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ABSTRACT We consider a model for voltage-dependent gating of channels in which the gating charges are on the
channel wall and move only a small distance. When this movement occurs across the closed gate, the charges move
through the entire transmembrane potential, which is energetically equivalent to their moving across the entire
membrane. The channel exists in two open states, 01 and 02, and two closed states, C, and C2; each open and closed
configuration is divided into two states because of the two possible positions of the gating charges. An unusual property
of this model is that the electrical work in going from an open to a closed configuration (for example, in going from 0, to
C2) is path dependent, and net work can result from going reversibly around a complete cycle. The model channel, like
many biological channels, shows bursting activity. This flickering on and off of the channel enables the gate to sense the
electric field and decide if it should be in the open or closed configuration. We prove here some general theorems
concerning the electrical work associated with the movements of the walls of channels and the movements of charges on
these walls.

INTRODUCTION
Voltage-dependent opening and closing of channels in the
plasma membrane is the basis for electrical excitability in
nerve and muscle (Katz, 1966). In addition, voltage-
dependent channels play other important roles both in
excitable and nonexcitable cells (Hagiwara and Byerly,
1981). Despite the vast and growing literature on the
kinetic characteristics of these channels, however, the basic
mechanism(s) by which transmembrane voltage controls
the state of the channel remains unknown. The vexing
problem is to account plausibly and physically for the
steepenss of the conductance-voltage relationship over
certain voltage ranges (Hodgkin and Huxley, 1952); this
formally requires the transfer of several charges from one
side of the membrane to the other. Although such a
transfer may actually occur for some voltage-dependent
channels induced in lipid bilayer membranes by relatively
small (- 1,000 mol wt) molecules of bacterial origin (Bau-
mann and Mueller, 1974; Heyer et al., 1976), it is doubtful
that this occurs for the voltage-dependent channels known
to be formed by large proteins in plasma membranes. The
large energy barrier imposed by the lipid bilayer on
transmembrane movement of protein charges associated
with bulky, hydrophilic groups would seem to preclude this
mechanism of voltage dependence.

What is desired is a gating mechanism that is formally
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equivalent to charge movement across the entire bilayer
but involves only small charge movements. Small move-
ments within the bilayer, however, only move charge
through a fraction of the total transmembrane potential.
To obtain by this means the equivalent of a single charge
moving across the entire bilayer requires movement of
many charges through small distances; such a mechanism
has been proposed by Armstrong (1981). We take here a
different tack and consider systems in which the gating
charges are on the walls of the channel itself, rather than
lying within the bilayer proper. (Energetically, the walls of
the channel are a much more favorable location for the
gating charges than is the interior of the bilayer, because of
the high dielectric constant of the aqueous channel relative
to that of the lipid bilayer.) Gating charges on the channel
walls that move a short distance across a closed gate move
through the entire transmembrane potential,' and this is
energetically equivalent to their moving across the entire
membrane. The analysis of such systems reveals unex-
pected consequences and properties of some interest, and

'We assume that the Debye length within the channel is small compared
with the length of the channel, so that it is a good approximation to place
the entire voltage drop across the gate. This assumption is appropriate to a
channel containing either a high salt concentration or a high fixed charge
density.

$1.00 549



suggests that single-channel data can be fruitfully inter-
preted in terms of channels having gating charges on their
walls.

THE MODEL
Consider the situation depicted in Fig. 1. A membrane with a cylindrical
channel traversing it separates symmetrical salt solutions and is voltage
clamped at some value, V. The channel is opened and closed by a thin
dielectric circular shutter, which is composed of the material from the
surrounding bilayer. Fixed to the walls of the channel just above and
below the shutter are circular rings of positive and negative charge of
equal magnitude; i.e., the charges form a dipole ring. The dipole moment
can orient either with or against the electric field. The magnitude of the
dipole moment (,g) is q6, where q is the magnitude of the positive or
negative charges and 6 is their separation distance (i.e., the shutter
thickness). There are four channel states: two open and two closed. (The
open and closed configurations are each divided into two states by the two
possible orientations of the dipole moment.) Note that for cases of interest
the dipole is physically coupled to the shutter, and therefore the rate
constants for the transitions 0, = C, need not be equal to the correspond-
ing rate constants for the transitions 02 = C2- Similarly, the equilibrium
constant for the former reaction will, in general, not be equal to the
equilibrium constant for the latter reaction; that is, in Eq. 1 below, K,
1/K2.

At V = 0, the system may be in equilibrium. An equilibrium constant is
associated with each transition depicted in Fig. 1, and each constant is
simply related to the difference in free energy between the two states of
that transition. Thermodynamics tells us that there can be no net free
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energy change in going around the cycle in Fig. 1 (at V = 0), and
consequently the free-energy differences of the four transitions are not
totally independent. In terms of the equilibrium constants, this constraint
is expressed by the relation

K, - K2 * K(2) * K(,) = 1. (1)

Alternatively, it can be written in terms of the rate constants as

ki * k2 *k2) * k(c). k_, * k 2 * () kQc),. (2)

For an ensemble of channels at equilibrium, the relative number in each
state is expressed through the equilibrium constants; for a single channel,
the same expressions give the relative time spent in each state.

The above considerations are rather elementary and generally famil-
iar. The situation is more complex, however, if a voltage is applied across
the membrane (i.e., V * 0). The system is no longer in equilibrium, and a
priori one cannot expect equilibrium considerations to apply. Neverthe-
less, equilibrium analyses are often appropriate for nonequilibrium
processes. Helmholtz's quasi-thermodynamic analysis of the Peltier and
Thompson heats in thermoelectricity are classic examples of this (see
Denbigh, 1951). In the case of voltage-dependent channels, equilibrium
analyses are generally applied, and Eqs. 1 and 2 are assumed to hold even
at V * 0 (e.g., Armstrong and Gilly, 1979; Armstrong, 1981). (The Ks
and ks are, of course, functions of voltage.) Usually, this approach is
suitable and the dissipative processes that parallel the gating phenomenon
can be safely ignored. In the present instance, however, equilibrium
analysis is inappropriate and, as we shall see, Eqs. 1 and 2 are not valid. In
fact, one cannot even write equilibrium constants for the transitions.
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FIGURE 1 The shutter model for a voltage-dependent channel. The channel can be in one of four states: two open states (0, and 02) and two
closed states (Cl and C2). The gating charges, indicated by the plus signs and the minus signs, are in the form of a dipole ring with a ring of
charge on either side of the thin gate. Transitions between 01 and 02 or between Cl and C2 involve the reorientation ("flipping") of the dipole;
transitions between 01 and C, or between 02 and C2 involve opening or closing of the thin gate (shutter). The membrane is clamped at the
voltage V. Rate constants (k) and their ratios (K) are defined in the figure. The interpretation of the Ks as equilibrium constants is only
possible at V = 0. At all other voltages, equilibrium is impossible and the equations relating the Ks to the concentrations do not apply.
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Qualitative Considerations
Let us first analyze the situation in Fig. 1 intuitively. Consider, for
example, starting in open state 01, and taking some path that ends in
closed state C2. We know that if V = 0, the work in going reversibly
between these states is independent of path; i.e., there is a unique free
energy associated with 0, and C2 and hence a unique difference in that
energy. If V *6 0, however, this is not the case. Compare the path 0, - 02
- C2 with the path 0 -Cl - C2. The flipping of the dipole in the
transition 0, 002 involves negligible electrical work, if the thickness (a)
of the gate (shutter) is small compared with the total membrane thickness
(d), because only a small fraction (a/d) of Vappears across the gate. The
transition C, - C2, on the other hand, involves electrical work 2qV, since
both charges of the dipole move in a direction favored by the electric field
through the entire potential difference, V. Next, we compare the transi-
tions 02 - C2 and 0, - C, that involve the closing of the gate with the
dipole fixed in either of its two orientations. We shall show in the
Appendix that the electrical work (if any) associated with these two
transitions is the same, independent of the orientation of the dipole. This
follows from the fact that the stationary dipole is always exactly
neutralized by counterions. Thus, the total electrical work in going from
0, to C2 is path dependent: the path 0, - C, - C2 involves excess
electrical work, -2qV, compared with the path 0, -02 -C2-
A related kind of path dependence appears when we consider gating

currents. In the path 0, - C, C2, the dipole flips with the gate closed.
This requires a gating current (whose integral over time is 2q) to flow
through the battery. In the path 0, - 02 -C2, however, the dipole flips
with the gate open, and much of the required movement of counterions
can occur through the open gate. Thus, the open gate shorts out a
substantial part of the gating current that would otherwise appear in the
external circuit flowing through the battery.

The underlying cause of these path-dependent effects is that the state
of the system is not completely specified by the state of the channel; the
state of the battery clamping the voltage at V must also be included. For
instance, 2q units of charge are added to or withdrawn from the battery
(depending on the sign of F) in going reversibly2 around the cycle 0,-
02 -C2 -C,- 0. Although the channel has returned to 0, and is
therefore back in its original state, the battery is not; hence the system has
not returned to its original state. It is clear from considering the above
cycle that Eq. 2 does not hold, and equilibrium constants do not exist for
the transitions.

The nonequilibrium situation that we have just described comes about
because the channel is a conducting medium, which we model as a
classical conductor with conductivity a. It is natural to ask how the results
of our analysis depend on a. In particular, we might expect that the limit
a 0- leads to recovery of an equilibrium situation. In fact, this is not the
case. Even when a is arbitrarily small (still considering the conductor as
classical, i.e., ignoring thermal effects), the steady distribution of poten-
tial in the channel is drastically different when the gate is closed than
when the gate is open. What does happen as a 0- is that the time
required to achieve the steady state approaches -. Thus the reversible
work around a closed path is independent of a, but the transitions have to
be slower and slower to be considered reversible as a -0.

Because the preceding conclusions are somewhat novel and contrary to
generally held beliefs, a formal proof is desirable. The conclusions follow
from our assertion that the opening and closing of the gate in the model
(i.e., 0, -- C, and 02 ' C2) require the same amount of electrical
work independent of the orientation of the dipole; consequently, it is this
assertion that requires proof. This necessitates determining the energy

2We reversibly open and close the shutter and reversibly rotate the dipole.
While this is going on, there is, of course, continual dissipation of energy
because of the charge flowing through the channel. For the purposes of
this intuitive discussion, we neglect this irreversible process in talking
about the state of the battery. In the Appendix, we shall present a rigorous
analysis that does not require this artificial separation between the
reversible and dissipative currents.

changes in both the channel and the battery associated with the transi-
tions. In principle, this can be accomplished by reversibly opening and
closing the gate and summing the energy changes for each incremental
movement. Two difficulties, however, are encountered in the calculations.
The first is in determining the field lines in the channel and surrounding
bilayer for a given position of the gate. The second is in determining the
excess charge that flows into or out of the battery with each incremental
movement of the gate. We found no exact way of making either of these
determinations. Therefore, instead of performing an explicit calculation
on this model, we prove (in the Appendix) a general theorem about the
energetics of conformational changes in the shape of axisymmetric
channels. In particular, we show that the electrical work (if any)
associated with radial deformations of the channel is independent of the
distribution of fixed charges on the walls, provided that the fixed-charge
distribution remains constant during the deformations. (We also show
that the electrical work associated with such channel deformations is
proportional to V2, and hence independent of the sign of V.) Since the
dipole in our model is stationary while the gate moves, the theorem
applies. Thus the electrical work involved in opening or closing the gate is
independent of the orientation of the dipole and also independent of the
sign of V.

The theorem that we have just stated applies to transitions in which the
gating charges do not move in the transmembrane direction. In the
Appendix we also consider more general conformational changes that
include rearrangement of the gating charges as well as radial deforma-
tions of the walls of the channel. We find useful expressions for the
electrical work in two limiting cases: reversible (slow) transitions and the
narrow-channel limit.

Quantitative Behavior of the Model
In this section we study the behavior of the model channel in greater
detail. In particular we investigate the voltage dependence, the single-
channel (flickering) behavior, and the apparent violation of detailed
balance. To do this we consider a specific example in which the rate
constants have been chosen in a particularly simple way. The simplifying
assumptions that we introduce are as follows.

Dipole-flipping Reaction. When the gate is open, we assume
that the two orientations of the dipole are in rapid equilibrium with an
equilibrium constant of 1. (Recall that the dipole-flipping reaction is
essentially voltage independent when the gate is open.) When the gate is
closed we assume that the rate constants for the dipole-flipping reaction
take the form kof and kok-', where

T=exp () (3)

and where ko is a constant with units of reciprocal time.

Gating Reactions. As emphasized in the previous section
(and proved mathematically in the Appendix), we know that the electrical
work of opening or closing the gate is independent of the orientation of the
dipole. In general, however, there may be nonelectrical work associated
with gating that does depend on the dipole orientation. Moreover, there
may be kinetic coupling between the orientation of the dipole and the
gating reaction. Here we assume that the coupling is entirely kinetic.
Specifically, we assume that the ratio of the rate constants for the opening
reaction (i.e., the equilibrium constant at V = 0) is 1/2, independent of
the orientation of the dipole, but that rates of opening and closing are

faster by a factor a2 when the dipole is down than when the dipole is up.

These assumptions are summarized in Fig. 2 A. Because of the rapid-
equilibrium assumption for the dipole-flipping reaction when the gate is
open, the box scheme of Fig. 2 A is equivalent to the triangular scheme of
Fig. 2 B. In these schemes, the only voltage dependence appears in the
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reaction C, -- C2 through the factor

= exp

The system of Eqs. 4-5 contains four equations that may be solved
uniquely for the four unknowns [0], [Cd], (C2], andf/ko. The results are

(3)

When V = 0, t = 1, and the rate constants satisfy the constraint that the
product of the equilibrium constants around a closed loop must equal 1.
At all other voltages, this condition is violated and there must be a net flux
around the loop.

The steady-state behavior of the system shown in Fig. 2 B may be
determined as follows. Let [0], [C,], and [C2] be the fraction of time
spent by the channel in each of the three states. (We may also interpret
these quantities as the fraction of channels in a large population that may
be found in the different states at any particular instant.) Letfbe the net
flux around the loop (positive counterclockwise). Then

f-= a-'([C,] - [0]) = a([0] - [C2])
ko
= -[C2] -t[Cl]. (4)

Of course, we also have

[0] + [C,] + [C2] = 1. (5)

[°] = (1 + 2t2)a + (2 + t2)a-' + 3t
a + a-' + t

[C1] = (1 + 2t')a + (2 + 02)a-' + 34

t2a+ t2a- + t
[C21 = (1 + 2t2)a + (2 + t2)a' + 3t

- ( (2ko (I + 242)a + (2 + t2)a-I + 3t'

(6)

(7)

(8)

(9)

Note that the net flux is 0 when t = 1 (V - 0). This is the only situtation in
which we have true equilibrium as opposed to a steady state.

The steady-state voltage dependence of the channel conductance is
determined by Eq. 6, which gives the fraction of time that the channel is
open as a function of the voltage V (which appears through t). The result
is plotted in Fig. 3 for the special case a = 100. For negative voltages there
is an exponential range in which [0] t exp(2qV/kT). To see this
analytically, consider the limit a - oo (instead of the present case of a =
100). In that case

(10)[0] = 1 + 22

Then, if 2{2 « 1 (i.e., V << 0), we have [0] = 42, which gives the
exponential voltage dependence claimed above.

Next we consider the single-channel (flickering) behavior of the
model. To do this we arbitrarily set a = 4, and we pick for convenience the
voltage t = a-'. The resulting state diagram of the model is shown in the
inset to Fig. 4, in which the unit of time is ko '. The simulated flickering
behavior in this particular case is shown in Fig. 4, where we have
distinguished the two closed states as though (as sometimes happens) one
of them has a small but measurable conductance.

B
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FIGURE 2 (A) A particular choice of the rate constants in Fig. 1. is
shown assuming that there is only kinetic coupling between the orienta-
tion of the dipole and the opening and closing of the gate; that is, in the
notation of Fig. 1, k,/k_, = k-2/k2. (We have arbitrarily set this ratio
equal to 1/2.) The extent of kinetic coupling is determined by the
dimensionless parameter a. We also assumed that the rate constants for
the transitions between 0, and 02 are rapid and equal in magnitude. The
voltage dependence of the transitions between C, and C2 is controlled by
the parameter t = exp (qV/kO). The constant ko (with units of reciprocal
time) determines the time scale of the transitions. (B) Triangular scheme
equivalent to the rectangular scheme in A is shown. Because of the
assumption of rapid equilibrium between 01 and 02, these two states can
be combined into a single state 0, where [0] -[01] + [O2]. (This is why
the factors of two do not appear in the effective rate constants for the
transitions 0 - C, and 0 - C2.)

0.5-

-1 1 qV/kT

0.1

-0.01

-0.001

FIGURE 3 The steady-state voltage dependence for the model channel
given by the scheme in Fig. 2 with a - 100 is shown. Ordinate: [0]

fraction of open channels (linear scale, above; logarithmic scale, below).
Abscissa: normalized voltage in units of kT/q (same scale for both
graphs). Note that there is a range of negative voltages where the voltage
dependence approaches the relationship: [0] - exp(2qV/k7) (the dashed

line [---] in the lower graph).
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FIGURE 4 Single-channel (flickering) behavior for the model channel
given by the scheme in Fig. 2 is shown. The simulated record is taken for
the particular case of a = 4 at the voltage t = a '. (The state diagram for
the model under these conditions is shown in the inset, in which the units
of time are ko '.) We have distinguished between the two closed states by
allowing one of them (C2) to have a small, measurable conductance. The
method of simulation was, briefly, as follows: For each state of the
channel, the waiting time between transitions was chosen as a random
variable with exponential distribution (k, + k2)exp[-(k, + k2)tJ, where
k, and k2 are the rate constants for the two pathways by which the
channel can leave the state in question. The path that the channel actually
takes to leave the state was also chosen as a random variable (independent
of the waiting time) with the distribution: Pr ichannel takes path il =
(ki)/(k, + k2), i = 1,2.

In Fig. 4, the bursts, during which the channel opens and closes
repeatedly, may be attributed to the relatively fast reaction C2 <-- 0.
During the long interburst intervals, the channel is stuck in the relatively
stable state C,. The expected fraction of the time spent in each of the three
states may be calculated by direct substitution (of ' = a = 4) in Eqs.
6-8. The results are

[0] =0.1301 (11)

[CI] = 0.7805 (12)
[C2] = 0.0894. (13)

Given these quantities, the expected number of transitions per unit time
(time in units of ko') for each of the six possible transitions can be found
by multiplying the rate constant for the transition (see inset of Fig. 4) by
the appropriate occupation probability ([O], [C1], or [C2]) of the state
that precedes the transition. The results are shown in Table I.

Note that the excess of forward to reverse transitions is the same for all
three reactions, as required by the steady-state hypothesis. The fact that
there is an excess, however, shows that the system is not at equilibrium,
because the principle of detailed balance requires that at equilibrium each
forward transition proceeds at the same rate as its corresponding reverse
transition. Moreover, the ratio of forward to reverse transitions is
necessarily greater for the slower reactions. Thus the transition 0 - C1
occurs six times less frequently than the transition C,- 0 (on the
average), whereas the transition C2 - 02 occurs only 1.5 times less
frequently than the transition 0 - C2. Maintenance of the system in a

TABLE I
EXPECTED NUMBER OF TRANSITIONS PER UNIT
TIME* FOR THE SIX POSSIBLE TRANSITIONS IN FIG. 4

Forward
Forward Reverse Forward - Reverse Reverse

C2-Cl 0.3576 0.1951 0.1625 1.8
Cl-O 0.1951 0.0325 0.1626 6.0
O-C2 0.5204 0.3576 0.1628 1.5

*Time is measured in units of kg'.

nonequilibrium steady state requires a source of energy. In this case, the
energy source is the battery that sustains the transmembrane potential
V.

DISCUSSION

This paper considers some consequences for voltage-depen-
dent channels when the gating charges are located on the
walls of the channel itself and their movement occurs
across the gate. The presence of gating charges within or
near the polar, high dielectric-constant medium of the
channel is physically reasonable and preempts the ener-
getic problems associated with their being in the low
dielectric-constant medium of the lipid bilayer. Their
movement across the gate, moreover, resolves another
conceptual difficulty with voltage-dependent channels.
That is, it offers a plausible physical mechanism for the
steep conductance-voltage relation seen with such chan-
nels, since movements of charge through small distances
when crossing the gate result in large electrostatic energy
differences. One feature of this arrangement of gating
charges and gate is that the field that the charges experi-
ence is a function of the state (open or closed) of the
channel. A notable consequence of this, which we have
stressed in this paper, is that the equilibrium considerations
usually applied to gating phenomena are not applicable to
such systems. In particular, the relative time spent in each
state by the channel cannot be determined from equilib-
rium constants or Boltzmannian relations, and the stan-
dard interconnection among forward and backward rate
constants in a cyclic path, as in Eq. 2, does not hold.

Before we comment further on this point, we wish to
mention another important feature of our model, unrelated
to the above issue. For simplicity, let us assume that k 2
and k(°) are very small compared with the other rate
constants, and therefore that the transitions C2 02 and
01 " 02 are so infrequent that they can be ignored. Then
the cyclic scheme of Fig. 1 reduces to the following linear
sequence of reactions3

k(c) k,
C2- C1 01.

21 k-I

3In a linear scheme, perfectly proper equilibrium constants can be written
for each transition. Note that the cyclic scheme of Fig. 1 becomes a linear
scheme with four states if any one of the four arms of the cycle is broken.
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The model channel will generally show bursting activity
(see Quantitative Behavior of the Model); that is, once it
opens it will flicker off and on

C,. 0,.
k,I

Flickering is apparently a ubiquitous feature of biological
channels (e.g., Conti and Neher, 1980; Colquhoun and
Sakmann, 1981; Stevens et al., 1982) and our model
attributes a function to it: it is a way for the gate to sense
the electric field and see if it should be in the open or closed
state.

Returning to the point that Eq. 2 is not satisfied in our
model, we note that this may be particularly relevant to
inactivation kinetic schemes proposed for the sodium chan-
nel (e.g., Armstrong, 1981). In those, it is generally
assumed that Eq. 2 must apply and also that in going
around a given closed path the integral of the gating
currents must be 0. This will not be the case, however, if
the gating charges are associated with the gate and are on
the walls of the channel.

In a recent paper on multiple conductance states of
acetylcholine receptor channels (Hamill and Sakmann,
1981), transitions from the sublevel to the closed level were
observed, but no transitions from the closed level to the
sublevel were seen. One explanation of this apparent
violation of the principle of detailed balance could be that
the effect we have described in our model system operates
in this channel.

The considerations we have raised are also relevant to
those situations in which an ion can block or plug a channel
(e.g., Miller, 1982). In those cases, it is customary to
interpret the voltage dependence of the block in terms of
the fraction of the field through which the blocking ion
must move, and hence to arrive at an electrical distance
within the channel for the blocking site. If, however, the
field is more or less uniform throughout the channel in the
unplugged state but appears only across the block site
when the channel is plugged, the situation is complicated.
We do not pursue this point at this time.

The model we have considered has two closed states and
two open states, but more of each could be had by adding
more dipoles to the gating mechanism. Some of these
possible states might in practice be excluded because of the
low probability of certain transitions. The model appears
rich enough to include all of the types of single-channel
behavior so far observed.

APPENDIX

The purpose of this Appendix is to study the energetics of conformational
changes of voltage-dependent channels with gating charges on the walls of
the channel. We consider two types of conformational changes: radial
motion of the walls of the channel and longitudinal redistribution of the
gating charges. (These changes may occur simultaneously and at arbi-
trary rates.) The energetic terms that we evaluate are the rate of change
of electric-field energy in the dielectric and the channel, the rate of joule

heating in the channel, and the rate of electrical work performed by the
battery. From these we calculate the rate at which external work is
required to produce the conformational changes in question. Note that
this calculation ignores any purely chemical work (that is, voltage-
independent work) associated with the conformational changes. We
assume that such chemical work terms can be derived from a free energy
and hence that they do not contribute to the net work around any closed
path.

The main result of this Appendix is that pure radial deformations of
the walls (with the gating charges fixed) require an amount of external
work that is independent of the (static) distribution of the gating charges.
Moreover, we show that the external work involved in such conforma-
tional changes is proportional to V2.

We also consider the special cases of reversible conformational
changes in an arbitrary channel and of arbitrary conformational changes
in a channel that is narrow in comparison with its length. In the latter
case, we derive more explicit expressions for the external work and also for
the gating currents generated by the transitions of the channel. In
particular, we show that the integral of the gating current around a closed
path is not equal to 0.

Consider a membrane that occupies the slab z, < z - Z2 (Fig. 5). The
membrane contains a single axisymmetric channel whose moveable walls
are described (in cylindrical coordinates) by the equation

r = ro(z,t) (Al)

and for simplicity, we assume that the two ends of the channel are fixed

ro(zl,t) = r,

rO(z2,t) = r2- (A2)

Some important geometrical quantities derived from ro(z,t) are the area
per unit length of the walls of the channel

a(z,t) = 2-rO(z,t) jI + [a (z, t)j

and the unit outward normal

(A3)

\=1(+1aro + aro))'n z, ) r ilkz + (A4)

We shall use the notation a/an for the normal derivative 'n. v.
The membrane (M) is modeled as a classical dielectric with dielectric

constant EM. The channel (C) is modeled as a classical conductor with

Z.2

lUl ..

V

FIGURE 5 An axisymmetric channel with moveable walls in a mem-
brane that occupies the slab Z1<Z<Z2 is shown. The membrane (and
channel) is clamped at voltage V. The meanings of the symbols shown in
the figure are given in the text.
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conductivity a and dielectric constant Ec. At the membrane-channel
interface (MC) we may distinguish three types of surface charge. (a) The
polarization surface charge that arises from polarization of the membrane
or the channel. This charge will never appear explicitly in the following
considerations. (b) The bound surface charge (e.g., -COO and -NH 3
groups on proteins) that is attached to the walls of the channel. (c) The
free surface charge (counterions) contributed by the solution in the
channel.
We remark that this terminology is not completely standard. Usually

"free" charge simply means all charge other than the polarization charge,
but in the following we shall call this instead the nonpolarization charge.
In our terminology the free surface charges enter and leave the
membrane-channel interface (i.e., the walls of the channel) via the
solution, whereas the bound charges never leave the interface, although
they may be rearranged on the walls of the channel.
We assume that the walls of the channel are lined with bound surface

charge in the amount qO(z,t) per unit length and free surface charge in the
amount qf(z,t) per unit length. Thus the total (nonpolarization) surface
charge on the walls of the channel is given by

q(z,t) = qj(z,t) + q (z,t) (A5)
per unit length. The quantities q, qo, and qf may be divided by a(z,t) to
find the corresponding charges per unit area.

Next, we consider the electrostatic potential O(r,zj). We assume that a
battery is applied to the system in such a way that

O(r,z2,t) = V

4,(r,zj,t) = 0.

That is, there are perfectly conducting electrode plates along z =

Z = Z2. (This is a reasonable approximation to a large volume of sol
The (nonpolarization) charges on these plates will be designated
and U2(r,t) per unit area.

In the following, it will be very convenient to have an expression
value of 4 on the membrane-channel interface. Thus we define

4'MC(z,t) = 0[ro(z,t),z,t] .

of a classical conductor (even a classical conductor in motion) decays
away exponentially in time to 0 at each material point. We shall assume
that this decay has already taken place before we begin considering
movements of the channel walls and the fixed charges on them, and that
therefore p = 0 in the interior of the channel at all times. In summary

v24 = 0, r> ro(z,t)

v24 = 0, r < ro(z,t).

(AIO)

(Al1)

We still have to determine the boundary conditions at the membrane-
channel interface. First, the potential 4 is continuous across the mem-
brane-channel interface. Next, recall that fn points out of the channel into
the membrane, that the jump in D * n is the (nonpolarization) surface
charge, and that D = e E = - e v+. It follows that

I4M 04
E

_ q(z,t)
nM
+ cn c a (z, t)

along r = ro(z,t). Eqs. A6-A7 and AIO-A12 suffice to determine 4
uniquely, given q.
We still need an equation for 0q/0t. This equation is derived as follows.

Consider an arbitrary interval (Za,Zb) of the channel. By conservation of
the free charge and for radial motion of the walls4

d f Zbqfdz= - Zb
a dz.

dt JZ q =-Jcz, wni c

(A7) Because Za and Zb are fixed and arbitrary, this implies

zi and aqf -aa
.

ution.) at dn c
I .\

(A8)

(A13)

(A14)

Because qf = q - qo, this equation may also be written

cOq 0q0=-- a - a.
at alt 9n c

(A15)

(A12)

The equations that determine O(r,z,t) at any particular time t are as
follows. First, note that the (nonpolarization) charge density p is 0 by
definition in the interior of the dielectric membrane. Then, since E =
-v4 and eM V * E = p = 0, we have v24, = 0 in the interior of the
membrane.

In the channel we may also take p = 0 for the following reason. The
channel is filled with a liquid conductor, which may be in motion to
accommodate conformational changes in the walls of the channel. Let u
be the fluid velocity and assume v * u = 0; i.e., the aqueous solution in the
channel is incompressible. Now the current density in the channel is given
by J = aE + pu and the equation of charge conservation reads as
follows:

dp
at

- p+v.(pu)+av-E

dp a
- +u *Vp+-p

At 'C

This is the required equation for 0q/0t.
Note that the bound charge density qo(z,t) enters into our equations

only through the term cqo/lt in Eq. A15. This has the important
consequence that, when q/qO0-t=0, the stationary charge density qo(z)
has no effect on 4 or q. In this special case, and q have the same values
as when qo 0. Similarly, when qO(z,t) is slowly varying, the values of 4
and q will be close to their values when qo 0. These remarks will be very
important in the following.
We are now ready consider the energetics of the system. The potential

energy U is given by

U=2f D - Edv

fM I (A16)

To simplify this expression, we use Green's theorem in the form

(A17)Iv4,12dv= f aadA.
Dp a
Dt+EC (A9)

where D/Dt is the material derivative (0/at + u * v), which is the time
derivative seen by an observer who follows a particular material point. It
follows from Eq. A9 that any charge density p that is placed in the interior

Here Q is a region with surface S, n is the outward normal on S, and v2, =

0 in fl.

4Eq. A13 is confined to radial movement because nonradial motion can
give rise to surface convection currents of free charge across z = Za or z =
Zb; such currents are not included in Eq. A 13.
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The result is

u =
I (m 0Xao + c

,a. IdA

U2Vf +0

+ 2 V,( ec (r,Z2,t) 27rrdr12 ( z

+
I

49M0(r,Z2,t) 2-wrdr.2 oz

Next, we evaluate the rate at which work is done by the battery. As
always

Wb = VI(t)- (A27)

Finally, we consider the external work that has to be done in order to
change q0 or ro. Let this rate of work be denoted by W,. By conservation of
energy, we see that

(A1 8)

There is no contribution from z = z,, because X = 0 on z = z,. We can
rewrite Eq. Al 8 in terms of surface charges. To do this, use the boundary
condition (Eq. A12) and also the conditionEe4)/Oz = Or, which holds on
both parts of the upper electrode. On the membrane-channel interface,
recall that dA = adz. With these substitutions, Eq. A18 becomes

U = 2 Z2 MC (z,t) q(z,t) dz

+ VJ U2 (r,t) 2wr rdr. (Al 9)

(Eq. A19 could have been written down immediately, but we have
included its derivation from Eq. A16 for completeness.) For future
reference, we note the time derivative of this expression

u = lt Z2(,mcq) dz + V- 22w rdr. (A20)

It will be convenient to express the last term of Eq. A20 in terms of
currents. Let I(t) be the current flowing in the battery and let I2(t) be the
current entering the channel through the upper electrode. That is

I(t) = a
a4

a (r, Z2, t) 2ir rdr. (A21)

Then

at °2 27r rdr = I(t -2 (t) (A22)

and we have

U = _ (4MCq)dz + V[I(t) - 12(t)]. (A23)
2 2

The next step in the analysis of the energetics is to calculate the rate of
joule heating in the channel. This is given by

H= (J * E) dv =a |V 12 dv. (A24)

We=U+H- Wb

: [2 at ( MC q) 'MC a
Z2 V[-(tm q)- qm(t d
Ziat~~~~O

V [I(t 2 (t)]
2

or, substituting Eq. A5 into this, we have

We = *t [2 I(Dmc q) bmc at] dz

rzt 'at

- V[I(t) -12(t)] + 2MC aqo dz. (A29)

Eq. A29 is exact for any movements of q0 and for radial movements of the
channel walls. Let us now consider some special cases.

Case 1

qo Is Stationary. That is, 0qO1/t = 0. (This is the situation
that pertains to the opening and closing of the shutter in our model.) In
this case, Eq. A29 reduces to

[Z2 d (mcq) -mC dz] -I V[I(t) 2I2)]
(A29a)

if qo is stationary. Moreover, we have shown (following Eq. A15) that
when qo is stationary, and q have the same values as when qo a 0. But
because the values of and q also determine the values of 4MC, I, and I2, it
follows from Eq. A29 that We is independent of qo(z) when cqo/lt 0.

This is our main result, since it implies that the work of opening or

closing the gate (shutter) in our specific model is independent of the
orientation of the dipole. Thus, we have proved our intuitive result that the
electrical work in going from 0, to C2 is path dependent and that net work
can result from going reversibly around a complete cycle in the model. As
a further remark, we note that the quantities X, q, (IMC, I, and '2 are all
proportional to Vwhen 0qOlat 0. (This follows from the linearity of the
equations.) Thus W, is proportional to V2, and the work required to open

or close the gate is also independent of the sign of V.

Case 2

Using Green's theorem as before, this becomes

H= a ZMC (z, t) an a(z, t) dz

a(z

Reversible Movements of Walls and qo. When ro(z,t) and
qo(z,t) are slowly varying, it is easy to verify (see remark following Eq.
Al 5) that q, 'IMC, I(t), and 12(t) are proportional to Vand independent of
qo(z,t). Therefore Eq. A29 reduces to an expression of the form

V( 2 a qod
W = W*

+ (FMCO dz.

(A25)

To rewrite H in terms of surface charges, we use Eq. A14 and the
definition of I2 (Eq. A21) to obtain

H= =-JZ2 clqfdz + VI2 (t). (A26)

(A29b)

Here V* is an arbitrary reference voltage, W is the rate of work
associated with the wall motion in question (i.e., with the radial motion
ro[z,t]) when V = V* and q0- 0, and 4*c is the value of 4)MC when V =

V* and q0 a 0. By definition, W* and MI are independent of q0(z,t).
Thus, in the case of reversible changes, we can split the rate of external

work into two terms. The first term is quadratic in the voltage, it depends
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on the motion of the walls, and it is independent of the distribution of fixed
charges on the walls. The second term is linear in the voltage and depends
both on the configuration of the walls and also on the rate of rearrange-
ment of the fixed charges on the walls.

Case 3

The Narrow Channel. The limit of a narrow channei is very
instructive because many of the general expressions derived above can be
evaluated more explicitly. We shall present here only an informal analysis
of the narrow-channel limit, but the results can also be derived by a
formal asymptotic expansion.
We consider the limit obtained by setting ro(z,t) = Xro(z,t) and a = X2

ai and then letting A-0 with iO and a fixed. (In this limit the channel has
a finite conductance.) We assume that qo(z,t) is given, independent of A.
Since the channel collapses to a line when X = 0, it is clear from
elementary electrostatics that q(z,t) 0 in the limit; if not, 4MC will be
infinite. Moreover, since q = 0, the narrow channel does not disturb the
distribution of potential at any finite distance from the channel. It follows
from this that a2(rjt) = 02(o,t) everywhere except possibly at the isolated
point r = 0, where a2 still remains finite even when A = 0. Of course,
a2(x,t) is independent of t. Thus I(t) = I2(t). Combining these facts, we
see that Eq. A29 reduces to

Z2= c qo dz- (A29c)
Oit

(narrow-channel limit). This looks like a special case of Eq. A29b, but we
have not assumed here that the changes in qo or ro are slow. It remains to
evaluate 4Mc(z,t). To do this we consider the current in the channel. In
the narrow-channel limit we have = 4MC in the channel, so the current is
given by

- O*MC -i(z, t) =-a M (Z, t)- (A30)
cz

The continuity equation for this current is

clq

+ a9 = 0. (A31)

But qf = q - qo = -qo, since q = 0. Therefore ci/cz = cq01/t, and 4~MC
satisfies the differential equation

-d (az r2a Z, t) roC) = dq° (A32)

with boundary conditions

4bMC (Z1) = 0

sMC (Z2) = V. (A33)
These equations suffice to determine 41MC at each time t, provided that we
are given io(z,t) and cq/Oct (z,t).
A particularly useful aspect of the narrow-channel approximation is

that we can derive an explicit formula for the current entering or leaving
the channel. These currents are the same, since we impose the constraint
that

4 Z2 d qo dz 0. (A34)

Let

-I(t) = i(z1, t) = i(z2, t) (A35)

Then I(t) is (as above) the current flowing through the battery with the
usual sign convention. To derive a formula for I(t), integrate Eq. A32

from z1 to z, divide by -a X i, and then integrate from z1 to Z2. The result
can be put in the form

I(t) ~~~= R( [-
Z2 R(z, t) cltq (z, t) dz]. (A36)

where R(z,t) is the resistance of the part of the channel from z, to z

R(z, t) = J daXr(z',t) (A37)

and where RO(t) is the resistance of the entire channel

Ro(t) = R(z2, t). (A38)

Clearly, the term V/Ro is the ohmic current, and the term involving
cqo/ct is the gating current. Note, however, that the gating current is
associated not with the motion of the walls of the channel but with
redistribution of the gating charges.

In our shutter model when the gate is almost closed, most of the
resistance of the channel appears across the gate, so R = 0 at the bottom
of the gate and R Ro at the top of the gate. Thus, when the gate is
closed, the integral of the gating current associated with flipping the
dipole is equal to twice the dipole charge. When the gate is open, however,
the change in R across the gate is only (6/d)RO, so the integral of the
gating current is 6/d times twice the dipole charge. If 6 << d, the gating
current associated with flipping the dipole is much smaller if the flip
occurs when the gate is open than when it is closed.

Finally, for ease of interpretation, we combine the reversible approxima-
tion with the narrow-channel limit. Then 0qo/&t may be neglected in Eq.
A32 (but not in Eq. A29c), and '1MC satisfies the equations

aalz rO(z, t)ro fc] = 0 (A39)

4sMC (Z1) = 0

'MC (Z2) = V. (A40)
Thus, 4DMC is determined by the configuration r of the channel at each
time t. If we separate changes in ro from changes in qo, we may now say
(see Eq. A29c) that changes in require no electrical work, whereas
changes in qo require an amount of work that is proportional to Vand that
also depends (through 'IMc) on the configuration iO at which the change in
qo occurs.
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