a) the fraction
of receptors on cell No. 1 or No. 2 that are involved in
bridges, Nb/N,t = Nb/N2,, (b) the fraction of the maximal
contact area that is occupied, A/A,NX and (c) the separa-

105

06
tO ~~~- ,* p*. , ,,OD,

.~~~~~~~~~~~~~~~~~A ..

00 O 2? 30 .4 SO'.Q7 0. ;9.0 .0

FIGURE 6 Dimensionless contact area (AIAi), number of bonds
(Nb/N,,), and separation distance (SIL - 1) as a function of number of
receptors, NI, ( $N2,). Parameters other than N., and N2, are as in Table I.

tion distance, normalized by the unstrained bridge length,
(S- L)/L.

The small insert on the right-hand side of Fig. 6
indicates the behavior of the nondimensional variables near
to the point where the adhesion boundary is crossed. The
behavior of the nondimensional variables when the maxi-
mum contact boundary is crossed can be seen in the main
part of the figure. Before the adhesion boundary is
reached, the separation distance is infinite and both the
contact area and the number of bridges are zero. As soon as
the adhesion boundary is reached, the separation distance
drops to a finite value. Subsequent increases in N,, and N2,
do not further decrease the separation distance although
there is a rapid increase in both the number of bridges and
in the contact area. When N,, reaches the maximum
contact boundary at -6 x 105 mol/cell, further increases
in contact area are blocked, but the number of bridges
continues to increase; crossing of the maximum contact
boundary also causes the separation distance to begin a
gradual decline.

In addition to variations in the number of receptors per
cell (or per unit surface area of artificial substrate), it is
perfectly feasible to conduct experiments in which the
number of receptors remains fixed but the repulsive poten-
tial or the binding constant is varied. The repulsive poten-
tial could be changed by varying the composition of the
solvent in such a way as to increase or decrease the steric
stabilization effect or by direct modification of the glycoca-
lyx (e.g., by enzymatic treatment). Maneuvers that pro-
duce changes in solvent properties or in the number of
sugar moieties per unit area of surface should change the
compressibility parameter, y, but should not affect the
thickness parameter r except insofar as the glycocalyx may
tend to collapse under reduced hydration or increased salt
content. To increase the thickness of the glycocalyx with-
out affecting the compressibility, it would be necessary to
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FIGURE 7 Dimensionless contact area, separation distance, and number
of bonds as a function of magnitude of the compressibility coefficient, -y.
Parameters. othe-r thain yv akre give-n in Table- I.
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increase the length of the individual polymer chains, while
at the same time decreasing the density of chains so as to
leave the total mass of polymer segments per unit area
constant.

Fig. 7 shows the prediction of AM-I for how the
equilibrium configuration of cell-cell contact depends on
the compressibility parameter (y) when other parameters
are held fixed at the values given in Table I. When y is very
small (see the insert in Fig. 7), it is easy to compress the
glycocalyx, the repulsive potential is negligible, and the
cells adhere to a maximal extent. In this range of y values,
increasing the parameter causes the cells to be pushed
apart slightly, which in turn places stress on the cell-cell
bridges. The increased stress on the bridges causes some
reduction in the equilibrium number of bridges, but at least
initially this reduction is not sufficient to cause a decrease
in the contact region (i.e., the system remains in region III
of phase space). As y continues to increase, eventually a
critical value of the parameter corresponding to the maxi-
mum contact boundary is reached. After this point the area
of contact begins to drop and the system enters phase II. As
can be seen from the main part of Fig. 7, in region II,
increasing the compressibility causes a decline in both the
contact area and the number of cell-cell bridges but does
not cause any further increase in the separation distance.
Comparison of the detailed behavior of Nb/NIt and AlAmax
in region II demonstrates that the rate of decline in the
contact area as y increases is much faster than the rate of
decline in the number of cell-cell bridges. As -y is made
larger and larger, the end result is that the cells are held
together by a smaller and smaller toehold containing a very
large density of bridges. Eventually, when Nb becomes
equal to zero, the separation distance will suddenly jump to
infinity, corresponding to the final breaking of cell-cell
contact.

Fig. 8 a and b illustrate the effect of changes in the
binding constant for formation of unstressed bridges (KL)
on the equilibrium configuration of two adhering cells.
Both the minimal strain length (L) and the spring constant
(K) were held fixed in this computation. Such a situation
could be achieved experimentally by introduction of vari-
ous amounts of a competitive inhibitor of the receptors on
one of the cells (see Eq. 6b). Changes in KL could also be
produced by variations of the chemical structure of the
receptor on one or both cells. An example of such a change
known to have consequences for cell adhesion is the
decrease in sialic acid content of N-CAM's that occurs at
certain stages of neural development (Edelman, 1983).
Note, however, that structural changes of this type could
also affect the unstressed length and/or the spring constant
of cell-cell bridges.

The sequence of events that occur as the binding
constant is increased are in some respects the mirror image
of the events that occur as the compressibility increases.
When KL is low, the system is in region I; at a certain
critical value the phase I-phase II boundary is crossed and
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FIGURE 8 (a) Dimensionless contact area, separation distance, and
number of bonds as a function of the equilibrium constant for bridge
formation, KL. Other parameters are as given in Table I. (b) The same as
a except that NI, = N2a = 106; in this case it is possible to achieve Phase III
binding if KL is sufficiently large.

separation distance drops to a finite value. After this, the
separation distance remains constant while the contact
area and bridge number increase. Eventually, as the
binding constant gets very large, the number of bridges will
equal the number of receptors on cell No. 1 or No. 2,
whichever is smaller. If this number of receptors is not
sufficiently large, then the area of contact will never reach
max, and the system will remain in region II (see Fig. 8 a).

On the other hand, if there are sufficient receptors on both
cells (see Fig. 8 b), then eventually the area of contact will
reach Amax and the system will enter region III. In region
III further increases in KL will increase the bridge number
and decrease the separation distance. When the receptors
on one or another of the cells have all been utilized for
bridge formation, additional increases in the binding con-
stant will have no further effect.

An aspect of Figs. 6-8 that deserves further comment,
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concerns the different manner in which separation distance
depends on bridging in phase II vs. phase III. In phase III
increasing the number of receptors available for bridging,
decreasing the compressibility coefficient, and increasing
the binding constant are all associated with a decrease in
the cell-cell separation distance. This behavior seems intui-
tively plausible since maneuvers which favor bridge forma-
tion or reduce repulsion, also should cause the two cells to
be pulled closer together. The paradox of this interpreta-
tion is that in phase II adhesion, the cell-cell separation
distance is completely independent of the receptor number,
the glycocalyx compressibility, and the binding constant.

A similar example of unexpected behavior in AM-1
concerns the relationship between the thickness parameter
r and the cell-cell separation distance. Naive intuition
would suggest that increasing the thickness of the glycoca-
lyx would tend to force the cells apart; however, in region II
the exact opposite happens. An increase in r causes S to
decrease (see Eq. I 1). The reason for this behavior is that
increasing r causes the contact area to shrink very sharply,
this compresses a large number of bridges into a small
area. This increased density of bonds more than compen-
sates for the increase in repulsion and the cells are pulled
closer together.
A further example of unexpected behavior in region II is

the lack of any dependence of the number of bridges per
unit area, nb, on the binding constant, K(S). This result
follows from Eq. lOb, which may be written nb = r/kTand
reflects determination of the contact area by a balance
between the lateral pressure of the bridges tending to
expand it and the compression of the repulsion. Changes of
equilibirum constant will change the contact area but not
the number of bridges per unit area.

Comparison with Experiment
Obviously, models such as AM-1 and related thermody-
namic adhesion models are most directly relevant to stud-
ies that report aspects of the physical configuration of
individual adherent cells or pairs of cells. In typical studies
of this kind, one or more of the observable properties that
describe the configuration of adhering cells is measured at
various values of the parameters that determine adhesion.
For example, Sugimoto (1981) reported increases in the
area of adhesion of mouse fibroblasts to artificial sub-
strates as the negative surface charge of the substrates is
decreased; Capo et al. (1981) measured the area of contact
between macrophages and gluteraldehyde-treated red cells
as the surface properties of the red cells were varied by
treatment with neuraminidase and polylysine. Michl et al.
(1983) measured the depletion of IgG receptors from the
upper membrane of macrophages during adhesion to sur-
faces coated with various densities of IgG.

As a specific example of the analysis of configuration
data we will consider some measurements of thymocytes
agglutinated by concanavalin A (Con A) (Capo et al.,

1982). The protocol in these experiments called for incu-
bating the cells with various amounts of Con A so as to
achieve different levels of tightly bound Con A molecules
per cell. The exact amount of Con A binding achieved by a
given incubation was quantitatively determined in separate
binding studies. These binding studies also indicated that
the total number of Con A binding sugar moieties per
thymocyte was 106. After exposure to Con A the cells
were washed, centrifuged into a pellet, resuspended, and
fixed for electron microscopy. Thus, in the final moment
before fixation, a pair of adhering cells both had an equal
number of tightly bound Con A molecules capable of
forming bridges by binding with sugar moieties on the
other cell. By measurements on a large number of
sectioned cells, the dependence of the area of contact on the
number of Con A molecules per cell was determined.

Application ofAM- I to the data of Capo et al. (1982) is
considerably simplified because the number of one species
of receptor (i.e., sugar moieties) is always considerably
larger than the number of the other species (i.e., Con A
molecules). If we let N1, equal the number of Con A
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FIGURE 9 (a) Contact area in g' as a function of number of Con A
mol/cell. Data points, x, are from the experiments of Capo et al., 1982.
Theoretical curves show predictions of Eq. 1 2b for several values of r(S).
Other parameters in Eq. 1 2b are taken from Table I. (b) Behavior of the
theoretical curves from Fig. 9 a at very low levels of cell-cell contact.
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molecules per cell and N2, equal the number of comple-
mentary sugar moieties per cell, then it is easy to see that if
N2, >N1,, Eq. 1 2b reduces to the simple linear expression

kTN,t A1A2 (16)
F(S) K(S)N2t

As Eq. 16 explicitly shows, the slope of a plot of A as a
function of N,t yields information on the phase II repulsive
potential F(S); whereas the intercept yields information on
the phase II binding constant K(§).

Fig. 9 a shows the data of Capo et al. (1982) as well as
the predictions of Eq. 16 for the dependence ofA on N,, for
several values of the phase II repulsive potential r(S). In
each of these curves, N2t was fixed at 106, and all other
parameters are as given in Table I. As can be seen, a value
of F(S) 0.20 ergs/cm2 gives a good fit to the data. Note
that this value of the phase II repulsive potential is in
reasonable agreement with the independent theoretical
estimates derived by Bongrand and Bell (1984) for the
repulsive potential at separation distances of 200 A.

Fig. 9 b shows an enlarged view of the theoretical curves
in Fig. 9 a at small values of N,t. It is regrettable that the
data of Capo et al. (1982) are not sufficiently accurate to
really test this predicted behavior or to yield an empirical
estimate of K(S).

In addition to providing an analysis of the existing data,
AM-I is able to make predictions concerning the effects of
perturbations to the system of Capo et al. (1982). For
example, changing the solvent in such a way as to increase
or reduce the steric stabilization effect should have an
influence only on the repulsive potential r(s). Therefore,
this kind of maneuver should change the slope of the best
straight line through the data without changing the inter-
cept (see Eq. 16). On the other hand, adding a competitive
inhibitor of Con A binding (e.g., a-methylmannoside)
should affect only the effective binding constant (see Eq.
6b) and thus should change the intercept without affecting
the slope.

In contrast to the approach of configuration studies,
many experimental studies view cell adhesion as a statisti-
cal property of a large cell population. In such population
studies, data are usually reported in terms of percentage of
cells bound or percentage of cells in aggregates and no
attempt is made to discern the physical configuration of
individual adherent cells or pairs of cells. AM-I and other
thermodynamic adhesion models cannot be directly
applied to population studies because the individual cell-
cell and cell-surface pairs cannot be regarded as isolated
systems. Since population studies allow cells to compete for
binding opportunities and to interact in random combina-
tions, a thermodynamic treatment of such a study would
require minimization of the free energy of the population
as a whole. Even if this were done, however, it is doubtful
that the global equilibrium of a population could be
reached on a time scale short compared with the time scale
for metabolic processes.

In addition to these fundamental difficulties, population
studies usually regard a cell as bound if it remains attached
to another cell or to a surface after some kind of standard-
ized agitation and washing procedure. Such an essentially
arbitrary experimental definition is more demanding than
the mere existence or nonexistence of a stable bound state.
In addition to existence, the bound state must have enough
stability to resist mechanical disruption.

Despite the problems, there are circumstances in which
the average behavior of a random mixture of cells will give
direct information on the most probable behavior of an
individual pair of cells. For example, suppose that the cells
of a population are fairly homogeneous with regard to the
properties that affect adhesion and that the agitation
procedure used to remove nonadherent cells does not
disrupt cells held by more than a few bonds (see Bell, 1978,
for a discussion of the forces required to break typical
adhesive bonds). Clearly if a stable bound state of individ-
ual pairs of cells does not exist, then both configuration
studies and population studies will detect zero binding. On
the other hand, if a stable state does exist, a population
approach should detect at least some fraction of bound
cells. Thus, population studies are well-suited for detecting
and measuring the adhesion threshold predicted by AM-I
as well as by other thermodynamic adhesion models. In a
similar way, the population approach can be useful for
detecting the maximum contact boundary in studies of
phagocytosis; a good example of this kind is the paper by
Beukers et al. (1978) on the inhibition of phagocytosis of
polystyrene spherules with increasing amounts of absorbed
albumin.

An illustration of a quantitative population type system
in which the threshold for onset of cell adhesion is readily
studied was reported by Weigel et al. (1979). These
workers showed that rat hepatocytes possess specific recep-
tors for galactosyl moieties; whereas chicken hepatocytes
have receptors that bind only N-acetylglucosaminyl moie-
ties. It was also shown that rat and chicken hepatocytes
would adhere to flat polyacrylamide gels provided the
appropriate sugar moieties were covalently incorporated
into the gel. Various methods of linking the sugar to the gel
were tried; however, the length of the spacer and the
method of synthesis had no material impact on the results
obtained. The procedure used to remove unbound cells
from the gel also had a very small effect on the results.

By varying the concentration of sugar incorporated into
the gels, Weigel et al. (1979) observed a threshold concen-
tration at which cell adhesion first occurred. The amount
of adhesion sharply increased after the first onset, and
adhesion appeared to be maximal at concentrations 10 to
20% higher than the threshold level; adhesion was unde-
tectable at levels even marginally below the threshold. In
further studies, Weigel et al. (1979) found that the addi-
tion of small amounts of a competitively binding free sugar
to the solution bathing the cells caused a shift in the
threshold for onset of cell binding towards higher densities
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of incorporated sugar. The amount of shift in the threshold
was a linear function of the concentration of competing
sugar added; noncompeting sugars had no effect on adhe-
sion.

We interpret the results of Weigel et al. (1979) as
strong confirmation of the existence of the kind of thresh-
old transition for onset of cell adhesion shown in Fig. 6.
Note, however, that the adhesion point may not be easy to
observe in all cases. Depending on the particular parame-
ters of the systems, the critical receptor numbers required
for the onset of adhesion could be quite small and the
increase in binding after the onset of adhesion could be
more gradual than seen by Weigel et al. (1979).

AM-1 is not an appropriate model for describing the
system of Weigel et al. (1979), since one class of receptor
(i.e., the sugar moieties) are immobile. The correct model
(AM-2) is given by Dembo and Bell (1984) where it is
shown that a threshold for adhesion still occurs when one
species of receptor is immobile, although the conditions
that govern this threshold are different than in the case of
AM-1. According to AM-2 the adhesion boundary in the
experiments of Weigel et al. (1979) is given by

n,) -= r(S)/kT (I17a)Rn [I + K(S)N2t/A2]

where (n,t)t = N1,/A1 is the critical density of sites on the
gel, N2t is the total number of complementary receptors per
cell and A2 is the surface area of a cell. If K(S)N2,/A2 is not
too large compared with one, then Eq. 17a can be replaced
by the simpler expression

F(S)trA2 (7bI kTK(S)N2t (17b)

To see the effect of competitive inhibitors on the thresh-
old level, we must replace the value of K(S) in Eq. 17b by
the effective binding constant (Eq. 6b). From the resulting
expression, it is easy to see that, as reported by Weigel et al.
(1979), the threshold is a linear function of the inhibitor-
concentration. However, in addition to this after the fact
agreement, Eq. 17b allows the K; of the inhibitor to be
calculated from the data of Weigel et al. (1979). This value
of K, should agree with values of K; obtained by direct
studies of inhibitor binding. Eq. 17b also predicts that the
threshold density of sugar in the gel should depend
inversely on the number ofcomplementary receptors on the
cells and should increase linearly as the repulsive forces
between the cells and the gel are increased.

In principle, another approach for testing thermody-
namic adhesion models could be taken using techniques
that have been developed for directly measuring the force
between two surfaces bearing adsorbed macromolecules in
liquid media (see Klein, 1983, for a recent report and
references to earlier work). To simulate cell-cell interac-
tions, the adsorbed polymer layers would need to resemble
cell surfaces. Also, for comparison with the present models,

the receptors on at least one of the surfaces would need to
be mobile. In addition, Evans and Leung (1984) have
manipulated cells attached to micropipettes to measure
contact areas and forces for detachment.

DISCUSSION

In this paper we have developed a family of thermody-
namic models for describing adhesion between two cells or
between a cell and a surface. These models provide the user
with a powerful method for integrating various notions
about the complementary receptors on the two surfaces
(e.g., lateral mobility, heterogeneity, total number per
cell), notions about the cell-cell bridges that mediate
adhesion (e.g., spring constant, length, binding constant),
notions about the repulsive forces between cells (e.g.,
compressibility of the glycocalyx, thickness of the glycoca-
lyx, lateral mobility of the glycocalyx), and notions about
the purely geometrical parameters of adhesion (e.g., maxi-
mum contact area, total surface areas of the two cells,
heterogeneity vs. uniformity of contact distance).

To achieve the simplicity and generality of a thermody-
namic approach, a price must be paid in terms of certain
definite limitations. One such limitation is embodied in the
negligible metabolism hypothesis. In essence, this hypothe-
sis means that our models do not take into account the
possibility that cells might somehow actively grip each
other with continual expenditure of energy (Rees et al.,
1977). Nor can our approach account for the possibility
that cells will in some manner actively try to pull away
from each other. Finally, a thermodynamic description of
adhesion requires that the basic parameters of the cells
that affect adhesion (see Table I) do not change rapidly
with time.

In addition to the above limitations, it is important to
emphasize that thermodynamic models say nothing about
the kinetic process involved in reaching equilibrium. In
some cases a chance thermal fluctuation in the number of
receptors may be required to nucleate a small site of
adhesion, which then grows, due to thermal motions of the
membranes in a zipper-like fashion. In other cases, active
motions of one or another of the cells could be involved in
both the initiation and propagation of adhesion. Paradoxi-
cally, the ability of cells to undergo active motions and
deformations that increase or decrease the contact area can
be very important in influencing the kinetic process of
adhesion without constituting a violation of the negligible
metabolism hypothesis as far as the equilibrium state of
adhesion is concerned. In light of the obvious analogy with
a well-known Southern folktale, this paradox may be called
the "tar baby" effect (Harris, 1955).

The tar baby effect constitutes an important consider-
ation when interpreting experiments relating to the
influence of metabolic inhibitors on adhesion. If adhesion is
decreased by metabolic inhibitors, then one must be sure to
eliminate kinetic effects before concluding that cells are
capable of active grip or some similar phenomenon. A
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simple way to check for a kinetic involvement of metab-
olism is to add inhibitors both before and after adhesion
has been allowed to proceed. If the end result is indepen-
dent of the time sequence of the experiment, then the tar
baby effect can be eliminated.

Obviously, with all the possibilities inherent in thermo-
dynamic adhesion models, it is unrealistic to analyze more
than a few special cases in detail or to talk with too much
confidence about general properties of adhesion. Neverthe-
less, there are several conclusions that are robust in the
sense that they seem to be true in all but a relatively few
special cases.

One such conclusion is that bridging receptors will
become concentrated in regions of cell-cell or cell-substrate
contact. Such accumulations of receptors in contact areas
have been observed (e.g., Singer, 1976), deduced from the
forces required to disrupt aggregates (Capo et al., 1982),
and are expected quite generally (Bell, 1979). In view of
the well-known functions of receptor aggregation in immu-
nological systems, such accumulation of receptors could
serve as a transduction mechanism for triggering various
cell responses (e.g., phagocytosis, exocytotic granule
release). Redistribution of receptors could also serve as a
signal for polarization of the cell membrane relative to the
site of adhesion. Insofar as internal cell structures, e.g.,
cytoskeletal elements, can sense this polarization (Edel-
man, 1976; Bourguignon and Singer, 1977), the interior of
the cell can also be polarized. In this connection it is logical
to suppose that specialized cell-cell junctions, such as
synapses, tight junctions, and gap junction could be the
natural consequences of receptor accumulation in regions
of cell-cell contact, with details of the junction to be
affected by specifics of the receptors and their interactions
with each other and other molecules on a cell.

Another robust conclusion of our analysis is the perva-
sive presence of various phase transitions in cell adhesion.
The existence of these transitions makes it clear that cells
cannot be regarded as sticky billiard balls that aggregate
according to simple laws of mass action. Unlike the case of
billiard balls, contact between cells can be stabilized by
highly cooperative rearrangements of the internal variables
of the cells. In many ways the adhesion of cells is analogous
to the interaction of two immiscible liquid droplets (Torza
and Mason, 1968; Van Oss et al., 1975). However, in the
case of liquid drops, interactions are described in terms of
interfacial surface tensions between the two drops and
between each drop and the surrounding fluid, and condi-
tions are found in which two drops will adhere or in which
one drop will engulf the other. Because no constraint is
placed on the surface area of either drop, it is possible for
the smaller drop to engulf the larger. For interacting drops,
there is, of course, no surface material to form specific
bonds and accumulate in the contact area. Engulfment of
one liposome by another bearing complimentary receptors
has also been observed (Haywood, 1974).

In various studies of cell adhesion, one observes a
change in adhesiveness as a corollary of a more general
biological phenomenon (e.g., neoplastic transformation).
In such a case the problem is to deduce what of many
factors could be causing the change in adhesiveness. Ther-
modynamic adhesion models can be useful in this regard
since as we have seen, naive intuition is an unreliable guide
to the significance of various parameter changes. In addi-
tion, it is frequently possible to eliminate certain causative
factors with data of a simple quantitative nature.

APPENDIX

Estimation of Parameter Values

Cell Surface Areas Al and A2. The areas of some
representative cells are: 70 M2 for a red blood cell, -200 IA2 for a small
lymphocyte and -2,500 IA2 for a macrophage (Michl et al., 1983).

Maximum Contact Area; Amax. Amx must, of
course, be smaller than or equal to the area of the smaller cell. However,
as illustrated in Fig. 10, A,x is also dependent on the degree of fluidity of
the cytoskeletal architecture of the two cells as well as on the surface-
to-volume ratio of the cells.

Receptor Numbers NIT and N2T. Receptor num-
bers can, of course, vary greatly depending on the particular cells under
consideration. 106 or 107 mol/cell is an upper limit for small cells such as a
lymphocyte. Such numbers would be reached by abundant surface species
such as Con A receptors. For sparsely distributed receptors, such as
surface immunoglobin molecules, there could be as few as 103 or 104 per
cell.

a

c

b

d

FIGURE 10 The maximum contact area between two cells may depend
on cytoskeletal rigidity and other constraints on membrane bending in one
or both cells.
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Compressibility of the Glycocalyx, y. According
to the Flory-Krigbaum theory of steric stabilization (Bongrand and Bell,
1983; Napper, 1977), the compressibility coefficient of the glycocalyx can
be approximated by an expression of the form

y - 2KT(V /Vi)(Nsi + Ns2)2('2 - X). (Al)
In this equation, V, equals the volume of a polymer segment, VI equals

the volume of a water molecule, Ns, and NO2 equals the number of polymer
segments per unit area of the glycocalyx on cells 1 and 2, respectively, and
x equals an interaction parameter measuring the degree of solubility of
the polymer in the solvent.

If we estimate that water is a good solvent for polysaccarides (x 0),
that the volume of a typical saccaride moiety of the glycocalyx is V5 3 x
I O-22 cm3, and that there are -0.5 saccaride residues/nm2 of cell surface,
then we calculate from Eq. Al that -y is 10-6 dyn.

Thickness of the Glycocalyx, r. r measures the
cell-cell separation distance at which the repulsive polymer layers coating
cells No. 1 and cells No. 2 are interpenetrated by -.50%. Because the
thickness of the glycocalyx on a typical cell is -10 nm, we can safely
estimate that r is somewhere between 5 and 20 nm.

Equilibrium Constantfor Unstrained Bridge For-
mation, KL. Suppose that the equilibrium constant for binding
between the two species of receptors is given by KS, if one or both of the
receptors is free in solution. If KS is known, then according to Bell ( 1978)
we can estimate the binding constant when both receptors are anchored at
one end to a lipid membrane as

KL - Ks/u, (A2)

where a is the thickness of the confinement region to which the two species
of receptor sites are restricted. Taking KS 106 M- l1-l5 cm3, and a
10-7 cm, we calculate from Eq. A2 that KL - 10-8 cm2 = 1 A2. Clearly,
however, this estimate of KL could easily increase or decrease by a factor
of 100 or 1,000 since the values of Ks and a are quite variable.

Unstrained Length ofa Cell-Cell Bridge, L. The
gap between the membrane surfaces of adhering cells is typically in the
range of 10-20 nm. Obviously, this range also represents the approximate
range of L values.

Spring Constant ofa Cell-Cell Bridge, K. Several
authors (Levy and Karplus, 1979; Suezaki and Go, 1976) have presented
detailed calculation of the Youngs' modules for stretching of a-helical
protein segments. For an a-helix of length L, the spring constant is related
to the Youngs' modules by the expression

K-- a/L, (A3)

wheree equals Youngs' modules (-2 x 10" dyn/cm) and a equals the
cross-sectional area (5.15 x 10-'5 cm2). Based on Eq. A3, we calculate
that if a cell-cell bridge contains a series of a-helical segments of - 10 nm
in total length, then K 103 dyn/cm.

a helices are probably among the most rigid and highly stabilized
protein structures.) The inevitable presence of other random coil regions
of protein structure could greatly reduce the value of K. As a lower limit on
K, we can consider the spring constant for deformation of a freely jointed
random coil

K-kT/L2. (A4)

The use of Eq. A4 yields a value of _ 10-2 dyn/cm. We thus conclude that
0.1 dyn/cm is a reasonable first estimate of K, but that this parameter
could vary between 10-2 and 103 dyn/cm.
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