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ABSTRACT The fluorescence quantum yield of a polymer molecule to which an energy donor chromophore and an
energy acceptor chromophore are attached depends on the distance between the donor and acceptor chromophores. If
this distance fluctuates with time, the fluorescence intensity is expected to fluctuate as well, and the time course of the
intensity fluctuations will be correlated with the time course of the changes in the interchromophore distance. The
intensity fluctuations are experimentally measurable if the number of illuminated molecules is small. A theoretical
treatment of such fluorescence intensity fluctuations is presented in terms of a parameter that describes the polymer
chain dynamics. Computer simulations were performed to illustrate the dependence of the autocorrelation function of
the intensity fluctuations on the polymer chain conformation, the interchromophore energy transfer properties, and the
macromolecular dynamics. These simulations demonstrate that the intensity fluctuations due to nonradiative energy
transfer between chromophores attached to polymer chains can be large enough to be experimentally useful in the study
of intramolecular dynamics of macromolecules.

INTRODUCTION

Various important properties of polymeric substances
depend on the dynamics of the macromolecules that consti-
tute them. Thus, the intramolecular chain dynamics are
expected to affect the kinetics, and possibly the pattern, of
the folding of biological macromolecules, the rheological
properties of polymers and polymer solutions, and the
facility of conformational interconversions of polymer
chains. The problem of chain dynamics can be addressed at
different levels: by studying local dynamics involving a
small number of bonds along the main chain or side chains,
or by studying the dynamics of global changes in the
macromolecular conformation. Although the local and
global dynamics are physically interrelated, there is a
useful distinction between the two because they are investi-
gated by different experimental techniques. The present
study is primarily concerned with the global dynamics of
chain molecules, as manifested by the thermal Brownian

A preliminary report on part of this work was presented at the 15th
Jerusalem Symposium on Quantum Chemistry and Biochemistry: Intra-
molecular Dynamics (18).

motion of the molecular ends relative to one another in a
given molecule.
The distance between the molecular ends of a polymer

chain can be monitored by measuring the energy transfer
between an energy donor and an energy acceptor attached
to the chain ends, as was proposed and demonstrated by
Stryer and Haugland (1). To be useful for studying the
distances of the dimensions of macromolecules, the donor
and acceptor chromophores attached to the polymer chain
should exchange their energy by the long-range nonradia-
tive mechanism, often referred to as the Forster mecha-
nism, which may lead to measurable energy transfer over
distances exceeding 50 A. This type of energy transfer
requires the fluorescence spectrum of the donor to overlap
the absorption spectrum of the acceptor. The efficiency of
energy transfer by this mechanism is a well-defined func-
tion of the distance between the donor and the acceptor,
and is thus used to measure this distance. The probability,
nA-B, of energy transfer from the donor A to the acceptor B
is given by (2)

9,000(ln 1O)Kx2no j f( d_ I Ro 6
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where mq is the quantum yield of the donor in the absence of
acceptor, n is the refractive index of the medium, N is
Avogadro's number, r is the distance between the donor
and acceptor chromophores, X is the lifetime of the donor in
the absence of the acceptor, fii;)dvi is the normalized
fluorescence intensity of the donor in the wavenumber
range v to v + dvi, E(v;) is the absorption coefficient of the
acceptor at the wavenumber vP, and Ro, as defined by Eq. 1,
is the distance between A and B when there is 50%
efficiency of energy transfer. K2 is a factor that expresses
the orientational dependence of the probability of energy
transfer. It has been shown (3) that the orientational
dependence of the transfer probability can be made weak
or insignificant by choosing donor and acceptor chromo-
phores that exhibit low-limiting polarization properties for
the electronic transitions involved in the transfer process.
This will be assumed to be the case in the present study.
The end-to-end distance in flexible chain molecules is

not a single value; the efficiency of energy transfer from
donor to acceptor measured for an ensemble of such
molecules is thus an average quantity from which it is not
possible to evaluate fir), the distribution function of end-
to-end distances. It is possible, however, to reconstructf(r)
if one measures the fluorescence decay kinetics of the
donor instead of the efficiency of energy transfer (4-6). If
the conditions are such that the end-to-end distance does
not change during the lifetime of the donor excited state,
the donor fluorescence decays monoexponentially with a
time constant of (1 /IT) (1 + R /r6) for every subpopulation
of molecules having a donor-acceptor separation r. In
response to an extremely short excitation pulse, the decay
kinetics I(t) for the entire population of molecules is thus
given by

I(t) = k £ f(r)exp - [(tlr) (1 + R0/r6)]dr, (2)

where k is a proportionality factor. Obviously, I(t) contains
information about f(r). To obtain this information, meth-
ods have been presented for the analysis of I(t) (4-5).

Eq. 2 does not apply to cases in which the end-to-end
distance of the chain molecules changes during the lifetime
of the donor excited state because in this equation it is
assumed that the only processes responsible for the change
in population of excited molecules of a given end-to-end
distance are spontaneous decay of the excited state and
energy transfer. Any Brownian motion of the chain ends
would enhance the rate of decay of I(t) relative to that
indicated by Eq. 2. This happens because the distribution
of end-to-end distances of the molecules that have an
excited donor starts to deviate from the equilibrium distri-
bution, f(r), as time increases after the excitation pulse,
because molecules with a small r value have a faster decay
of excitation than molecules with a large r value. If
permitted, the subsequent rearrangement towards the
equilibrium distribution by diffusion of the molecular ends
would enhance the efficiency of energy transfer. Obvious-

ly, this enhancement in efficiency contains information
about the Brownian motion of the chain ends relative to
one another. The analysis of the fluorescence decay kinet-
ics of donor chromophores in chain molecules that carry
donor-acceptor pairs has been used as a method for the
study of the intramolecular dynamics of chain molecules
(6,7).

Because of the steep dependence of the efficiency of
energy transfer on the donor-acceptor separation, r,
changes in r by Brownian motion are readily reflected in
the decay kinetics of the donor fluorescence. However, this
technique is limited to cases in which the Brownian motion
is not negligible during the donor fluorescence lifetime.
Thus many problems of interest, such as chain dynamics in
highly viscous solvents or in biological membranes, as well
as slow structural fluctuations in folded biopolymers, are
not approachable by the above method. Therefore, it may
be valuable to extend the application of energy transfer to
the study of slow molecular movements. As will be shown
below, this can be accomplished by a different approach,
which involves analyzing the fluorescence intensity fluc-
tuations from an ensemble of a small number of chain
molecules that carry donor-acceptor pairs. In the following
sections, the theroetical background for this approach will
be presented, as well as a method to analyze experiments
concerned with fluorescence intensity fluctuations in sys-
tems involving energy transfer, which will yield informa-
tion on the macromolecular dynamics. Note that the study
of fluorescence intensity fluctuations from an ensemble of
a small number of fluorophores is experimentally feasible
(8-10).

BASIC CONSIDERATIONS

The idea underlying the method for studying macromole-
cular dynamics by fluctuations of the fluorescence inten-
sity of donor-acceptor pairs is as follows. When a collection
of chain molecules, in which each molecule carrys a
donor-acceptor pair, is excited by a light beam of steady
intensity, the emitted fluorescence intensity of the donor
chromophores is the sum of the intensities of the donors of
the individual illuminated molecules, each of which is
characterized at any given moment by its end-to-end
distance. For an infinitely large collection of molecules, the
observed fluorescence intensity is the value expected for
the equilibrium end-to-end distribution of distances and
does not vary with time. However, when a small number of
molecules is illuminated by the excitation beam, their
end-to-end distribution function may deviate from the
equilibrium distribution; the degree of deviation varys with
time, with concomitant fluctuations in the fluorescence
intensity about the average value. The magnitude of these
fluctuations relative to the time average intensity would
obviously become larger as the sample size became small-
er. The time scale on which the fluctuations occur would be
related to the time scale on which the internal motions of

BIOPHYSICAL JOURNAL VOLUME 46 1984430



the chain molecules take place. The temporal behavior of
the intensity fluctuations may thus yield information about
the kinetics of the intramolecular dynamics of the macro-
molecules.
The time scale of intensity fluctuations is conveniently

expressed by the time dependence of the autocorrelation
function, AC(r), of the fluorescence intensity, defined by:

AT
AC(r) = ( 1/ T) J I(t) * I(t + r)dt, (3)

where I(t) and I(t + r) are the fluorescence intensities at
times t and t + r, respectively. For long integration
intervals T, AC(r) averages out intensity variations in time
that are completely random, but retains information about
processes that change systematically with time. Note that
analysis of fluorescence intensity fluctuations has been
previously applied to a few other problems (8-17).

For a collection of molecules in which each molecule
exhibits fluctuations in fluorescence intensity that are not
correlated with those of the other molecules, there is a
simple relationship between the autocorrelation function
AC(r)(n) of the intensity I(t)(n) emitted by the collection
of molecules (n in number) and the autocorrelation func-
tion AC(r) of the intensity I(t) emitted by a single
molecule. This is a useful relationship because it is not
experimentally feasible to study a single molecule, whereas
theoretically, it is convenient to investigate the autocorrela-
tion function of the fluorescence intensity emitted by a
single molecule. The relationship is derived as follows:

n

I(t)(n) =I(t), (4)

where I,(t) is the intensity emitted at time t by the ith
molecule. AC(r)(n) is thus given by

AC(r)(n) = _ I(t)(n) * I(t + T)(n) dt

ITZEI(t)ZEIj(t + T) dtT Jo i,

= fT 7 Ii(t) h(t + T) dt

+ -fT5I7E i(t) *Ij(t +r)dt. ()

i.j

For a collection of identical molecules the first term in Eq.
5 equals n * AC(r). The second term in this equation
equals n(n - 1)(1)2 ((I) is the average intensity of a
single molecule) because it is assumed that the intensities
of the various molecules are not mutually correlated. Thus

AC(r)(n) = n AC(r) + n(n -1) (1)2- (6)

Because the autocorrelation function of the fluorescence
intensity of n molecules is readily deduced from that of a
single molecule by use of Eq. 6, subsequent calculations

will refer to the analysis of the fluorescence intensity
fluctuations of a single molecule. The ultimate aim is to
analyze AC(r) for the case involving intramolecular energy
transfer in terms of macromolecular dynamics. To clarify
the approach, AC(r) for a molecule undergoing many
reactions will be discussed first.'

INTENSITY FLUCTUATIONS OF THE
FLUORESCENCE OF A MOLECULE
UNDERGOING MULTIPLE
ISOMERIZATION REACTIONS

Let us consider a molecule that reversibly isomerizes into a
series of different forms:

KAB KBC KCD
A = B = C D, etc.

KAB, KBC, KCD, etc. represent the corresponding equilib-
rium constants. The scheme represented in Eq. 7 does not
necessarily imply that kinetically A can be converted into
C only via B; in principle all possible isomerization paths
may occur with their corresponding rate constants. Gener-
ally, the transitions between the various states do not have
to obey first-order kinetics and the solutions of the kinetics
behavior may require numerical analysis. The fluorescence
intensity of the molecule will obviously fluctuate if the
various isomers have different quantum yields. For a given
intensity of the excitation light beam, let IA, IB, Ic, etc., be
the intensity of the fluorescence emitted by the isomers
represented by the corresponding subscripts. Given the
kinetic behavior that controls the system described by Eq.
7, one can evaluate the probability of finding a given
molecule in any isomeric form j at time t + r if the
molecule started out at time t in any given form i (where i
andj designate any of the forms in which the molecule can
be). Let cij(r) designate this probability. Note that the
function cij(r) is actually the concentration of the isomeric
form j that is obtained after a time interval r, starting out
with unit concentration of isomeric form i. At various times
t, the molecule will be in one of the isomeric forms
described in Eq. 7. Let us denote by FA, FB, FC, etc., the
fraction of time the molecule will be found in the isomeric
form represented by the corresponding subscript. The
quantities FA, FB, FC, etc., are given by

FA= I/a, FB = KAB/u, FC = KABKBC/a, etc., (8)

where

a = 1 + KAB + KABKBC +± - - - (9)

The time coordinate in the integral in Eq. 3 that serves to

'One may also define an autocorrelation function g(r) (see reference 12)
in terms of the residuals 61 = I - (I): g(r) = I/T fo 6I() * HO(t + r)dt.
It can be readily shown that g(T) = AC(r) - (1)2 and that g(r) for n

molecules, g(r)(n) is related to that of a single molecule, g(T)(l), by the
following expression: g(r)(n) = n G(r)(1).
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evaluate AC(T) can be subdivided into groups of intervals,
each group being characterized by the isomeric form in
which the molecule exists at time t. The autocorrelation
function AC(r) can thus be evaluated by summing the
contributions from ACA(T), ACB(T), ACC(T), etc., each of
which is obtained by integrating I(t) * I(t + T) over the
intervals at which the molecule is in the form A, B, C, etc.,
respectively, at time t. Note that if the molecule starts out
at time t in one isomeric form i, it may or may not be in that
form at time t + T. In fact, it has the probability ci,(r) of
being in this state at time t + T and a probability cij(T) of
being in state j at time t + T. ACA(T), ACB(T), etc. may
thus be expressed as follows:

ACA(T) = FAIA[IACAA(T) + IBCAB(T) + ICCAC(T) + * *]

ACB(T) = FBIB[IACBA(T) + IBCBB(T) + ICCBC(T) + * *1

ACQ(T) = FjIjIACiA(r) + IBCiB(T) + ICCiC(T) + . . *

=FiIiy Ij cjj(r). (I10)

The autocorrelation function of the intensities is obtained
by summation of all the ACri-) contributions:

AC(T) = z7 AC,(r) = E F, E IciC(T). (1 1)
i i j

Eq. 11 expresses the time dependence of the autocorrela-
tion function of the fluorescence intensities, AC(r), in
terms of the time evolutions cij(T) of species j when one
starts out with species i. The inverse process, i.e., the
evaluation of the various functions cij(r) from a single
function AC(r), is, however, not feasible unless simplifying
circumstances prevail; e.g., when the kinetic behavior of
the various processes can be linearized, when the number
of reactions is small, and when additional information is
available about the system. Some aspects of these problems
have been treated by Elson and Magde (12), but they will
not be pursued here because they are not required for the
treatment of the intramolecular dynamics of chain mole-
cules. It will be shown in the Appendix that much new
information can be obtained about the system if the various
species in Eq. 7 have different emission or excitation
spectra (or both).

FLUORESCENCE INTENSITY
FLUCTUATIONS OF ENERGY
DONOR-ACCEPTOR PAIRS ATTACHED
TO CHAIN MOLECULES

The above treatment, which expresses the autocorrelation
function of the fluorescence intensity of a molecule
undergoing isomerization reactions in terms of the kinetic
behavior of the system, can be readily extended to the
study of chain dynamics by intramolecular nonradiative
energy transfer. The two cases become analogous if one
views a chain with a given distance r between the donor and
acceptor chromphores as an isomer of the chain, character-

ized by a fluorescence intensity that is proportional to
r61(r6 + R6). The following points should, however, be
considered. (a) In contrast to the reactions described by
Eq. 7, in the case of intramolecular energy transfer, there is
a continuum of states for the polymeric molecules, where
each state is defined by the distance r. (b) The transition
from one state to another is not governed by mass-action
laws, but rather by rules that describe Brownian motion.
These aspects of intramolecular chain dynamics and
energy transfer do not, however, require new conceptual
approaches to analyze the fluorescence intensity fluctua-
tions of a donor chromophore attached to a chain molecule
that carries an energy acceptor somewhere else along the
chain.
The analysis may be carried out as follows. Let us start

with a molecule whose end-to-end distance is p at t = 0.
(For simplicity, we assume that the donor and acceptor
chromophores are attached to the chain ends, but the
following argument is not restricted to such cases.) Let
N(p, r, r)dr denote the probability of finding this molecule
at time T with an end-to-end distance in the range of r to
r + dr. N(p, r, r) is obtained by solving the equation that
governs the behavior of N(r, r) subject to the initial
conditions N(r, 0) = b(p - r), where N(r, T)dr is the
fraction of molecules in an ensemble of polymer chains that
have an end-to-end distance r at time T. The change of
N(r, r) with time may be expressed as follows:

ON(r, T) = _ a(40r2j).
O,r dr (12)

J designates the diffusional flux per unit area for one set of
ends of the chains through the surface of a sphere of radius
r, whose center is the origin of the coordinate system; the
other ends of the chains are conceptually assumed to be at
the center of the sphere. Obviously, the chain ends do not
undergo free diffusion relative to one another because the
internal restrictions in the chain molecules generate driv-
ing forces on the chain ends that are a function of r. These
forces are responsible for the shape of the end-to-end
distribution function of distances between the chain ends at
equilibrium, N0(r), characteristic for each chain type. In
other words, the standard chemical potential Ai(r) of a
population of molecules of end-to-end distance r is a
function of r. Assuming that the average rate of change of r
with time depends linearly on the gradient of the chemical
potential ,u(r, r) with respect to r, one obtains:

1 M(r, r) N(r,T)
-f Or 47rr2' (13)

where f is a frictional coefficient. The chemical potential
,u(r, T) may be expressed in terms of Ac(r) and N(r, T) as
follows:

,u(r, r) = /O(r, r) + RTln [N(r, T)/4rr2]. (14)

Combining Eqs. 13 and 14 and the relation J = 0 at
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equilibrium leads to

pO(r) =-RTln [NO(r)/4irr2]. (15)

The differential equation that governs the evolution of
N(r, r) with time is finally obtained by combining Eqs.
12-15:

ON(r, 7) I ar[ dN(r, r) 1
D~~~~- -~ No(r) (16
N0(r) clrLclr (6

where N(r, r) = N(r, T)/NO(r), and whereD = RT/fis the
diffusion coefficient of one set of chain ends relative to the
other (assumed to be independent of r, see reference 6). As
stated above, to obtain the required function N(p, r, r),
Eq. 16 has to be solved subject to the initial conditions,
N(r, 0) = 6(r - p). Note that there is only one adjustable
parameter, D, in the solution of Eq. 16 because the
equilibrium end-to-end distribution function NO(r) can be
obtained independently by measuring the fluorescence
decay kinetics of the donor under conditions where the
internal Brownian motion is negligibly small during the
lifetime of the donor excited state (4, 5).
As stated above, the problem of evaluating the autocor-

relation function of the fluorescence intensity fluctuations
of donor-acceptor pairs attached to flexible chain mole-
cules is analogous to that of the isomers depicted in Eq. 7, if
each molecule of an end-to-end separation r is viewed as an
isomer characterized by a well-defined quantum yield. One
may thus derive the appropriate expressions for the auto-
correlation functions by arguments that are similar to
those put forward in the derivation of Eqs. 10 and 1 1. In
this derivation, No(p)dp is analogous to F,; N(p, r, r)dr, to
Cij; p6/(p6 + Ro) to Ii; and r6/(r6 + Ro) to Ij. If we define
ACp(r)dp as the molecule's contribution to the autocorrela-
tion function when it starts out with an end-to-end distance
in the range of p to p + dp, we obtain

p6
AC,(T)dp = No(p)dp * P R6

CRu r6d,17JN(p,r,) Pr6+Rdr, (17)

and

AC(r) = AC(-r)dp

6______rd
.

18

= No(p) 6 'i N(p, r, -r) 6,drp 1

Note that in terms of the dynamics of the chain mole-
cules, the interpretation of AC(r) in Eq. 18 should be
straightforward. This is because (a) the dynamics has been
characterized by a single adjustable parameter, D, (b) the
fluorescence intensities are relatively simple, well-defined
functions of the distance between the donor and acceptor
chromophores, and (c) the equilibrium distribution func-
tion of distances between the donor and acceptor chromo-

phores can be obtained by independent experiments, as has
been previously demonstrated. (4,5).
To illustrate the expected time course of the autocorrela-

tion function AC(r), computer simulations were carried
out for a series of oligomer chain molecules. The end-
to-end equilibrium distribution functions, No(p), of these
oligomers were previously measured by fluorescence decay
techniques (5). The repeating unit in these compounds was
N5-(2-hydroxyethyl)-L-glutaminyl, and the number of
units per chain varied from four to nine. The chains were
tagged with a naphthalene chromophore at one and a
dansyl chromophore at the other end, which served as
energy donor and acceptor, respectively. In the simula-
tions, different values of Ro and D were used. Fig. 1
illustrates the effects of varying D on the shape of the
autocorrelation function. In this figure, AC(r) was evalu-
ated for the eight-residue oligomer, assuming Ro = 25 A.
Note that changing the value of D affects the time course
of AC(r) only by stretching or contracting the function
along the T-coordinate; otherwise, the function remains the
same. This may actually be deduced by inspection of Eq.
16 because this equation becomes independent of D if one
changes the time variable r to Dr.
The change ofAC(r) that occurs with change of No(r) is

illustrated in Fig. 2, in which the simulated AC(r) is
plotted for oligomers containing 4-8 repeating units. The
end-to-end distribution functions used are those obtained
previously (see reference 6, Fig. 11 and reference 18, Fig.
1). Ro and D were assumed to be 20 A and 1O-7 cm2/s,
respectively. Note that the shapte of AC(r) is significantly
affected by the shape of the end-to-end distribution func-
tion. The change in AC(r) that occurs with change in Ro is
illustrate) in Fig. 3; this simulation relates to an oligopep-
tide of five repeating units and a diffusion coefficient of
io-7 cm2/s. Obviously AC(r) is quite sensitive to changes
in Ro. Note, however, that although AC(T) depends on Ro
and NO(), in addition to depending on D, this fact does not
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FIGURE I A simulation of AC(r) of the donor fluorescence calculated
for different diffusion coefficients of one molecular end relative to the
other end. The calculations were performed for a single molecule of an

eight-residue oligomer. The end-to-end distance distribution function for
this oligomer was taken from Fig. 11 in reference 6. Ro was assumed to be
25 A. The numbers marking the different curves are the assumed values
for the end-to-end diffusion coefficients, in units of 10' cm2/s. AC(r) is
given in arbitrary units. AC(O) was set to 1.0.
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FIGURE 2 A simulation of AC(T) of the donor fluorescence calculated
for a single molecule of different obligomers whose end-to-end distances
distribution functions were taken from Fig. 11 in reference 6 and Table II
in reference 5. Ro and D were assumed to be 20 A and 1O-7 cMn2/s,
respectively. The number marking each curve gives the number of
N5-(2-hydroxyethyl)-L-glutaminyl residues in each oligomer. AC(r) is
given in arbitrary units and was set to unity at zero time.

complicate the evaluation of D from measurements of
AC(r) because Ro and No(r) can be obtained by indepen-
dent measurements. To increase the accuracy of the data
analysis, one is interested in obtaining a large difference
between AC(r = 0) and AC(T = Xc). Fig. 3 shows that this
can be controlled, within limits, by proper choice of the
value of Ro, because this parameter depends on the spectral
properties of the donor and acceptor chromophores chosen.
Note that Figs. 1-3 relate to AC(T) of single molecules; the
values for n molecules can be obtained by using Eq. 5. The
difference between AC(r = 0) and AC(r = Xc) diminishes
as n is increased.

Finally, analysis of the time course of AC(T) -
AC(T = X) in the simulations performed indicates that it is
close to monoexponential decay. Thus, the shape of AC(r)
cannot serve as a diagnostic tool that distinguishes between
intensity fluctuations that originate from conformational
fluctuations of the type discussed above and intensity
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FIGURE 3 A simulation of AC(r) calculated for different Ro values. The
calculations were performed for a single molecule of the oligomer
consisting of five N5-(2-hydroxyethyl)-L-glutaminyl residues. The struc-
ture of the peptide and its end-to-end distance distribution function were
given in Fig. 11 of reference 6. The diffusion coefficient of one molecular
end relative to the other was assumed to be 10' cm2/s. The numbers
marking the different curves designate the assumed values of R0 in
angstroms. AC(O) was set to 1.0.

fluctuations due to simple reactions that obey the mass
action law. As in similar cases, one has to rely on indepen-
dent information or to invoke acceptable assumptions when
one proposes a model to describe the system studied.

DISCUSSION

If a flexible macromolecule carries a pair of chromophores
between which resonance energy transfer can occur, the
efficiency of energy transfer varies with the inverse sixth
power of the interchromophore distance. The fluorescence
quantum yield of the donor will thus depend on the
macromolecular conformation and will fluctuate on the
same time scale as that on which the macromolecule
changes conformation. The efficiency of resonance energy
transfer also depends on the orientation of the transition
dipole moments of the donor and the acceptor chromo-
phores relative to one another and relative to the vector
joining them. Thus, the fluorescence intensity of the donor
or acceptor will also generally depend on the Brownian
rotatory motion of the chromophores. It has been shown,
however, that the angular dependence of the efficiency of
energy transfer can be attentuated or even reduced to a
negligible level by choosing chromophores that exhibit low
polarization in their absorption or emission at the pertinent
electronic transitions (3). In the present study this is
assumed to be the case; thus the fluctuations in the
fluorescence intensity reflect predominantly or exclusively
the fluctuations in the distance between the donor and
acceptor chromophores.
The relationship between the molecular dynamics and

the intensity fluctuations has been quantitatively evaluated
above. Note that the arguments we presented concerning
the intensity fluctuations of the donor fluorescence apply
equally well to the sensitized fluorescence of the acceptor
when only minor, straightforward modifications that are
related to the expressions for the intensity of the sensitized
fluorescence are inserted in Eqs. 17 and 18. As has been
demonstrated by the computer simulations described, the
magnitude of AC(r) changes significantly on the r scale,
which demonstrates that the analysis of AC(r) in terms of
the macromolecular dynamics is feasible in principle.

Although not easy, measurement of the fluctuations of
the fluorescence intensity from a small number of illu-
minated molecules has been accomplished in a few labora-
tories. Probably the most serious experimental problem is
the bleaching of the chromophores that occurs because of
the high intensity of the excitation beam which is required
to obtain sufficient fluorescence intensity from the small
number of illuminated molecules. The effect of the bleach-
ing process on the measured autocorrelation function can
be readily evaluated when the bleaching is a first-order
reaction with respect to the chromophore concentration,
with a rate constant that is of the same order of magnitude
for all isomers. Under such circumstances the various
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concentration functions cij(r) should be replaced by the
functions cij(T) exp - (kbr), where kb is the bleaching rate
constant (which will generally depend on the intensity of
the excitation light). Substituting this term into Eq. 11
leads to an expression for the autocorrelation function
ACb(r) for the case when bleaching occurs

ACb(r) = AC(r) exp (-kbT). (19)

It is desirable for kb to be as small as possible, and in any
case for the bleaching reaction to be not much faster than
the other reactions under study. These objectives can be
accomplished by lowering the intensity of the excitation
light at the expense of the signal-to-noise ratio for a given
time of measurement.
To extend the time of measurement, one may periodi-

cally select fresh sample volumes to be illumated, and sum
up the results, or instead, one may measure from a steady
constant stream of solution that flows past the cross-section
of the illuminating beam. The effect of the latter procedure
on the shape of the autocorrelation function can be readily
evaluated. Let us treat a model case of constant flow
velocity v across a light beam, which has an intensity
profile that has a square shape. Thus, for a single molecule
flowing past the beam, the modified autocorrelation func-
tion AC'(r) is given by

AC(r) = I Z (t) I(t + T)/dt, (20)
T T

where T is the duration of the experiment, T' is the time at
which the molecule enters the light beam, Q/v is duration of
its stay in the light beam, and Q/v - T is the duration of the
time interval at which we obtain nonzero contributions to
AC'(r). Comparing Eq. 20 with Eq. 3 yields the following
relation between AC'(r) and AC(r),

AC'(T) = /v -T AC(r) (21)
T

for cases when R/v - r > 0. No information can be
obtained about AC(r) when Q/v - r < 0 because AC'(r) =
0. This relation limits the permissible range for the velocity
of flow, v, for a given r of interest. If we define V; as the
illuminated volume, then the total volume, VT, of solution
passing through the light beam in the time interval T is
given by

T
VT = T V. (22)

Let there be N molecules in this volume. Obviously, the
positions and dynamic behavior of the various molecules
are not correlated; thus we may use Eq. 5 for the evaluation
of the autocorrelation function of intensities of the N

molecules:

AC(T)(N) = NAC(T) + N(N - 1) (I)2

Tr91= N AC(r) + N(N-1)
TT

= N -T *.
T

AC(T)
T Q/v

+ N(N-1) ( (IC)

V=N/v - . 2
= N- AC(T) +N(N - 1 I

VT Q/v

== nI/v AC(r) + n(n- ) (I,)',- nn (23)

where (I,) is the average intensity of a molecule that is
continuously illuminated by the excitation light beam and
n is the average nurfiber of molecules in the light beam. Eq.
23 permits the evaluation of the autocorrelation function of
a single molecule, AC(T), if AC'(r)(N) is measured in a
flow experiment.

In principle, one should add to the autocorrelation
function the effect of translational diffusion of the fluoresc-
ing chromophores in and out of the excitation beam. In
fact, fluctuations of fluorescence intensity were used in the
pioneering work of Elson, Webb, and Magde (8,12,14-16)
to measure translational diffusion coefficients. Note, how-
ever, that the time scale of AC(r) due to translational
diffusion depends on the dimensions of the cross section of
the incident beam, whereas AC(r) due to the flexibility of
the polymer chains originating in energy transfer is not
dependent on the dimensions of the incident beam because
the intramolecular Brownian motion is limited to the
dimensions of the chain molecules, which are far smaller
than the dimensions of the incident beam. Thus, the
contributions of the two processes to AC(r) can be readily
separated, although the intramolecular diffusion coeffi-
cient may be an order of magnitude smaller than the
diffusion coefficient of the entire molecule (5).
The method described to study the dynamics of macro-

molecules by analysis of fluorescence fluctuations requires
that the number of molecules illuminated at any given
instant be small. Whereas this requirement imposes experi-
mental difficulties (which, as mentioned, can be over-
come), many systems that are candidates for this kind of
study may not be able to be studied as large numbers of
molecules anyway. One example is when macromolecules
are embedded in, or associated with, cell membranes.
Although we have implied that the donor and acceptor
chromophores are attached to the ends of chain molecules
and we have referred to the end-to-end distances of the
molecules, the method described may be applied to other
cases in which the chromophores are attached to other sites
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of interest in the macromolecule. Finally, fluctuations of
fluorescence intensity of donor-acceptor pairs attached to
macromolecules may not only be used to study the
dynamics of flexible random coil chains, but also to follow
fluctuations in conformation of ordered structures. Thus,
we may have a way to study conformational fluctuations in
globular proteins. Of course, under such circumstances the
model that implies that there is relative diffusional motion
of the chromophores (which underlies the analysis that led
to Eq. 18) is not applicable. In each case studied, a model
that is plausible for the system under consideration should
be selected.

APPENDIX

In a system undergoing a series of reactions described by Eq. 7, the
analysis of fluorescence intensity fluctuations can be extended if the
various species have different emission or absorption spectra (or both) and
if the fluorescence intensity fluctuations are measured simultaneously at
pairs of wavelengths. Because we assumed the various species exhibit
different intensities at different wavelengths, the results at one wave-
length accentuate the contributions of some species relative to those at
other wavelengths. As will be shown below, the cross correlations of the
intensities at pairs of wavelengths can be readily analyzed to yield the
various time dependent concentrations c,,/T). If the system described by
Eq. 7 contains n species, we shall assume that the fluctuations are
measured at n wavelengths and that the time sequences at pairs of
wavelengths Ak and XA are compared by cross correlations designated
CCXk"I. By an analogous treatment to that leading to Eq. 11 one obtains

CCxk '(r) = E F,I>k IJ"C.j(T) (Al)
i

(Al

Ilk~~~~~~~~~~~
where JAk and ljt are the intensities of species i at the kth wavelength, Ak,
and species j at the Rth wavelength, AQ, respectively. From the matrix of
CCA\KA(X) at any given r, one can readily deduce the matrix c5j(T) at this
value of r by standard techniques. Eq. Al can be rewritten as follows:

CC= I . F . C . I, (A2)

CCx'A' CCXA2 . . CCAIA
CC\2,X CCA2A2 . . . C&2A

CCX..A' CCNA"2 C0.A.

sA IAl . . . ix'
II I A2 nA

*A2 *X . . . -

I=.
IA, IA, MI,,

(F o . . . o

Cl I C12 . . . Cin

C21 C22 .* C2,
c=

Cni Cn2 C,..

and I is the transpose of I. The matrix c may thus be evaluated from CC
by

IF-'(i)-' CCI'. (A3)

Thus, the concentration of the various species at any time T can be
evaluated from the matrix of values of the various cross-correlation
functions at r without resorting to a model that describes the various
kinetic steps. In principle, this is advantageous when fluctuations are
analyzed because fluctuations are most pronounced in systems that have a
small number of molecules. For such systems, linearization procedures
that assume small deviations from equilibrium values may thus be
inapplicable. In conclusion, note that CC^"k(r)(n) for n molecules is
related to CC!k,(T) of a single molecule by the relation:

CC kt;(r)(n) = n CC k)(r) + n(n - 1) (Ifk) (PI), (A4)

where (Ik) and (I) are the average intensities at wavelengths Xk and AX,
respectively. Eq. A4 is derived by the same procedure as Eq. 5.
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