Skip to main content
Biophysical Journal logoLink to Biophysical Journal
. 1984 Jun;45(6):1159–1165. doi: 10.1016/S0006-3495(84)84264-2

Light diffraction studies of single muscle fibers as a function of fiber rotation.

W G Gilliar, W S Bickel, W F Bailey
PMCID: PMC1435000  PMID: 6611174

Abstract

Light diffraction patterns from single glycerinated frog semitendinosus muscle fibers were examined photographically and photoelectrically as a function of diffraction angle and fiber rotation. The total intensity diffraction pattern indicates that the order maxima change both position and intensity periodically as a function of rotation angle. The total diffracted light, light diffracted above and below the zero-order plane, and light diffracted into individual orders gives information about the fiber's longitudinal and rotational structure and its noncylindrical symmetry.

Full text

PDF
1159

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baskin R. J., Roos K. P., Yeh Y. Light diffraction study of single skeletal muscle fibres. Biophys J. 1979 Oct;28(1):45–64. doi: 10.1016/S0006-3495(79)85158-9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Cleworth D. R., Edman K. A. Changes in sarcomere length during isometric tension development in frog skeletal muscle. J Physiol. 1972 Dec;227(1):1–17. doi: 10.1113/jphysiol.1972.sp010016. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Fujime S. Optical diffraction study of muscle fibers. Biochim Biophys Acta. 1975 Jan 30;379(1):227–238. doi: 10.1016/0005-2795(75)90026-4. [DOI] [PubMed] [Google Scholar]
  4. HUXLEY H. E. The double array of filaments in cross-striated muscle. J Biophys Biochem Cytol. 1957 Sep 25;3(5):631–648. doi: 10.1083/jcb.3.5.631. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. HUXLEY H., HANSON J. Changes in the cross-striations of muscle during contraction and stretch and their structural interpretation. Nature. 1954 May 22;173(4412):973–976. doi: 10.1038/173973a0. [DOI] [PubMed] [Google Scholar]
  6. Oba T., Baskin R. J., Lieber R. L. Light diffraction studies of active muscles fibres as a function of sarcomere length. J Muscle Res Cell Motil. 1981 Jun;2(2):215–224. doi: 10.1007/BF00711871. [DOI] [PubMed] [Google Scholar]
  7. Roos K. P., Baskin R. J., Lieber R. L., Cline J. W., Paolini P. J. Digital data acquisition and analysis of striated muscle diffraction patterns with a direct memory access microprocessor system. Rev Sci Instrum. 1980 Jun;51(6):762–767. doi: 10.1063/1.1136308. [DOI] [PubMed] [Google Scholar]
  8. Rüdel R., Zite-Ferenczy F. Bragg-reflexion of light by cross-striated frog muscle [proceedings]. J Physiol. 1978 Nov;284:99P–100P. [PubMed] [Google Scholar]
  9. Rüdel R., Zite-Ferenczy F. Efficiency of light diffraction by cross-striated muscle fibers under stretch and during isometric contraction. Biophys J. 1980 Jun;30(3):507–516. doi: 10.1016/S0006-3495(80)85110-1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Rüdel R., Zite-Ferenczy F. Intensity behaviour of light diffracted by single frog muscle fibres from narrow laser beams [proceedings]. J Physiol. 1977 Oct;272(1):31P–32P. [PubMed] [Google Scholar]
  11. Rüdel R., Zite-Ferenczy F. Interpretation of light diffraction by cross-striated muscle as Bragg reflexion of light by the lattice of contractile proteins. J Physiol. 1979 May;290(2):317–330. doi: 10.1113/jphysiol.1979.sp012773. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Yeh Y., Baskin R. J., Lieber R. L., Roos K. P. Theory of light diffraction by single skeletal muscle fibers. Biophys J. 1980 Mar;29(3):509–522. doi: 10.1016/S0006-3495(80)85149-6. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biophysical Journal are provided here courtesy of The Biophysical Society

RESOURCES