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ABSTRACT We present a perturbation method for analyzing nucleation-controlled polymerization augmented by a
secondary pathway for polymer growth. With this method, the solution to the kinetic equations assumes a simple
analytic closed form that can easily be used in fitting data. So long as the formation of polymers by the secondary
pathway depends linearly on the concentration of monomers polymerized, the form of the solutions is the same. This
permits the analysis of augmented growth models with a minimum number of modeling assumptions, and thus makes it
readily possible to distinguish between a variety of secondary processes (heterogeneous nucleation, lateral growth, and
fragmentation). In addition, the parameters of the homogeneous process, such as the homogeneous nucleus size, can be
determined independent of the nature of the secondary mechanism. We describe applications of this method to the
polymerization of actin, collagen, and sickle hemoglobin. We present an extensive analysis of data on actin
polymerization (Wegner, A., and P. Savko, 1982, Biochemistry, 21:1909-1913) to illustrate the use of the method.
Although our conclusions generally agree with theirs, we find that lateral growth describes the secondary pathway
better than the fragmentation model originally proposed. We also show how this method can be used to study the degree
of polymerization, the parentage of polymers, and the behavior of polymers in cycling experiments.

INTRODUCTION

For a number of biological molecules (1-7), polymeriza-
tion into larger structures involves a set of necessary but
unfavorable steps in the reaction that bottleneck the for-
mation of large aggregates. These steps are viewed as
constituting formation of a critical nucleus. In any
assembly process, the formation of intermolecular bonds
competes with the greater translational and rotational
entropy of monomers in solution. From a thermodynamic
viewpoint, the nucleus represents a turning point in the
balance between lost entropy and bond energy, i.e., an
aggregate is postnuclear if, for a given concentration of
monomers, the addition of a monomer adds to its stability,
rather than increasing its instability. Kinetically this
means that the rate of monomer addition to the aggregate
exceeds the rate of monomer loss after the nucleus size is
surpassed, but not before. Often such a nucleus is visual-
ized as the result of some singular steric step, such as the
closure of a ring, or a tube, or the completion of the first
turn of a helix. However, it is clear that nucleation theories
do not require such a special structure for the turning point
in stability, and, in fact, the experimental evidence on
assembling systems has not generally turned up such
special structures.

Typically, the complete mathematical description of a
polymerizing system requires a differential equation for

the concentration of each aggregate, and even allowing
only monomer addition or loss means that each equation
will contain concentrations of aggregates of neighboring
size. Moreover, the rate constants are not size independent
until rather large polymers are reached. Thus, a complete
treatment is a formidable problem. A simplifying strate-
gem for nucleating systems is to assume that the subnu-
clear species are in equilibrium and thus calculate the
concentration of nuclei as an equilibrium problem. As is
done with transition state theory, this approach reduces a
kinetic problem to an equilibrium one. Then monomer
addition above nuclear size is assumed to proceed at rates
appropriate to the rate constants for long polymers.
Oosawa has presented such an approach for one-dimen-
sional irreversible growth and has obtained simple closed
form solutions to the kinetic equations (1, 8).

Despite many successes, there is ample evidence that
this simple model does not fully describe the kinetics of
such self-assembly systems as actin (9, 10), collagen
(11, 12), or sickle cell hemoglobin (13, 14). The most
notable discrepancy between theory and experiment is
found in the time course of the reaction. In the three
cases just mentioned, the concentration of polymerized
monomers increases much more abruptly than the t2
dependence that the Oosawa theory predicts. To
describe this autocatalysis, the theory has been extended
to include mechanisms by which polymers may form,
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other than by straightforward homogeneous nucleation.
For actin, fragmentation has been proposed as a secon-
dary mechanism for polymer formation (9, 10). For
sickle cell hemoglobin, heterogeneous nucleation of poly-
mers onto the surface of other polymers acts as a
secondary pathway (14). For collagen, it is clear that
polymerization involves more than one pathway,
although the nature of the initial steps in the process are
in dispute (1 1, 12).

In practice, the comparison of such augmented nuclea-
tion mechanisms with experiments has been cumbersome
because analytic solutions have not been known. Trial
parameters must be used to produce kinetic curves that
can then be compared with the data. Fitting is done by
repeated iteration, which can be a slow and tedious
process if several parameters are involved. Such proce-
dures are ill-suited to the task of distinguishing between
plausible mechanisms (e.g., secondary nucleation vs.
fragmentation) because of the need to demonstrate that a
given failure is not merely a poor choice of parameters.
Conceptually, they are cumbersome as well because the
sensitivity of the resulting solutions to input parameters is
not readily apparent.
We find that these difficulties can be avoided by solving

the same rate equations by a perturbation approach. In this
method, we expand the concentrations of polymers and
polymerized monomers about their initial values and retain
only the lowest order terms in the rate equations. In lowest
order, the equations become linear with simple analytic
solutions. Of course this approach is valid only for studying
the initial phase of the assembly reaction; however, this is
not a severe limitation, because most of the kinetic infor-
mation can be extracted from this portion of the data. In
fact, for systems in which a dense network of polymers is
formed (such as sickle cell hemoglobin), interpretation of
the initial behavior in which the polymers remain dilute
may also provide the most reliable data.
We find that the solution to the linearized equations has

a form that is independent of the 'exact mechanism chosen
to augment the primary nucleation pathway. Analysis of
kinetic data in terms of this description yields parameters
with a simple and direct relationship to fundamental
kinetic constants. Moreover, a particular combination of
parameters in this description is totally independent of the
secondary process, allowing the primary nucleation step to
be studied despite the strong possibility that the secondary
process may have a dominant role in the kinetic behavior.
Furthermore, the parameters in this description have sim-
ple, intuitive relationships to the shape of kinetic progress
curves.

This paper is organized as follows. In the Formulation
of the Problem section, we describe the basic augmented
nucleation models and show how fragmentation, lateral
growth, and secondary nucleation all produce formally
similar equations. In the First-Order Solution section, we
solve the general equations by use of perturbation theory.

In the Accuracy of the Expansion section, we consider the
accuracy of the theory used and the criteria that can be
used to test for a given degree of accuracy. In the Actin
section, we describe the application of this method to
actin polymerization. We include an extensive analysis of
published data here so that actin can serve as a model for
use of the method. In addition, we compare the conclu-
sions obtained here with the conclusions of others who
numerically integrated the kinetic equations. In the Col-
lagen section, we consider collagen polymerization as a
possible example of nucleated polymerization with lateral
growth and show that the slope of log-log plots of delay
time vs. concentration may give an incorrect nucleus size.
In the Further Applications section, we present three
other general applications: the degree of polymerization,
the parentage of polymers, and the analysis of depolymer-
ization-repolymerization or cycling experiments. In the
Conclusions, we summarize the usefulness of the method
presented here. In the Appendix, we describe the modifi-
cations required to use this method for the analysis of
polymerization in the presence of substantial solution
nonideality (e.g., sickle hemoglobin).

FORMULATION OF THE PROBLEM

In this section, we formulate the differential equations that
describe polymerization via two pathways. The primary
pathway is homogeneous nucleation, which we describe by
classical equilibrium nucleation theory. The principal
assumption of this theory is that all polymerization pro-
cesses are sufficiently slow to allow equilibrium to be
established between nuclei and monomers. Since this the-
ory is thoroughly described elsewhere (15, 16), we concen-
trate here on showing the various ways in which homoge-
neous nucleation can be augmented in the formation of
polymers.
Our interest centers on two quantities: the concentration

of polymerized monomers, denoted A(t), and the concen-
tration of polymers, cp(t). We include in cp any aggregate
larger than a nucleus. Prenuclear aggregates are assumed
to be in equilibrium with the monomer population. In
addition, they are assumed to have concentrations much
smaller than either the free-monomer concentration c(t) or
the concentration of polymerized monomers A(t). There-
fore, if c0 is the total monomer concentration, then A(t) is
given by

A(t) = Co- c(t). (1)

A(t) changes through addition or loss of monomers at
polymer ends. The rates of these processes, and thus the
corresponding rate constants, are essentially independent
of length for sufficiently long polymers. We assume this to
be true for most of the polymers in the system, and we thus
take association and dissociation to be described by simple
rate constants, k + and k-. Then the concentration of
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incorporated monomers changes according to

dA
d = (k+c - k_)cp. (2)

It is often convenient to relate k to a solubility c, by
putting k- = k,c,. Then the reaction naturally ceases
when c(t) = c,.

If we define a polymer as any species of size i + 1 or
larger, then we can write the rate of homogeneously
formed polymers as

dcp = k cc - k*$ci+,. (3)
dt

The rate constant for monomer addition has again been
taken as k+. We shall, for simplicity, omit the k* term.' In
most cases this omission is experimentally indistinguish-
able from equating k* to k_, since k+c is so much greater,
especially in the initial phase of the reaction. Because the
method we are developing here is limited to the initial
phase of the reaction, this is a consistent approximation.
Dropping the second term in Eq. 3, we can write the rate of
polymer formation via the homogeneous pathway as

dc P = k cci = k+ KCi+'. (4)dt . 4

In the last substitution, we explicitly invoke equilibrium
nucleation theory by assuming that the nucleus of size i is
in equilibrium with the monomer population, i.e., c; = Kici,
where Ki is the rate constant for formation of a nucleus.

Fragmentation is one means of augmenting the forma-
tion of polymers. A simple description of fragmentation is
to assume that polymers break at a rate proportional to
their length. For a linear polymer, the length is simply
proportional to c0 - c, so that the full expression for
polymer formation becomes

d= k+K,ci+' + kf,(co - c). (5)
dt

The constant kf, is the rate of polymer fragmentation.
Wegner and Savko (10) have proposed that such a frag-
mentation mechanism occurs in actin polymerization. Our
Eq. 5 is essentially their Eq. 7, except for the omission of
monomer dissociation from nuclei. (See discussion above.)

Nucleation of additional polymers at the surfaces of
existing polymers, called heterogeneous nucleation, is
another means of augmenting polymer formation. The
concentration of sites to which such heterogeneous nuclei
attach and grow scales as the concentration of monomers

'Generally, k* is not equal to k (in contrast to, e.g., reference 10). This
follows from the definitions since k is the asymptotic limit of the
dissociation rate for infinitely long polymers, whereas k * is the first
dissociation rate constant,to decrease with aggregate size. In other words,
at the step i + 1, the association rate exceeds the dissociation rate for the
first time.

already incorporated into polymers. Thus the concentra-
tion of polymers formed by this secondary mechanism
scales as (c0 - c), as in the case of fragmentation. If we
denote by X the probability that a given polymer site can
support heterogeneous nucleation, then the full expression
for polymer formation becomes

dc, = k+Kic'+' + k+4Kjc +'(co - c). (6)

Here Kj is the equilibrium constant for forming nuclei of
size j and attaching them to surface sites, where again we
have applied equilibrium nucleation theory. Ferrone et al.
(14) have suggested that this mechanism describes the
polymerization of sickle hemoglobin. Our Eq. 6 is essen-
tially their Eq. 6a, except for the omission of activity
coefficients. The treatment of nonideal solutions will be
dealt with in the Appendix.
A special case of heterogeneous nucleation is lateral,

non-nucleated growth. The distinction between lateral
growth and heterogeneous nucleation is the same as that
between isodesmic growth and homogeneous nucleation,
i.e., for growth each step is favorable, and there is no
nucleus to act as a limiter of the reaction rate. If 0 is
defined as above, and we define k+' as the rate of associa-
tion laterally, then this form of augmentation can be
written as

dcP= k,Kici+' + kk+tc(co - c).
dt (7)

Such lateral association may apply to the kinetics of
collagen polymerization (See the Collagen section).

Thus we find that a variety of augmented nucleation
mechanisms have the general form

dcP = k,+ Kic'+ + Q(co - c)dt (8)

where Q is given in Table I. In the First-Order Solution
section we show how such equations may be solved by a
perturbation approach, and we will see that the solution
obtained does not depend upon the exact form of Q.

FIRST-ORDER SOLUTION

Because the kinetic equations described in the Formulation
of the Problem section are not readily soluble in closed
form, we will solve them by perturbation methods (17).
This involves three steps. First, we expand all terms in the

TABLE I
SECONDARY PROCESSES

Type Example Q

Fragmentation Actin kf,
Heterogeneous nucleation Sickle hemoglobin k+4k,cij'
Lateral growth Collagen ? ok+c
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kinetic equations in power series in A and cp. Second, we
truncate the resulting equations, retaining up to first-order
terms in A and cp. Third, we solve these equations, obtain-
ing a first-order approximation to the complete solution. If
this approximate solution is not adequate, greater accuracy
may be achieved by retaining terms in the kinetic equations
up to second order, i.e., A2, c2, and c A. The solution of
these second-order equations is written as the sum of the
first-order solution, as already obtained, plus a second-
order correction. This sum is substituted into the equations
and the second-order correction is then obtained. In prac-
tice, the higher the order of terms retained, the greater is
the complexity of the equations to be solved. Because the
first-order term may easily be sufficiently accurate, there
is often very little advantage to extending the solution to
second order or beyond.

In applying perturbation methods, we will consider only
small deviations in the concentrations of all species from
their initial values, i.e., we are concerned with the begin-
ning of the reaction. At time t = 0, we assume that no
polymers are present, so that cp = A = 0. (The case of
nonzero initial conditions has interesting applications and
will be discussed in the Further Applications section).
Since cp and A are small for short times, we expand the
concentration of homogeneous nuclei ci in a Taylor series
in terms of A about its initial value ci, 0, so that we have

i iCO (d\cjo 2 \ac2)o (9)
Similarly, we expand Q about Qo. If we then substitute
these expansions into Eqs. 2 and 8, grouping terms of like
order in A, we obtain a system of equations that has the
form

dp= ao+ aA + a2A2 + (lOa)dt

=cp(bo + blA + b2A2 + * * ) (lOb)dt

In the perturbation approach, the lowest-order equation
is solved first to obtain the lowest-order approximation to
the unknown variables. These lowest-order solutions can
then be substituted into the next order set of equations to
obtain corrections to the variables. The procedure can be
repeated to higher orders until the desired accuracy is
obtained. For this reason, it is convenient to write A and cp
as a sum of successive approximations

'A = Al + A2 + A3 + * ** (la)

Cp = C(l) +C(2) +C(3) + . (lI b)

where A, >> A2 >> A3 >> . . . and c(l)>C(2 > C(3)> ..For
this procedure to be valid, it is necessary that Al << c0 and
c4) << c0. In addition, it is necessary that ao be appropriately
small. This will be true whenever the concentration of
homogeneous nuclei is small relative to the initial monomer

concentration. Since A, and c(l) are both of first order in
smallness, the product c(')A, is of second order, and thus
terms containing this quantity should not be included in
the first-order equations. With these considerations, the
first- or lowest-order equations can be obtained from Eqs.
10 as

dc(')
-ao +a,A,1

dt =
dt' - p O

where, from Eqs. 2 and 8

aO =k+Kic-+l

a, = k+[Qo- (i + I)Kico]

bo = k+(co - C).

(12a)

(12b)

(13a)

(1 3b)

(1 3c)

The solutions of Eqs. 12 can be obtained by standard
methods and are given by

(1) a0
E tc, V

a-bo sinh ~~/j7bo (14a)

a,= (cosh abot-1)1 A(coshBt- 1). (14b)a,

We have introduced some useful shorthand here by
defining A = ao/a, and B = 1/ajbo. In fundamental terms
these are

Kic+
A =

0

(Qo/k+) - (i + 1)Kic'o
(l5a)

B = k+ V(co c-,)[(Qo/k+) - (i + 1)Kic']. (1 5b)

Note that these solutions are independent of the form
taken by Qo and can thus be used as descriptions of
secondary growth, secondary nucleation, or polymer frag-
mentation. The only limitation is that B must be real, i.e.,
albo > 0. This, in turn, requires that Qo be larger than
(i + 1)Kic'. This is not a severe limitation, but rather
designates a limit below which the form of the solution
changes from cosh to cos. (See the Accuracy of the
Expansion section).

It is interesting to consider the two limiting forms for the
solution Al (Eq. 14b) that emerge for small and large Bt.
For Bt << 1, we obtain quadratic behavior, namely,

(16)

In this limit, the homogeneous nucleation process domi-
nates over the secondary process, and it is this limit, in fact,
that is seen in Oosawa's formulation of homogeneous
nucleation and linear polymerization (8, 13). On the other
hand, when Bt >> 1, exponential behavior results, namely,

Al-'k Ae . (17)
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In this limit, the secondary process dominates over the
homogeneous process to produce this exponential autoca-
talytic behavior.
The parameters A and B have simple interpretations. A

governs the apparent shape of a progress curve, while B,
which is an effective rate, sets the time scale of polymeriza-
tion. For values ofA that are small compared with c0 - c,
it is possible for the solution to reach large values of Bt and
still retain reasonable accuracy. This is because the solu-
tion itself is limited to the region where Al is small
compared with c0 - cs. Hence, it is for small values of A
that exponential growth can be observed. This is seen in
Fig. 1 a. For small A, the progress curves appear to
increase slowly until some apparent delay time after which
the curves turn upward rapidly. Note that once A is
sufficiently small to give rise to exponential behavior,
changes in A or B will appear to shift the curve along the
time axis without altering its shape above the axis. Thus,
such a curve can be characterized by its "delay time," as
has been done in the study of sickle hemoglobin polymeri-
zation. As A becomes large, our solution is restricted to
small values of Bt and, consequently, only the parabolic
part is observed. As can be seen in Fig. 1 b, this increase in
A is accompanied by a decrease in apparent delay time. In
fact, for these cases, it is difficult to define a delay time at
all. Finally, we note that all the curves of our solution begin
with t2 behavior, so that if exponential progress curves

a

C')
C. 0.
I

0
u.

0.

b o.

U)
o 0.

0

-C.

0.

Bt

FIGURE 1 Fractional extent vs. time for several values of A. Here,
fractional extentf = A/(co - c) and time is measured in units of Bt. (a)
Al(co - cj) = 10-5, 10-6 10'-, from left to right, respectively. For these
small values of A, the apparent delay time, followed by exponential
growth, is most clearly demonstrated. As A decreases, these curves appear
to shift to longer times without altering their shapes above the axis. (b)
A/(co- c) = 1, 0.1, 0.01, 0.001, from left to right, respectively. The
curve for A/(co- c) = 1 is approximately parabolic, and as A decreases,
the shape of the curve begins to develop an apparent "delay time,"
followed by a rapid upward curvature, so that by the value A = 0.001, the
shape is like that of Fig. I a.

were observed with sufficiently high sensitivity near the
origin, a parabola should be observed.
The advantage of using the first-order perturbation

solution to analyze experiments lies in the simplicity of the
expressions in Eqs. 14. Analysis of the kinetics of polymeri-
zation can yield two parameters, A and B, which can be
analyzed in terms of specific models. In particular, since
the nature of Q has been unspecified in this solution, it
would be of interest to collect a set of A and B, and thus
determine the concentration dependence of Q, thereby
selecting among the various possible secondary mecha-
nisms.
We also find an extremely useful result if we consider

the product B2A (=aob0). Substituting from Eqs. 13, we
find that

B2A = k 2(co- c,)Kic+' . (18)

This result is also independent of Q and contains terms due
only to homogeneous nucleation. Hence, it is possible to
obtain important information about the homogeneous
nucleation step, such as the size of the nucleus, indepen-
dent of the exact way the secondary process has been
modeled, and despite the size of the secondary terms.

ACCURACY OF THE EXPANSION

By the nature of the perturbation approach we have
adopted, the first-order solutions are only aproximations
that approach the true solution most closely at the start of
the reaction. In this section we develop quantitative criteria
for assessing the accuracy of the lowest-order solutions.
Our first criterion is that c(l) and Al be appropriately small,
i.e., c(l) << c0 and Al << c0. We also require that our
expansions (e.g., Eq. 9) have small higher order terms,
which leads to the conditions

iA << CO

(-Q) 'Al<<c0.9c Jo

(19a)

(19b)

From Table I, it is clear that, for fragmentation or lateral
growth, the condition, Eq. 19a, is more restrictive than Eq.
1 9b; however, for heterogeneous nucleation, that condition
becomes jA1 << c0, where j is the heterogeneous nucleus
size. A priori, it is not clear whether i or j must be larger,
and hence pose the more restrictive condition. Roughly
speaking, the quantity All/co reflects the accuracy of the
solution, so that, for example, for 1% of the monomers
incorporated into polymers, the solution for A1 is accurate
to the level of 1%.
We can obtain a better estimate of the accuracy of the

solution by solving Eq. 10 to second order, and comparing
the size of that term with the size of the first-order term.
Including second-order terms in Eq. 10, we have

dcp = ao + a,A + a20a2
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d = cp(bo + b1IA),

and we now use

A = A1 + A2
C =4(1) + (2)P p p I

(20b) limit in all cases, i.e.,

Al= 1/2B2A t2, (25)

since for small magnitude of Bt, the higher orders contrib-
(20c) ute little to the cosine.

(20d)

The new coefficients needed for second order are simply

ac, I+ a2ci, _ QM

- i(i + I)K.c'-1 (OQ/Oc)o (21a)
2

b= - k+. (21b)

The solutions cg2) and A2 are the second-order terms in the
expansions of cp and A. The term A2 is of greatest interest
here; it is found to be

ab20)3 [2 a2b2 (cosh aj t - 1)

-
I

(2a2b+ aobobl) aijb t sinh ~a_jiit2 b

+
I a2bO + aobobl) (cosh 2 vab t

- cosh ;afjb t)] (22)

In general, this full expression must be used to ascertain
the size of the second-order term. The new parameters that
appear in the second-order solution, a2 and b, can be
calculated once the analysis of the first-order solution is
complete. This provides a better estimate of the error
incurred in using the first-order solution than the inequali-
ties presented at the beginning of this section. A detailed
example of the use of such measures of accuracy is
presented in the Actin section.
As noted above, the hyperbolic cosine solution given by

Eq. 14b requires that a, be positive. When a, is negative
(i.e., when Qo < [i + I]Kic'), the argument Bt becomes
imaginary. This is equivalent to a cosine solution of real
argument and gives us

Al = A(cos IB It- 1), (23)

where we have used the definitions of Eqs. 15 a, b. The
oscillatory nature of the cosine never appears. When A is
large, the approximations leading to this solution break
down as IBIt becomes large. When A is small (e.g., i
large), we use Eq. 19a and find

1-cosBIt << 1+. (24)

This restricts the solution with B2 < 0 to the small Bit

ACTIN

In the presence of salts, F-actin assembles into double-
stranded helical polymers (18). Actin polymerization has
long been thought to exemplify nucleation-controlled poly-
merization (1, 8). Recently, Wegner and Savko have pro-
posed that under certain solution conditions, the homoge-
neous nucleation process is augmented by fragmentation of
actin polymers (9, 10). Although evidence for fragmenta-
tion does not come solely from the assembly kinetics, the
kinetics do clearly demonstrate the inadequacy of simple
homogeneous nucleation, and the numerical simulations of
Wegner and Savko show that a fragmentation model can
recitify the discrepancies.

In this section, we reexamine the data of Wegner and
Savko using our perturbation method. Our results, though
similar to theirs, are not identical. More importantly,
however, the results obtained for the homogeneous process
do not depend on the secondary process. Previous analysis
has been criticized on the basis that the modeling of
polymerization with fragmentation makes the choice of a
nucleus size less reliable than if fragmentation were absent
(19).
We begin the analysis by examining the data taken

under the conditions most favorable to the secondary
process, namely, polymerization in the presence of 0.6 mM
MgCl and 0.5 mM EGTA. For seven different actin
concentrations between 6.7 and 22.9 ,uM, polymerization
was followed by measuring light scattering as a function of
time. (See Fig. 7 of reference 10.) Because the perturba-
tion solution is an approximation, only the initial portion of
the progress curves can be analyzed in this way. As a guide
to determining how much of the progress curve should be
analyzed, we need to consider the scatter in the experimen-
tal data. Roughly speaking, we can allow the perturbation
solution to be inaccurate by the same amount as the data
scatters. The inaccuracy we tolerate in the solution, in turn,
is reflected in the fraction of the curve analyzed. Because
the scatter of the data is of the order of 15%, we choose to
analyze only the first 15% of the data. Once we have
obtained fits to the data, we then must determine whether
the size of the second-order terms exceeds this figure of
merit.
To account for the fact that the second-order correction

is largest at the highest data points, we ascribed an error to
each point proportional to the magnitude of the point itself
and added that error to the intrinsic digitization error (see
below). This procedure was used to assure that the fit was
weighted more strongly by the points where the first-order
solution has greatest accuracy. Such an approach is justi-
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fled by the fact that, in perturbation theory, the second-
order term, A2, is of order A2, the third-order term, A3, iS of
order A', etc.

Because of our need to focus on the initial portion of the
progress curves, precise background subtraction is impor-
tant. The data from Wegner's study contain a digitization
step, i.e., all concentrations in the recorded progress curves
are multiples of some finite value. Hence, background
subtraction may be in error by plus or minus one such step.
Consequently, we included in our fits a term for a constant
offset; however, we restricted this term to be less than or
equal to one digitization step. In most data sets, the offset
term was fit within the restriction. When the offset was not
included, only small differences in the results were found,
which do not affect the major conclusions below. We also
used this digitization step size as a convenient measure of
error to be added to the error ascribed above.
We fit the solution of Eq. 14b to the first 15% of Wegner

and Savko's data using a standard iterative nonlinear
least-squares fitting routine (20). Two such data sets with
the resulting fits are shown in Fig. 2. As expected from the
success of numerical integrations, Eq. 14b describes the
data quite well. The compilation of all the fitted parame-
ters is given in Table II. We note that A is, in general, quite
small relative to (c0- c,). Thus we find the cosh(Bt)
ranging from t2 to the exponential limit.

In Fig. 3, we plot log[A/(co- c)] and log(B) vs.
log(co). As can be seen, A is much more strongly concen-
tration dependent than B. With a threefold change in
concentration, A increases by almost two decades, while B

0. 20
b /

co= 6. 7 ,M /
0.15 _

S/
O /~~~~~~~~0.05_10

0o

0.05

increases by only about one decade. Moreover, half the
increase in B occurs between the first two points, so that for
most of the data B exhibits little change.
From the values of A and B, we can determine the

constants of the polymerization process. We first examine
B2A, since it contains terms solely due to homogeneous
nucleation. A plot of log{B2A/[c0(c0 - cs)]} vs. log(co)
gives the nucleus size directly, since

log {B2A/[co(co - cs)]} = log (k+2K,) + i log c0. (26)

As can be seen, this has a simple linear behavior in log(c0),
and the slope of that line is the nucleus size i. The intercept
gives the product k+2K,. In Fig. 4, we have constructed
such a plot for the data shown in Fig. 3. The solid line
shows a linear least-squares fit, which gives a nucleus size
i = 2.92 ± 0.11 and log (k+2K1) = - 4.23 + 0.13. The
dashed line shows the best-fit line with a nucleus size of 4,
as used by Wegner and Savko. Although it does not give
the best representation of the data, it does fit a portion of
the data.
Once homogeneous nucleation has been parameterized,

the nature of the secondary process remains to be deter-
mined. It is the concentration dependence of Qo that
permits us to distinguish between the various models. From
the data we can only determine the product k +Qo. This is
equivalent to examining Qo alone since k + is concentration
independent. (This analysis will not separately determine
k+ unless the number of polymers as a function of time is
known.) Only the parameters A and B and the nucleus size

(A)um
Ca

-0

l

N

0.0 0.5 1.0 1.5 0.00 0.05 0.10 0.15

t (104 s) t (10 s)

FIGURE 2 Fractional extent vs. time for actin polymerization in the presence of 0.6 mM mgCl and 0.5 mM EGTA. Fractional extent is
defined asf - A/(co- c), and time is expressed in units of I04 s. Initial actin monomer concentrations are (a) co = 22.9 JAM and (b) co = 6.7
MM. Solid dots are actual data points of Fig. 7 of Wegner and Savko (reference 10). The error bars on these points are obtained by adding the
digitization step size to A', the estimated error in the first-order perturbation solution Al. Digitization step size for (a) was 0.0698 and for (b)
was 0.0595. The solid curves are the theoretical curves calculated using the first-order solution Al (Eq. 14b), which were fit to the data to
determine A and B. (See Table II.) The dashed curve is the sum of this solid curve and the second-order correction to the solution A2 (Eq. 22).
In calculating A2, we use the values ofA and B from the first-order fit and we assume fragmentation (i.e., that Q is constant). The cases shown
here are two extremes; other fits do not differ significantly. Parameters are tabulated in Table II.
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TABLE II
ACTIN ANALYSIS

co(MM) No. of A/(co - c) B(10-4s-') D(digits) %2 (A2/A1) maxpoints

Magnesium (c= 2.0 AM)
6.7 21 0.035 ± 0.018 1.86 ± 0.36 0.37 ± 0.18 8.4 -0.11
8.5 15 0.0041 + 0.0013 4.97 ± 0.40 1.00* 4.1 -0.11

11.5 10 0.0119 ± 0.0040 6.26 ± 0.65 0.71 ± 0.27 8.1 -0.13
14.9 11 B2A/(co- c,) - 3.017 ± 0.070t 1.00* 4.5
17.3 9 0.034 + 0.010 10.3 ± 1.2 0.47 ± 0.30 3.3 -0.11
20.3 7 0.097 ± 0.044 8.5 ± 1.7 -0.51 + 0.33 1.2 -0.094
22.9 6 0.090 + 0.042 11.1 ± 2.3 0.67 + 0.35 1.8 -0.096

Calcium (c, = 2.0,uM)

6.9 27 0.0076 ± 0.0021 2.40 ± 0.19 1.00* 7.6
9.4 15 0.033 + 0.016 2.65 + 0.48 0.73 ± 0.22 15.0
11.7 8 B2A/(c-) = 1.672 ± 0.053t 1.00* 8.5 -
15.1 6 B2A/(co-c) = 3.92 ± 0.13t 1.00* 11.4
17.7 4 B2A/(co - c) = 12.07 ± 0.444: 1.00* 31.1
20.1 3 B2A/(co -cj = 21.7 ± 1.0t 0.98 ± 0.46 28.8
24.1 3 B2A/(co- c) = 6.20 ± 2.8t 0.53 ± 0.47 19.7

Potassium (c- 1.5,uM)

7.4 13 B2A/(co- c) = 0.585 ± 0.025t 0.87 ± 0.22 14.9
9.6 6 0.0260 + 0.0072 7.74 ± 0.77 -0.56 ± 0.29 2.7
12.4 4 B2A/(co-c) = 8.12 ± 0.32: -1.00* 13.5
14.2 6 B2A/(co - c,) = 12.16 ± 0.37t 1.00* 24.5
16.2 4 B2A/(co -c,) = 28.25 ± 0.98t 1.00* 18.7
18.4 4 B2A/(co -c) = 23.3 ± 1.1t -0.03 ± 0.37 1.5
20.5 3 B2A/(co - c) = 66.5 ± 3.14t 0.81 ± 0.45 24.8

The digitization errors for magnesium are the following: 0.0595, 0.0603, 0.0603, 0.0599, 0.0599, 0.0698, 0.0698; for calcium, 0.0647, 0.0647, 0.0647,
0.06388, 0.0638, 0.0653, 0.0759; and for potassium, 0.062, 0.062, 0.062, 0.06298, 0.0611, 0.0759, 0.0611.
*Set to 1.00.
tParabolic approximation.

(11

0
U

0
0

0.8 0.9 1.0 1.1 1.2 1.3

1og (cO)

_ m 0. a8
0

0.4

0.2 _1

_ 0.0 lI I I

1.4 0.8 0.9 1.0 1.1 1.2

1og (cC)

FIGURE 3 Dependence of A and B on initial monomer concentration co for actin polymerization in the presence of magnesium, with co in
micromoles per liter. The values of A and B, listed in Table II, were obtained by fitting the first-order perturbation solution Al (Eq. 14b) to
approximately the first 15% of the data of Fig. 7 of Wegner and Savko (reference 10). Points are plotted, with their respective fitting errors, for
each progress curve for which A and B could be determined independently. The solid curves are the theoretical curves for A and B calculated
by using a power law dependence for Qo obtained from Fig. 5, and the dashed curves are the dependences obtained by assuming that Qo is the
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FIGURE 4 Determination of homogeneous nucleation parameters for
actin polymerization in the presence of magnesium. This log-log plot of
B2A, scaled by co(co - c,), vs. co in AM, yields the homogeneous nucleus
size i and rate parameter k+2K,. Data points correspond to the points for A
and B in Fig. 3 and listed in Table II, and the error bars were determined
by fitting A, (Eq. 14b) to the data using the parameters B2A and B
(instead of A and B). For the four highest data points, the error bars are
smaller than the dots. The solid line is a least-squares fit to the points and
yields a nucleus size i = 2.92 ± 0.11 from the slope and log (k,2K,) =

-4.23 ± 0.13 from the intercept. (See Eq. 26.) The dashed line is a best
fit line with a nucleus size of 4, as used by Wegner and Savko. Note that
this does fit a portion of the data.

i are needed to determine k+Qo, which, from Eqs. 15, is
given by

k+Q0 = [B2 + (i + 1)(B2A/co)]/(co - Cs). (27)

In Fig. 5, we plot log(k+Qo) vs. log(co). Despite consider-
able scatter, Qo does seem to increase with increasing c0.
For pure fragmentation we expect to find a constant
Qo(= kfr). If we fit the data of Fig. 5 with a constant
(equivalent to taking the average weighted by errors), we
get log(k+Q0) = 0.643 ± 0.042, which is close to the value
of 0.574 obtained by Wegner and Savko. Our average is
shown in Fig. 5 as the long dashes; that of Wegner and
Savko is shown by the short dashes.

If we assume that the data are scattered about a straight
line, we obtain a slope of that line of 1.07 + 0.25 and an
intercept of -0.51 ± 0.27. If the secondary process were
lateral growth, we would expect to have a slope of unity; if
the secondary process were heterogeneous nucleation, the
slope would give the nucleus size. Thus, with a slope of
1.07, heterogeneous nucleation is unlikely as a source of
the secondary process but, based on purely kinetic analysis,
lateral growth cannot be excluded. In fact, from kinetic
analysis alone, one would be forced to conclude that the
secondary process is lateral growth. Even if the lowest data
point is excluded from the analysis, the slope remains
significantly different from zero (0.72 ± 0.27). However, it
is clear that the scatter in the kinetic data weakens the
distinction between lateral growth and fragmentation, and

1. 0
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FIGURE 5 Determination of the nature of the secondary process: con-
centration dependence of Q0, scaled with k+, with co in micromoles per
liter. k +Q0 is calculated with values ofA and B from Fig. 3, listed in Table
II, with nucleus size i from Fig. 4, and with the use of Eq. 27. The long
dashes represent the best-fit constant through the data, log(k+Q0) =
0.463 + 0.042, and the short dashes represent the constant used by
Wegner and Savko, log(k+Q0) = 0.547. The solid line is the best-fit line,
with a slope of 1.07 + 0.25 and an intercept of -0.51 + 0.27. Constant Qo
appears when the secondary mechanism is fragmentation, while a slope of
unity is the result of lateral growth. Heterogeneous nucleation can be
ruled out.

points to the necessity of gathering precise data at the
beginning of the progress curves to take full advantage of
the strength of this method.
From the preceding analysis, we can calculate theoreti-

cal curves for A and B. These are shown in Fig. 3. For the
solid curves, we have assumed a nonzero slope (see above),
while for the dashed curves we have assumed strict frag-
mentation and hence constant Qo. We note that when Qo is
constant, B is nearly constant for a considerable range.
This result arises from the dominance of Qo in the expres-
sion for B, indicating that the secondary process dominates.
This is actually readily apparent from the smallness of A.
(See Eq. 15a.) In such a situation, note that B and B2A
then independently describe the secondary process and the
homogeneous nucleation step, respectively.
Once the first-order fitting procedure is complete, we

may compute the second-order term to verify that the
expected accuracy of our solution is satisfied. Contained in
the second-order term is the concentration dependence of
Q. (See Eq. 21a.) For computing the size of the second-
order term, we have assumed that Q arises from fragmen-
tation, and thus has no concentration dependence. In Table
II, we list the maximum ratio of second order to first order.
As expected, all are at approximately the 10% level. In Fig.
2, we have plotted the sum of the first- and second-order
solutions. The second-order correction begins quite small,
and its contribution is only apparent near the point at
which we have chosen to truncate the curve. (In fact, it can
be demonstrated that the second-order term will have
terms of no lower power than t4.) The second-order term
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does not change by much if we use the lateral growth
model instead (i.e., Q proportional to c).
Wegner and Savko also studied actin polymerization in

the presence of calcium and potassium. They found that
some fragmentation was required to fit the data for
calcium, whereas none was required for the potassium
data. We attempted to analyze these data sets by the same
method as we employed for the magnesium data above. For
the calcium data, only two of the seven curves produced a
convergent fit using the cosh function. This mainly results
from the failure of the secondary process, represented by
Q, to compete effectively with homogeneous nucleation.
When the latter dominates, the perturbation solution is
restricted to the small Bt limit, and hence t2 behavior. In
fact, if we fit the data with a power series in even powers
(as the model requires), we find that the t2 term dominates,
and the t4 term is indistinguishable from zero within the
errors of the fit. (Note that in several curves, very few
points were available for analysis.) In short, the initial data
were not sufficiently precise to extract more than the
coefficient of a single power of time.

Data that could not fit to a cosh were fit to a parabola,
and this gave the B2A product directly. (Only B2A contrib-
utes to the t2 term, even if higher order perturbation terms
are included.) The results of the parabolic fits are also
given in Table II. Fig. 6 shows B2A plotted for the calcium
data as a function of concentration. We find this log-log
plot to be linear with a nucleus size i = 4.66 ± 0.11, and
with log(k+2Kj) = -6.00 ± 0.12. For this data, Wegner
used a nucleus size of 4. Such a line is drawn as the dashed
line in Fig. 6. Fig. 7 shows B2A for the potassium data. We
find a good linear fit again, with a nucleus size i = 3.54 ±
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FIGURE 6 Determination of homogeneous nucleation parameters for
actin polymerization in the presence of calcium. This plot is analogous to
Fig. 4, where here the data is from Fig. 6 of Wegner and Savko (reference
10), and the nucleus size is i = 4.66 + 0.11, with log(k+2K,) =- 6.00 +

0.12. The nucleus size for the dashed line is 4, as used by Wegner and
Savko. The error bars were determined as in Fig. 4. They are smaller than
the dots for the middle three data points.
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FIGURE 7 Determination of homogeneous nucleation parameters for
actin polymerization in the presence of potassium. This is analogous to
Figs. 4 and 6, where here the data is from Fig. 5 of Wegner and Savko
(reference 10), and the nucleus size is i = 3.54 + 0.13 and log(k+2Ki) =
4.14 + 0.15. The nucleus size for the dashed line is 3, as used by Wegner
and Savko. Error bars were determined as in Figs. 4 and 6. As in Fig. 6,
they are smaller than the dots for the middle three data points.

0.13, and with log(k+2Ki) = -4.14 ± 0.15. Wegner
employed a nucleus of 3, drawn as the dashed line.

In addition to illustrating the use of the perturbation
procedure, this analysis makes several points. (a) Wegner's
numerical approach and this analytic method agree best
when the secondary process is weakest. This supports the
contention of Tobacman and Korn (19) that such a process
of numerical integration with several variables makes
nucleus determination difficult. (b) Lateral growth for-
mally describes the data better than fragmentation.
(Equivalently, there is a concentration dependence to the
fragmentation term.) (c) The nucleus size varies with the
nature of the salt. This last conclusion was anticipated by
Wegner and Savko. We have extended that analysis allow
for noninteger nuclei.

COLLAGEN

The assembly of collagen fibers involves a number of steps
by which parallel arrays of microfibrils are thought to be
assembled, each of which is itself a fivefold helix of
collagen molecules (21). At present, there is no consensus
in the literature as to whether assembly of collagen fibers
involves a nucleation step, and it is not our purpose here to
answer that question (11, 12, 22-25). We wish to show the
behavior of a system with known lateral aggregation, when
analyzed by our perturbation method. For simple nuclea-
tion and growth Oosawa (1, 8) has shown that the nucleus
size can be obtained from the slope of a plot of log of
characteristic time vs. log concentration. In this section, we
show that in the presence of augmented nucleation such a
procedure can dramatically fail to find the nucleus size.
We wish to consider the implications of a secondary
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process that is much more favorable than continued
nucleation. In this case, Qo >> k+(i + I)Kico, and so we
find

A k-Kc. (28a)
QO

and

B - vk+ - CS)Qo. (28b)

For lateral growth, Qo = k+'co. If we consider c0 >> cs,
which appears to be true for collagen, we find that B is
simply proportional to c0, and A is proportional to cl,.

Polymerization reactions are often characterized by the
time required to reach a specific fractional extent. If we
consider the exponential growth limit, we find that the time
at which a given fractional extent F is reached is given by

tF
1 2F(co- c,) (29)

tF=B A

The time to reach a given extent depends most strongly on
B, since A appears in a logarithm. Thus the concentration
dependence of tF will primarily reflect the concentration
dependence of B, and only weakly reflect the concentration
dependence of A. For the case of lateral growth considered
above

a log tF 1 (30)
a log c0

For homogeneous nucleation and growth without a secon-
dary pathway, the concentration dependence of tF is
related to the nucleus size. As Oosawa (1, 8) has shown, for
such a case,

a log tF _ (i + 1)
OlogcO 2 (31)

Consequently, the analysis of nucleation augmented by
lateral growth by using methods designed to analyze
homogeneous nucleation alone would imply that the
nucleus size was unity (i.e., no nucleation). Hence, the
slope of a plot of log(tF) vs. log (c0) will yield the
homogeneous nucleus size only in the absence of a secon-
dary process. Conversely, a laterally growing polymeriza-
tion process could seem devoid of nucleation in an Oosawa-
type analysis even though a nucleation step may well be
present. As we have described above, the homogeneous
nucleus size may always be determined correctly by analy-
sis of the concentration dependence of B2A, regardless of
the presence or absence of a secondary pathway.

FURTHER APPLICATIONS

Degree of Polymerization
Once Al and c(1) are known, we can develop a simple
expression for the average degree of polymerization, ( n ).

From Eqs. 14, we find

- A bo(coshBt - 1)
CP B sinh Bt (32)

For small Bt, we have (n) = bot/2. This physically
describes the fact that at the initial time, the average
polymer length increases linearly. At large Bt, we have the
surprising result that (n) becomes constant, i.e., we get
(n ) = bo/B. This, of course, only applies during the
exponential growth phase. This result says that new poly-
mer formation is matched by polymer growth. The fact
that these match exactly is built in by our assumption that
the secondary process is proportional to the concentration
of incorporated monomers.

Polymer Parentage
We can also ask how many polymers form by each
pathway. We denote the concentration of polymers formed
by homogeneous nucleation as cp, while polymers formed
by the secondary process will be labeled cp'. We need to
separate the terms in Eqs. 8 and 12. For convenience, we
define the coefficient of Al in the homogeneous nucleation
term as

a' -k+(i + 1)Kico, (33)

so that a, = a' + k+Q0. We then have (to first order) the
decoupled differential equations for polymer formation via
each pathway, namely

dc'dp = a0 + afAa (34a)dt

dc"i
= k+Q0A1. (34b)dt +

These have the solutions

c = ad(A/B) sinh Bt + k+QoAt (35a)

C'P = k+Q0(A/B) sinh Bt - k+QoAt. (35b)

These equations behave quite differently because a' must
be negative, whereas Qo is positive. Thus, the concentration
of homogeneously formed polymers c'p will rise and satu-
rate, while c', the secondarily formed polymers, will grow
exponentially. Again, these results are restricted to the
initial phase of the reaction. Thus the secondary process
will come to dominate the formation of polymers. We can
express the fraction of polymers formed by the secondary
pathway as

cpf k+ Qo ( Bt
c, a, sinh Bt, ~ (6

The function in brackets is shown in Fig. 8. As can be seen,
at roughly 5 Bt this saturating function has reached 90%.
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p ao + a1A1.
dt

(38b)

We used a* to show the similarity between these equations
and Eqs. 12. The relationship between a* and aO is just

ao = ao + QoA*. (39)

The solution to Eqs. 38 is somewhat more complicated
than that found for Eqs. 12; however, there are a number of
useful simplifications that emerge. The full first-order
solution is

FIGURE 8 Time dependence of the fraction of polymers formed by the
secondary pathway. [1 -Bt/sinh(Bt)] vs. Bt, as given in Eq. 36, shows
how the secondary process comes to dominate polymer formation. At
roughly 5Bt, this saturating function has reached 90%.

Cycling Experiments

This perturbation method is also well suited to analyze
cycling or depolymerization-repolymerization experimen-
ts. In such experiments, conditions on a polymerized
sample are changed to induce depolymerization. Some
time later, usually after the disappearance of detectable
polymer signal, conditions are restored so as to favor
polymerization. The repolymerization is often accompa-

nied by a decreased delay time (26). In this section, we

shall analyze such experiments by making the simple
assumption that not all polymer has disappeared when
repolymerization is initiated, so that we do not begin with
zero incorporated monomers or zero polymer concentra-
tion. We shall designate the residual concentration of
incorporated monomers presented as A'*, and the concen-

tration of residual polymer as cp .

We can again write a perturbation expansion. However,
we must note that now A is the additional amount of
polymerized monomer; the total amount of polymerized
monomer is A/* + A. Likewise, cp represents the additional
concentration of polymer. The rate of monomer incorpora-
tion is then

dA
= (k+C - k_)(c + c*

dt
p p)

(37a)

and the rate of polymer formation is

dc= k,Kic' + Q(A + A*). (37b)
dt

These are in the same form as Eqs. 2 and 8, respectively.
We can expand these, as in Eqs. 10. In addition to the
conditions imposed there, cp and A* must also be small
relative to co for the expansions to converge. We then
obtain the first-order equations, analogous to Eqs. 12.
These are given by

dt, = b0 p + boc(') (38a)

Al = (A + A*)(eXo0cosh XI t- 1)

+ ° (2(c0 - c) - A* -A)eo' sinh X t,
XI

(40a)

where

A0 = k+cp/2 (40b)

and

XI] VX2 + B2. (40c)

If the initial concentration of polymers cp is so small that
Xo << X,, then Eq. 39a has a particularly simple form,
namely,

Al = (A + A*)(cosh Bt- 1). (41)

This shows that repolymerization has the same form as the
initial polymerization, and in fact, will have the same rate
B. However, because (A + A*) is larger than A, a signal
will be observed at an earlier time than found at first, so

that the apparent delay time will have shortened. (See Fig.
1.) For exponential growth curves, the repolymerization
curve will have the same exponential shape, but will be
translated along the time axis, and the shortening of the
delay time will be roughly given by

1 A
Atd *-In- (42)

CONCLUSIONS

We have presented a perturbation method for the analysis
of nucleation-controlled polymerization that is augmented
by a secondary pathway for polymer growth. Previous
methods for analyzing such models have required numer-

ical integration of the kinetic equations, so that finding
parameters that give agreement between theory and exper-

iment has been a difficult process. With the perturbation
method presented here, the solution to the kinetic equa-

tions assumes a simple analytic closed form that can easily
be used in fitting data. So long as the formation of
polymers by the secondary pathway depends linearly on

the concentration of monomers polymerized, the kinetic
equations assume the same simple form. This permits the

BIOPHYSICAL JOURNAL VOLUME 46 1984

m

(I)en
4m)m

3

Bt

642



analysis of augmented growth models with a minimum
number of modeling assumptions, and thus makes it read-
ily possible to distinguish between a variety of secondary
processes (heterogeneous nucleation, lateral growth, and
fragmentation). In addition, the parameters of the homo-
geneous process, such as the homogeneous nucleus size,
can be determined independent of the nature of the
secondary mechanism.
The method presented here is limited to the initial phase

of the polymerization reaction, and we have shown how the
errors incurred depend upon the fractional extent of the
reaction that is analyzed. We have shown how this method
applies to analysis of actin, collagen, and sickle hemoglo-
bin. In analyzing published actin data, we find that further
work is necessary to distinguish between fragmentation
and lateral growth on the basis of kinetic data alone.

Because this method is accurate only in the initial phase
of polymerization, it is crucial to obtain ample data of high
quality at the beginning of the reaction. Techniques such
as light scattering or fluorescence are well suited to this
task because of their wide dynamic range, in contrast to,
say, turbidometric assays, which are more restricted. Data
analysis by this method will be greatly assisted by gain
setting strategies or logarithmic data collection to obtain as
much data as possible in the initial phase.

APPENDIX

Solution Nonideality
Sickle cell hemoglobin is a mutant hemoglobin that can assemble into
multistranded polymers (14 or 16 strands) (27, 28), which in turn can
form larger arrays of aligned polymers. Heterogeneous nucleation has
been proposed as a mechanism to augment the formation of sickle cell
hemoglobin polymers by allowing the surface of one polymer to act as a
nucleation site for additional polymers (14). Under physiological condi-
tions, the solubility of sickle cell hemoglobin is sufficiently high that
polymerization is only seen in highly concentrated solutions. Under such
conditions, we can no longer consider the solution ideal in the thermody-
namic sense, and we must include activity coefficients in the thermody-
namic and kinetic formulation. The nonideality is that of so-called
excluded volume (29), and arises to account for the fact that the
proximity of the molecules is underestimated by use of concentration
along. Here we shall show how nonideality alters the kinetic equations.
The procedure for modifying the differential equations for polymeriza-

tion is to multiply the ideal rate constant by activity coefficients for the
reactants, and divide by the activity coefficient for the activated complex.
This changes Eq. 2 into the form

dA
= (k+yc - k_)cp, (A l)

where y is the activity coefficient for monomers, and is itself a function of
concentration. Now k_ is given by kgyc4, where %y is the activity
coefficient measured at the solubility c,. Polymer activity coefficients do
not appear because we assume that the polymer and the activated
complex have the same coefficient, and hence these cancel. For the
homogeneous pathway, Eq. 4 becomes

dp = k+ i c1, (A2)

where the nucleus and the activated complex (of nucleus plus one
monomer) have activity coefficients of 'yi and -yt, respectively. Rather
than attempt to cancel the latter, we make use of the fact that 'y1ic is the
activity of the nucleus, which we shall denote as zi. This quantity can be
computed by various thermodynamic treatments, e.g.,

zi = KQ(,yc)'. (A3)

As we show elsewhere, this is not entirely analogous for the heterogeneous
pathway; there it is useful to cancel the terms for aggregate activity. The
resulting equation for polymer formation is thus

dp= k+ 7 t + kk+ycc(co- c). (A4)dt 'Y;
Now we proceed as in the First-Order Solution section except that here 'y
and -y must be expanded, in addition to the concentrations of all species in
solution. Likewise, we will expand z;. This gives rise to exactly the same
form of equations as Eqs. 12, with the coefficients now given by

a k+Yocozi,o (A5)

a, = k+,yoco0 cj, - (9--- +zi,o I+1 a oy l (A6)

bo = k+('yoco - YCc). (A7)

The solutions are then given by Eqs. 14, as before.
Sickle cell hemoglobin can also polymerize in high-phosphate buffers,

in which the solubility is sufficiently lowered that nonideality is not a
problem (26). For such a case, assuming that the high phosphate does not
alter the intermolecular interactions, heterogeneous nucleation is modeled
in a straightforward way, without the complications detailed here. A
complete analysis of the behavior of sickle hemoglobin polymerization is
the subject of a separate paper (Ferrone, F. A., J. Hofrichter, and W. A.
Eaton, manuscript in preparation).
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