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ABSTRACT Ligand association to a reactive site on a macromolecular surface could be very slow if the site is small. The
effective capture radius of the reactive site can be significantly increased if the ligand can bind weakly to the nonspecific
surface around the site and then slide in a two-dimensional diffusion along the surface. In this model, the diffusion along
the surface has to be properly coupled with the free diffusion in solution and the effective bimolecular association rate
constant to the reactive site can be calculated as a function of the nonspecific affinity. This is carried out both for a plane
and spherical surface, modeling the association to a membrane receptor or to the catalytic site on an enzyme. The result
of these calculations can be used to assign reasonable values to the parameters in the quasichemical approximation of K.
Solc and W. H. Stockmayer (1973, Int. J. Chem. Kinet., 5:733-752). In this way a simple analytical expression can be
derived for the diffusion-limited association rate constant of two asymmetrically reactive molecules, with or without

surface diffusion contributing.

INTRODUCTION

Many biological processes involve the binding of ligands to
specific sties on large macromolecules or macromolecular
complexes. Typical examples are the following: substrate
binding to the catalytic site of an enzyme, regulatory
protein binding to DNA, hormone binding to membrane
receptors, etc. In general, ligands will find their target sites
by diffusion. If binding is dependent on a very precise
alignment of the reacting molecules, the target would be
very small and the association process correspondingly
slow. However, for many enzymes where the catalytic
region constitutes only a small fraction of the surface,
substrate association still can take place at very high rates
(e.g., Fehrst, 1977) as though a much larger fraction of the
enzyme were the target.

There are several different ways that a diffusion-limited
association could be speeded up. First it should be stressed,
however, that alignment or orientation constraints are not
quite as severe as might first be thought: although they can
drastically reduce association rates, this reduction is not
equal to the required fraction of angular orientation space.
Rather, the diffusion equation allows the molecules to try
many orientations in repeated encounters before diffusion
carries the reactants apart. To describe this properly one
must consider the diffusion in a full coordinate space,
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which includes the orientational coordinates (Solc and
Stockmayer, 1971, 1973; Schmitz and Schurr, 1972;
Schurr and Schmitz, 1976; Hill, 1975; Shoup et al,
1981).

One way of further reducing the influence of the orienta-
tion constraints would then be to introduce nonspecific
forces that could hold the reactants together for a longer
time while they are allowed to seek out their correct
orientations. Thus, Chou and Jiang (1974) described the
diffusion onto a small surface patch on a spherical mole-
cule with an attractive potential all around it. A similar
model has been presented by Zhou (1979), who takes into
account the attractive interaction and the influence from
the heterogeneous surface reactivity only in a thin spheri-
cal shell around the target molecule. In this way, the
interaction required to hold the reactants together long
enough for them to find the reactive site can be estimated.
Both of these models indicate that the short range van der
Waals’ force could provide sufficient interaction to over-
come the orientational constraint of the target molecule.
For a recent discussion of these and some other models for
heterogeneous surface reactivity see also Chou and Zhou
(1982).

Bloomfield and Prager (1979) proposed a similar mech-
anism to explain the accelerated association of tail fibers
on bacteriophage T4 in the presence of whiskers. These
whiskers were proposed to hold the tail fiber while it was
searching for its correct orientation for attachment.
Bloomfield and Prager (1979) calculated the effective
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reorientation rate as a function of the orientational con-
straint and found that the overall association rate could be
increased several orders of magnitude if the whisker could
hold the tail fiber for a sufficiently long period.

An analogous situation exists for the association of
regulatory proteins to DNA, where it was found (Riggs et
al., 1970) that the association of the Escherichia coli lac
repressor to its operator site is much faster than given by
the diffusion onto a small site. Richter and Eigen (1974)
explained this by proposing that the repressor could slide in
a one-dimensional diffusion along the nonspecific DNA
flanking the operator site. In this way the effective target
size would be extended and the spatial constraints relaxed.
Further theoretical analysis (Berg et al., 1981) and experi-
mental investigation (Barkley, 1981; Winter et al., 1981)
have confirmed that nonspecific sliding is indeed a rate-
enhancing mechanism for the /ac repressor. Winter et al.
(1981) have also suggested a plausible molecular model for
this sliding motion.

Here we shall focus on the corresponding sliding model
in two dimensions, describing surface diffusion onto a
reactive patch on a spherical molecule (e.g., an enzyme) or
on a plane surface (e.g., a membrane). In contrast to the
model of Chou and Jiang (1974), which introduces a
potential well outside the surface where diffusion is as fast
as in solution, we shall assume that surface binding is a
discrete nonspecific binding step. This assumption takes
the short-range interactions into account and makes it
possible to include in the model both target rotations and a
reduced mobility for ligands associated with the surface.
During the nonspecific binding event, the ligands are free
to move in a two-dimensional surface diffusion, until they
either reach the binding site or dissociate again. In the
latter case the process starts over, but the dissociated
ligand then starts with very strong spatial correlations to
the reactive site. In the calculations below, these spatial
correlations are accounted for by an explicit coupling
between the surface diffusion and the free diffusion. This
leads to marked differences from the model by Bloomfield
and Prager (1979), who treat the surface diffusion (or
reorientation) as a totally independent step.

Thus, in the following we calculate the effective associa-
tion rate constant to a surface patch on a spherical or plane
surface as a function of the (nonspecific) surface affinity
and for various sizes of the surface patch. For the lac
repressor, this affinity dependence provided a very good
handle for the experimental verification of the one-dimen-
sional sliding mechanism; since the nonspecific DNA
binding of the lac repressor is largely electrostatic, it could
be varied over a wide range through variations in salt
concentration. It is to be expected that nonspecific binding
to biological membranes would also be largely electrostatic
and amenable to experimental manipulation in the same
way.

Furthermore, we show that the inverse of the effective
association rate constant is essentially a linear function of
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bulk viscosity whether a surface diffusion mechanism
operates or not. This contradicts a recent suggestion by
Hasinoff (1982) that the unusual viscosity dependence of
the kinetics of acetylcholinesterase indicates the presence
of surface diffusion.

Finally, we discuss the association between two mole-
cules with localized reactive patches on them. Solc and
Stockmayer (1973) proposed a quasichemical approxima-
tion to describe this situation. The present results can be
used to assign geometric expressions to the parameters of
their model. Thus, we arrive at a simple analytical expres-
sion for the diffusion limited association rate constant
between two asymmetrically reactive spheres. When sur-
face diffusion, or reorientation within a nonreactive com-
plex, contributes, the result is strongly dependent on the
strength of the nonspecific binding. Sommer et al. (1982)
investigated the reaction between small surface sites on
proteins and found that the speed of the reaction required
extensive reorientation during nonreactive encounters.
Their results are discussed further in light of the present
model.

It can be expected that surface diffusion is a very general
feature in macromolecular association (and dissociation)
reactions. On a small scale, it is simply the ability for
reacting molecules to be held in an encounter complex
while rearrangements in orientation or alignment of react-
ing groups take place. On a larger scale, it can produce the
dramatic rate increases found for the /ac repressor in vitro,
where the effective target size is increased several orders of
magnitude as surface sliding extends over long distances.

FORMULATION OF THE MODEL

The model describes the association of a ligand to a
reactive patch on a spherical molecule (see Fig. 1). This
reactive patch could be the catalytic site on an enzyme or
some other type of ligand-binding site on a spherical
macromolecule. In the limit when the spherical molecule
becomes infinitely large, it will approach a plane surface.
In this limit one can think of the reactive patch as a binding
site on a membrane.

A ligand that binds to the reactive patch will be drawn
out of solution. Ligands can also bind reversibly to other
parts of the spherical surface and diffuse along the surface
until they find the reactive patch or dissociate again. In this
way, surface diffusion will effectively extend the size of the
target, since ligands landing sufficiently close to the reac-
tive patch on the surface will be able to slide onto it before
dissociation.

We shall derive the effective association rate constant
from a standard steady state analysis and follow rather
closely the treatment of the corresponding one-dimensional
problem (Berg and Ehrenberg, 1982). The major feature is
the proper coupling between the two-dimensional diffusion
along the surface and the three-dimensional diffusion in
solution. This is achieved with a boundary-condition rela-
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FIGURE 1 The two geometries described in the text are shown: (a)
reactive surface patch on a spherical molecule; (b) circular reactive patch
on an infinite plane.

tion (Eq. 3) that incorporates the required correlations; i.e.,
the correlations that a dissociating ligand remembers
which part of the surface it just left. As we shall see in the
following, this coupling is even more crucial for the two-
dimensional sliding than for the one-dimensional one
where it was introduced (Berg and Blomberg, 1976).

At steady state, c(r,6) is the concentration of free
ligands in solution at distance r from the center of the
target molecule and at angle # away from the center of the
reactive patch (see Fig. 1). Similarly, u(6) is the density
(per unit area) of ligands nonspecifically bound at the
surface of the target molecule. These distributions satisfy
the stationary diffusion equation in solution

D, oc D\ 1 9 ac

Z—[rP=)+ [Dr + S| — =[sin0 =|=0;

r’&r(’ 6r) M ( R+ rz)sinl)aa(sm 80) %:r>R (1)
and for surface diffusion outside the reactive patch

% :—0 (sin 9 3—:) + ¢(6) =0;60 > 4,. (2)
Here, D is the relative translational diffusion constant; i.e.,
D is the sum of the diffusion constants for a free ligand and
for the target sphere. Dy, is the rotational diffusion constant
of the target sphere and D; is the diffusion rate along the
surface for ligands that are nonspecifically bound. Since D,
is a relative diffusion constant, it is determined both by the
translational diffusion of the ligands along the surface and
the rotational diffusion of the target sphere.
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These diffusion equations are coupled at the boundary
by the requirement that the net flux, ¢(6), of ligands onto
the surface equals the difference between on and off
fluxes

= kc(R, 6) — Au(9). 3)

r=R

dc
#(0) = DE

x is a local reactivity per unit area for nonspecific associa-
tion to the surface, and A is the corresponding local
dissociation rate constant. At equilibrium their ratio
defines the nonspecific binding constant per unit area.
Thus, the nonspecific binding constant per target sphere
would be

K = 4xR*/\ 4

if the whole surface is nonspecifically binding.

The steady state flux is calculated by requiring that the
concentration is constant at large distances from the
target

C(I‘, 0) :’co. (5)

Ligands will be drawn out of solution when they reach the
reactive patch either directly from solution or via surface
diffusion from neighboring parts of the surface. Total
absorption is achieved by requiring

u(@) = 0;60 <9, (6)
Then the absorption flux via surface diffusion is from Eq.
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and the flux directly out of solution is from Eqs. 3 and 6

0, . [ .
g0 = 2nR? [ “sin06(6) 40 — 2R’ [ “sin0 (R, 0) db. (8)

In this way, it is assumed that the direct association onto
the reactive patch is governed by the same local reactivity,
k, as the nonspecific association elsewhere on the surface.
Thus, « represents an activation barrier for the final step of
bringing the molecular surfaces together. In a more gen-
eral picture, this activation barrier could vary strongly over
the surface, in particular between the nonspecific surface
and the reactive patch. However, here we focus explicitly
on the diffusion-controlled limit, immediate reaction upon
contact, so that x — < both for the specific and nonspecific
association and any difference between them becomes
immaterial.

The distinction of the reactive patch in the model is only
given by the absence of dissociation via Eq. 6.

The effective association rate constant, k,, is defined by

kic, = o = ¢ + ¢ )



This completes the mathematical formulation of the spher-
ical problem. An approximate solution is derived in Appen-
dix A. The approximations are based on the same assump-
tions that Shoup et al. (1981) showed to be reasonable for
the case without surface sliding: (a) the direct association
flux onto the reactive patch out of solution is homogeneous
over the patch; (b) the absorbing boundary condition, Eq.
6, is assumed to be valid on the average over the patch.
Note that these approximations will become even better
when surface sliding contributes. This is because the
sliding effectively extends the influence of the reactive
patch, thereby reducing concentration inhomogeneities at
its borders. In the limit when surface sliding over the entire
sphere is dominant, the approximations in fact become
exact. In Appendix B we formulate and solve the problem
in the same way when the reactive site is embedded in a
plane surface with surface sliding.

In the following sections we shall first look at the results
in some special limits before going into the details of the
general solution. Although the mathematics of the model
calculations can be carried out fairly exactly, the physical
picture is not so clear cut since the parameters and
geometry of the interactions will not be known with any
precision. Therefore, the emphasis will be on the dominant
behavior of the association rate constant when the various
physical parameters are changed. The approximations that
are given to show this behavior more clearly are not strictly
mathematical ones but were found numerically to agree
well with the general expressions. For simplicity and to
avoid inserting Avagadro’s number in the equations, all
association rate constants are assumed to be given in units
cm® s~', and all binding constants in units cm® (except
where otherwise stated).

LIMITING RESULTS

All results are expressed in terms of the dimensionless
parameters a, 3, and y defined by Eq. A6d in Appendix A.
Their physical meaning can be explained as follows: y =
DgR? /D describes the influence of the rotational motions
of the target sphere. Since the reaction radius R is the sum
of the radius r, of the target molecule and the radius rg of
the ligand, and Dy/D = (3/4r})/(1/rs + 1/rg) from the
Stokes-Einstein relations (assuming stick boundary condi-
tions) so that

3
‘Y=Z(’B/’A)(l + ra/ra) (10)

is a geometric factor. The model we are using is best
applicable for small ligands and a large target molecule
(ra > rg), and then v will be small.

B = D/«kR describes the departure from diffusion
control for the nonspecific binding due to a reaction step.
If, as is most common in the literature of partially diffu-
sion-controlled association, the surface reactivity

k =4xR% (cm’™!) (11)

per target sphere is used, then
B = 4xRD/k. (12)
The third parameter, finally, is
a = Dx/D\R = (D,/R*)(K/4xRD), (13)

which describes the influence from the surface sliding.
Here the nonspecific binding constant K for the target
sphere has been introduced from Eq. 4. Since

47RD
1 + 4xRD/k

ka (cm’s™') (14)
is the partially diffusion-controlled association rate con-
stant to the whole target sphere,

47RD/K

k -
°" 1 + 4xRD/k

™) (15)

is the macroscopic dissociation rate constant for nonspe-
cific binding to the sphere. While the microscopic (or local)
dissociation with rate A only releases the ligand into
solution very close to the surface, the macroscopic dissocia-
tion with rate kp also includes diffusional separation (cf.
Berg, 1978). Thus, the parameter combination

a(l + B) = D,/R%sp (16)

is the ratio of the rate of surface diffusion (D,/R?) to the
macroscopic rate of nonspecific dissociation. As it turns
out, it is this parameter combination that is most useful to
gauge the influence of the surface diffusion.

Some interesting limits can be checked explicitly (@) In
the limit when there is no surface sliding, D, = 0, a = 0, and
from Eq. A15)

4xDR 28 1
-1+

k, 1—x, (1-x)
- [Pn-l(xo) - Pn+l(xo)]2Kn+l/2(‘Yn)
n=1 (2’1 + l)[nKn+I/2(7n) - 7nKn+3/2(7n)] ’

a7

where x, = cos 0,, v, = n(n + 1)y, P, is a Legendre
polynomial, and X, ,, is a modified Bessel function. Note
that without noticeable loss of accuracy, the Bessel func-
tions can be replaced by using the approximate relation
given in Eq. A8b. In the diffusion-controlled limit (8 = 0),
the numerical evaluation of Eq. 17 can be approximated
(with an error of ~10% or less) as

[(1 + v)/2]'* + sin (8,/2) cos (6,/2)
[(1 +7)/2]'" + cot (8,/2)

k, ~ 4xDR (18a)

or when v « 1 (with less than a factor 1.6 error for 6, — 0
and much better elsewhere)
k, ~ 4wDR sin (6,/2). (18b)
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That is, even without surface sliding the steric constraint
enters only as the square root of the fraction, sin*(,/2), of
surface that is reactive. If all collisions were uncorrelated,
the result would have been k, = 4wxDR sin*(9,/2). The
faster association given by Eqs. 17-18 is due to the
repeated encounters allowed by the diffusion equation.
Once the ligand has reached the target molecule, it will
bounce around many times trying out different orienta-
tions before diffusion again carries the ligand far enough
away so that it loses its correlations. Another way of
looking at Eq. 18b is, of course, to consider Rsin (6,/2) asa
representation of the size of the effective target, i.e.,
roughly the size of the reactive patch as expected on
geometric grounds. Eq. 17 agrees with the result given by
Shoup et al. (1981), and these authors have discussed in
detail its properties when the different parameters are
varied. In what follows we shall focus on the influence of
the surface sliding.

(b) When nonspecific dissociation is zero, A = 0, & — o,
and every ligand molecule reaching the surface outside the
reactive patch will eventually slide onto it. From Eqs. A14
and Eqgs. C1-C2 we can calculate the fraction, y, of ligand
molecules reaching the reactive patch via surface sliding

'ps = (1 + xo)/z = 0052 (00/2)’

which is simply the fraction of the surface not covered by
the reactive patch. Furthermore, we get from Eq. A15 in
the limit ¢ —

47DR

*" 1+ 4xDR/K (19

which is equal to the effective association rate constant to
the whole sphere, k, from Eq. 14, as it should be when
sliding effectively extends the reactive region over the
whole surface.

TWO-STEP APPROXIMATION

To better understand the details of the general expression
for the association rate constant, it is instructive to consider
first some approximate schemes. This will help tie together
how the various physical processes contribute to the overall
rate and also provide hints as to how more complicated
situations can be described.

The general results, Eqs. A14-A15, can be summed
explicity in the limit when surface diffusion is dominant.
Thus when « is sufficiently large such that an(n + 1) » C,
(where C, is given by Eq. A8) for all n, one finds from Egq.

Al4y, ~ (1 + x,)/2, and from Eq. A15
1+ Xo 1 & Pn(xo)[Pn—l(xo) — Pn+l(xo)]

4x DR
~1+8+ —Z n(n + 1)

k, 1 — x, 20 75
1 L = [Pn—l(xo) — Pn-{»l(-xo)]2
1 —x,2a407 n(n+1)2n+1)

The sums are given in Appendix C, Eqs. C3—C4, and the
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result can be expressed as

ka
~ 1= (koR?/D,) lcos? (8,/2) + In [sin® (6,/2)]}’

k, (20)
where the nonspecific association and dissociation rate
constants, k, and kp, from Eqgs. 14 and 15 have been
introduced.

This result can be compared with what one gets in a
two-step approximation (Bloomfield and Prager, 1979)

K,
L+T—(L+T)
ko @1

k, ks

LT

where the ligand molecules either hit the reactive patch
directly (rate constant k,) with probability sin® (6,/2), or
bind nonspecifically (rate constant k,) with probability
cos’ (6,/2). Once nonspecifically bound, they can either be
transferred to the reactive patch with rate constant k;, or
dissociate with rate constant k_,. Then, the rate constants
in the scheme (Eq. 21) can be identified as: k, = k, sin’
(6,/2), ks = ku cos® (6,/2), and k_, = kp. This two-step
scheme, Eq. 21, is also equivalent to the quasichemical
approximation of Solc and Stockmayer (1973).

At steady state one finds the effective association rate
constant to the reactive patch

~ kalks/kp + sin’ (6,/2)]
B ky/kp + 1

k, (22)
If the reactive patch is small, sin® (6,/2) can be neglected,

and comparing Eq. 22 with Eq. 20 we can identify the
effective transfer rate via surface sliding

D, cos? (6,/2)
" R%cos? (6,/2) + In[sin® (6,/2)]

ks = (23)

This is exactly the result calculated by Bloomfield and
Prager (1979) as the inverse of the mean time of reaching
the reactive patch via surface diffusion. Thus, the two-step
scheme used by these authors is equivalent to the approxi-
mate summation, Eq. 20, which is valid when surface
diffusion is dominant.

There are two major approximations inherent in the
two-step approach outlined above. First, it describes all
nonspecific dissociations with the macroscopic rate con-
stant k; that assumes that the ligand loses all spatial
correlations with the target molecule in each dissociation.
However, as is true particularly in the diffusion-controlled
limit, every macroscopic dissociation is preceded by a large
number of microscopic dissociations that leave the ligand
free in solution for only a very short time before it
reassociates (cf. Berg, 1978). During this short time, the
diffusional motions can change the #-coordinate such that
the ligand reassociates closer to (or farther from) the
reactive patch, in effect increasing the rate of target

5



location. Thus, these microscopic dissociations are equiva-
lent to the diffusion effects that, in the absence of surface
sliding, produce an effective association rate constant, Eq.
18, which is larger than k, sin’ (6,/2), i.e., larger than the
rate of locating the sphere times the fraction of surface that
is reactive (cf., e.g., Solc and Stockmayer, 1973; Shoup et
al., 1981).

Second, the effective transfer rate as given by Eq. 23 is
independent of the nonspecific dissociation rate. In fact,
the inverse of Eq. 23 is the mean time for a ligand starting
somewhere on the surface to slide onto the reactive patch
without any dissociation. Thus, this mean time will be
dominated by those ligands that start on the surface
relatively far away from the reactive patch. When nonspe-
cific dissociation is fast, however, only ligands that are very
close to the patch will have time to slide onto it before
dissociation, and only those ligands should contribute to
the effective transfer rate. In this way a fast nonspecific
dissociation will trap the faster modes of the surface
diffusion. Thus, the effective transfer rate will increase
with increasing dissociation rate constant, although the
overall association rate decreases, since there are fewer
ligands that can transfer at any one time.

This is a very important aspect in the case of one-
dimensional sliding, where the effective transfer rate is
strongly dependent on the nonspecific dissociation rate
constant (Berg et al, 1981). As it turns out, for the
two-dimensional sliding discussed here, the dependence of
the effective transfer rate on the nonspecific dissociation
rate constant is much less crucial. The major part of the
discrepancy (see Fig. 2) from the full result is caused by
the neglect of diffusion coupling (the microscopic dissocia-
tions) in the independent two-step approximation, Egs.
22-23. There is, however, a simple way to include these
diffusion effects in the two-step scheme. The diffusion-
limited result without surface sliding, Eq. 18a, can be
generated from Eq. 22 if we set

ky/ko = [(1 + 7)/2]'""* tan (6,/2). (24)

Taken together with Eq. 23, a much better approximation
to the diffusion-limited result including surface diffusion,
Eq. A15, is afforded by using

ks/kp = [(1 + ¥)/2]"/* tan (6,/2)
— (D,/R%*kp)/{1 + In [sin? (8,/2)]/cos® (6,/2)}, (25)

giving an error in k, of less than ~20%. Without this
improvement, the two-step approximation is not good in
the limit when surface sliding contributes little to the
effective association rate. Eq. 25 can also serve as a useful
approximation for more complicated situations, e.g., in the
quasichemical model of Solc and Stockmayer (1973)
describing the association reaction between two asymmet-
rically reactive molecules. This is explored further in the
following sections.
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FIGURE 2 Influence of surface diffusion on the effective association rate
constant calculated for various values of 0, and with 8 = vy = 0 as
explained in the text. Solid curves are from the full result of Eq. AlS;
dashed curves are from the two-step approximation, Egs. 22-23. Curves
A: 0, = 25.8° curves B: 0, = 8.1°; curves C: 8, = 2.6°.

DEPENDENCE ON PHYSICAL
PARAMETERS

The general results can easily be calculated numerically
from Eq. Al5, since the value of the required Legendre
polynomials and Bessel functions can be generated simply
with the aid of their respective recurrence relations. Note
that the approximate relation (Eq. A8b) can totally do
away with the Bessel functions. This simplifies the numer-
ical calculations significantly without noticeable loss of
accuracy. The results can best be represented graphically.
Although curves can be generated for all target sizes, the
results for small surface sites have been emphasized in the
figures. This is partially because the influence from surface
diffusion can be depicted most clearly in this limit. Also, in
the absence of long-range attractive forces, diffusion must
carry reacting groups into very precise positions for reac-
tions to occur. In this case, the effective target size will be
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very small even if the region of physical contact (binding
site) between the molecules is appreciable.

In Fig. 2 we have plotted k, /k,, which is the ratio of the
effective association rate constant, k,, to the reactive patch
and the association rate constant, k,, to the whole sphere.
This ratio has been plotted for various sizes of the surface
patch as a function of D,/R%kp, which is the influence of
surface diffusion from Eq. 16. The dashed lines are the
corresponding results from the independent two-step
approximation, Eqs. 22-23. The effective association rate
constant becomes less dependent on the size of the reactive
patch the more surface diffusion contributes. Also, k,/k,
taken as a function of D,/R%k,, is very insensitive to the
particular choice of the parameter 3 (the departure from
diffusion control, Eq. 12), except in the limit when D, «
R%kp. The curves in Fig. 2 were calculated for total
diffusion control (8 = 0) and no rotational motions of the
target (v = 0). As surface sliding extends its influence over
the whole sphere, k, /k, approaches 1.

In Fig. 3 we have plotted k,/4wDR, the ratio of the
effective association rate constant k, and the diffusion-

Ko /4 DR

kg4 DR

FiGURE 3 Effective association rate constant as a function of surface
diffusion for various parameter values as explained in the text. §, = 8.1°in
all cases. Curve 4: 8 = 1,y = 0;curve B: 8 = 0.1,y = O;curve C: 8 = O,
y=0;curve D:y=1,8=0;curve E:y = 9,8 = 0.
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limited association rate constant for the whole sphere. This
ratio has been plotted for various values of 3 and v as a
function of a from Eq. 13. The model we have is best
applicable for a large target sphere and small ligands; then
the influence of target rotation, v from Eq. 10, will be
small, and as seen in Fig. 3 will not contribute much to the
effective association rate.

From Fig. 2 it can be seen that a very significant
increase in the effective association rate constant can be
achieved with D,/R%;, = a(1 + B) in the range 1 to 10.
This corresponds to a nonspecific binding constant from
Eq. 13, K = a4xR*(D/D,)6 x 10® M, if R is in
centimeters. For example, for D/D, = 5, = 5, 8 = 0, and
R = 40 A one finds K ~ 10°M™". Thus a fairly moderate
surface affinity can have a very large effect on the effective
association rate if surface sliding operates.

Assuming that surface diffusion D; has the same viscos-
ity dependence as free diffusion D, o from Eq. 13 is
viscosity independent. Then variations in viscosity will only
affect the parameter 8 = 4xDR/k, which should be
inversely proportional to viscosity as is the diffusion con-
stant. For uniformly reactive spheres, the association rate
constant from Eq. 14 can be expressed as k;' = k™' +
(kB)~' = k~' + (4xDR) ' so that k' plotted as a function
of viscosity would be a straight line with intercept at k' =
k~'. The slope of the line determines the effective target
radius if the diffusion rate is known. For the more compli-
cated expressions including the orientational constraint
(6, < =), with or without surface diffusion, the predicted
viscosity dependence can best be examined by plotting
k/k, as a function of 1/8. In most cases investigated we
find almost perfectly straight lines, see Fig. 4. Thus the
qualitative behavior of the viscosity dependence is not
changed when a more complex diffusional process is taken
into account.

From Fig. 4 we can seen more quantitatively the effects
of introducing surface diffusion in the sterically restricted
system. If we set 1/k, = 1/k. + 1/4wDR in analogy
with the result for uniformly reacting spheres, the straight
lines in Fig. 4 can be interpreted as

k/ks = k[kes + (R/Req)(1/8). (26)

Thus, the intercept at 1/8 = 0 gives the effective surface
reactivity k., and the slope gives the effective target
radius, R, for the sterically restricted system. When
surface diffusion is absent (o = 0, the dash-dot line in Fig.
4), the effective surface reactivity is a factor ~sin’ (6,/2)
smaller than that for the whole sphere, and the effective
target radius is Ry ~ R sin (6,/2) as would be expected on
geometrical grounds. The linear viscosity dependence in
this limit (a = 0) agrees with what was found numerically
by Schmitz and Schurr (1972). When some surface sliding
is introduced (a < 0.1, dashed lines in Fig. 4), significant
curvature appears but only in a very limited range of « and
B values; the main change is that the effective surface



k/ko
(curves A-D)

300

(curves a-c)

100

FIGURE 4 Predicted viscosity dependence of the inverse of the effective association rate constant for various extent of surface diffusion as
explained in the text. 8, = 8.1° in all cases. The dashed curves (which should be read off the scale on the right) are curve a: a = 0; curve b: a =
0.02; curve c: a = 0.1. The solid curves (which should be read off the scale on the left) are curve A: a = 0.5; curve B: a = 1; curve C: a = 2;

curve D:a = 5.

reactivity quickly approaches that of the whole sphere,
while the effective target radius as defined from the slope is
not altered much. Then, with increasing surface diffusion,
the effective target radius increases while the effective
surface reactivity remains essentially constant.

An upwards convex curvature in the viscosity depen-
dence was also predicted by Solc and Stockmayer (1973)
for surface sites with a smeared probability distribution
rather than with a step-function distribution. Thus, as
could be expected, surface sliding effectively smears the
reactivity distribution. However, the nonlinear viscosity
dependence appears only in a very limited region of small
a, i.e., when surface sliding contributes little, and large g,
i.e., for low viscosity when diffusion control is not total.

The model prediction that the viscosity dependence is
given by the dependence on 1/ rests on two assumptions.
(a) Surface diffusion and rotational diffusion has the same
dependence on bulk viscosity as the translational diffusion.
(b) The surface reactivity k is not viscosity dependent.

PLANE SURFACE

If we let R — « and 6, — O while Rsind, = b is kept
constant, the results above would give the association rate
constant to a circular surface patch of radius b embedded
in an infinite plane surface. In this limit, the parameter o
from Eq. 13 would be zero. A more useful parameter (also
dimensionless) would be

o = afsin b, = (D,/D)(K'/b), (27)

where K’ = «/\ (in centimeters) is the nonspecific binding
constant per unit surface area, see Eq. 4. In the diffusion-
controlled limit (8 = 0) and without surface diffusion

(o’ = 0), the effective association rate constant is (Richter
and Eigen, 1974; Hill, 1975)

" =4bD (cm’s™"). (28)
Then
= ki /7b’K’ = 4D/xbK’ (s™") 29

will be the corresponding diffusion-limited dissociation
rate constant for a nonspecific circular surface patch of
radius b embedded in an infinite plane surface. Thus, the
parameter o from Eq. 27 can be expressed as

o = (4/7)(D,/bkp) (30)

so that o' is the ratio of the nonspecific binding time
(~1/k}) and the time (~b%/D;) of sliding across a patch of
radius b.

In the diffusion-limited case (8 = 0), k,/4bD as a func-
tion of o is a measure of the effective target extension due
to surface diffusion. This has been plotted as the dashed
lines in Fig. S for some small values of §,. When 6, — 0, the
curves approach the solid line, which is the result from
Appendix B, Eq. B27, where the association rate constant
has been calculated for the planar case. For « = 5, a
reasonable approximation is

k, = 2zxbDo’[In o' = 2xDK’/In(D,K’/Db) 31)

in the diffusion-limited case, and the association rate is
determined primarily by the surface properties.

For comparison in the case of one-dimensional sliding
along a cylindrical surface, the results of Berg and Ehren-
berg (1982) can be approximated as k, ~ =* bD(2«//
In &')'/?, where o' is defined by Eq. 27 above and b is the
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FIGURE 5 The effective target extension due to surface diffusion as
explained in the text. Curve A4: x, = 0.99 (6, = 8.1°); curve B: x, = 0.999
(0, = 2.6°); curve C: x, = 0.9998 (6, = 1.1°); curve D: result for the
infinite plane of Eq. B27.

cylinder radius. Thus, the effective target extension due to
surface sliding is ~(o//In «)"/? in the one-dimensional
case, whereas it is ~o//In o in the two-dimensional case,
Eq. 31. In contrast to the proposal by Richter and Eigen
(1974) that the target extension would be proportional to
(a’)'/? in both cases, our calculations show a fundamental
difference between one- and two-dimensional sliding. This
is because a plane is a much more powerful sink than a line.
Thus, a ligand dissociating from the plane would not lose
its spatial correlations with the reactive patch before
reassociating to the plane again, and thereis no one effec-
tive dissociation rate constant from the planar surface. The
parameter ki, defined in Eq. 29 is a useful quantity to
describe nonspecific dissociation, but it is not the dissocia-
tion rate from the plane; it is the dissociation rate constant
from a nonspecific patch of radius b embedded in an
otherwise inert plane.

Just as in the one-dimensional case (Berg and Blomberg,
1978; Berg et al.,, 1981), the effective association rate
constant will not continue to increase indefinitely with
increasing surface binding o/. When the target extension
runs out of available surface k, will level off.

The agreement in Fig. 5 between the infinite-plane
result and the various spherical surfaces at intermediate
and small o’ demonstrate two points. First, the extension of
the plane to infinity does not introduce any mathematical
artifacts; as long as the available surface is larger than the
effective target extension, the infinite plane is applicable.
Second, also association to a site on a spherical molecule
can be totally dominated by the surface properties under a
wide range of physical situations.

To get a feeling for the physical requirements to produce
a substantial rate enhancement, let us consider an exam-
ple. From Fig. S it is seen that a target extension of a factor
of 50 requires o’ ~ 150. From Eq. 27, this would require a
nonspecific binding constant per unit surface area: K’ =
150 bD/D,. Furthermore, the total surface would have to
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be at least 50b in radius to give a 50-fold extension. Thus,
the total nonspecific surface binding (per target) would
have to be K, = 7(500)2K'6 x 10 ~ 3 x 10° M~ if
D/D;~S5and b=10A.

TWO ASYMMETRICALLY REACTIVE
MOLECULES

Quasichemical Approximation

When the associating ligands are also asymmetrically
reactive, the diffusion description becomes very complex.
To overcome this difficulty, Solc and Stockmayer (1973)
proposed a simple scheme, which they called the quasi-
chemical approximation. In this scheme it is assumed that
the association can be subdivided into independent steps of
association, reorientation, and dissociation just as in the
two-step approximation discussion above for one asymmet-
rically reactive molecule. In the diffusion-controlled limit,
the effective association rate constant k, of the quasichemi-
cal approximation can be expressed as

(1 + kp/k)(1 + kp/kg) + (1 — ¥a)
4rDR _: (1 — ¥p)/(Wa¥s + ¢Akﬂ/kD + ¥k, /kp)
k, (1 + Yakp/k)(1 + ¥ukp/kg) ’

(32)

where ,, = sin? (6,/2) is the fraction of the surface of an A
molecule that is reactive and similarly for B. kp is the
nonspecific dissociation rate constant for unreactive A-B
complexes. k,(kg) is the reorientation rate for an A (B)
molecule in a nonspecific A-B complex to turn its reactive
site towards its partner. When one of the molecules (e.g.,
B) is uniformly reactive, ¥ = 1 in Eq. 32 and the two-step
result of Eq. 22 is recovered.

The result of the previous sections now make it possible
for us to identify k, and k; with the effective transfer rate
(reorientation rate) from Eq. 25. Thus,

k_a _ Yall + GBrg/4ra)(1 + rg/ry)] 172
ko 2(1 = )

(DsA/kDRz)
1+ Inga/(1 — Y

(33)

and similarly for kg, with exchange of subscripts A and B.
D,, is the effective surface diffusion constant for a B
molecule over the surface of A (and conversely for Dgg).
Thus, D, would be influenced both by the rotational
diffusion of the A molecule and the sliding motion of the B
molecule; it is not expected to be faster than that of free
diffusion

Doy~ RDY + Dy =% (1 + ro/ra)* Da + Dy~ D (34)

and similarly for Dz. An exact calculation would require
taking hydrodynamic interactions, surface friction, and
other local potentials into account. At present, surface
diffusion must be considered as an adjustable parameter,



but with a physically reasonable value. In the correspond-
ing one-dimensional case for lac-repressor sliding along
DNA, it was found (Winter et al., 1981) that the sliding
rate was reduced less than an order of magnitude from the
rate of free diffusion.

Note that Solc and Stockmayer (1973) in their results
use an average rotational time 7, (75) defined as 7, =
Ya/k. (t5 = ¥p/kg). The identification suggested by Eq.
33 makes this rotational time quite different from an
ordinary rotational correlation time.

Let us concentrate on the interesting case with small
surface sites, Y, « 1 and y¥p « 1; then one finds that
kp¥a/k, <« 1 and kpyg/kg « 1 as well, and Eq 32 simplifies
to

4xDR ko ko ko
=1 +=—=||1 +— _— 35
. ( ¥ k)( ¥ k,) Yok ek, Y

When surface diffusion is absent, D, = D = 0 in Eq. 33,

one finds to lowest order in 6, and 8,

k, ~ 4w DR{sin’ (6, /2) tan (65/2)
< [+ (3ra/8re)(1 + ra/re)]'* + sin’(6/2) tan (6,/2)
- [2 + Gra/8r)(1 + ra/ra)]'?. (36)

The expression in curly brackets consequently is the steric
constraint factor for small reactive sites on two spherical
molecules.

We can check the consistency of Eq. 36 by a comparison
with the numerical calculations of Schmitz and Schurr
(1972). These authors argue that the target sites on the two
molecules should be of about the same size b; i.e.,

b =r,sinf, = rgsin by

(37a)
or for small sites

0, = bfra, Op = bfrg. (37b)

In the limit when one of the molecules is much larger than
the other (rg » r,, and the surface of B approaches a
plane), Egs. 36 and 37 give

k, = 2xDb sin® (0,/2) [(15)'* + Ck)'/2). (38)

The numerical factor (15)'"/? + (%)'/? ~ 1.32 is somewhat
smaller than the numbers 1.65 to 2.23 calculated numeri-
cally by Schmitz and Schurr from a diffusion model for a
similar geometric configuration. The main difference is
that Schmitz and Schurr consider the reactive site on the B
molecule to be protruding as a half sphere with radius b
into solution, and this can also account for most of the
numerical difference.

If both molecules are of equal size, r, = rg, while their
reactive sites are small compared with r,, Egs. 36 and 37
give

k, = 8w Db sin” (6,/2), (39)

10

which is exactly the result conjectured by Schurr and
Schmitz (1976) to be valid for this case.

These agreements provide an independent control that
the quasichemical approximation by Solc and Stockmayer
(1973) is quite powerful even with the very simple transfer
rate constants (reorientation rates) proposed above, at least
when surface diffusion does not contribute. It seems likely,
however, that it will remain a very good approximation also
when surface diffusion is significant, just as was the case
for the two-step model discussed above. Thus, Eqs. 32-33
should provide a useful analytic expression to describe a
very complicated diffusional process.

RELATION TO EXPERIMENTS

As shown above, the introduction of surface diffusion in
the association mechanism does not qualitatively change
the predicted viscosity dependence. The inverse of the
association rate constant is a linear function of viscosity
(except in a very limited region of parameter values, cf.
Fig. 4). The slope of the line provides information on the
effective target radius; if this is significantly larger than
the size of the reactive site, the influence of surface
diffusion can be estimated. The expected linear (or possi-
bly weaker than linear) viscosity dependence of the asso-
ciation rate constant, however, contradicts a recent sugges-
tion by Hasinoff (1982) that the dependence proportional
to (viscosity)*? he observed for acetylcholinesterase asso-
ciation could signal the presence of surface diffusion. This
suggestion was based in part on the erroneous conjecture
by Richter and Eigen (1974) as discussed above that the
effective target size would be proportional to (D,/kp)'/? for
surface sliding as it is for one-dimensional sliding. Hasi-
noff’s suggestion was also based on the untenable assump-
tion that the nonspecific dissociation rate k;, was not
diffusion controlled, while the nonspecific association rate
ks ~ 4wDR was totally diffusion controlled; if the nonspe-
cific binding constant K = k,/kp is to be diffusion
independent, k, and kp must be diffusion controlled to the
same degree. Thus, if surface sliding does cause the
interesting viscosity dependence observed by Hasinoff
(1982), the causal link is not obvious from the model.
Instead, it would require very special and unlikely proper-
ties of the surface: either the nonspecific binding is strongly
dependent on solvent, or the surface sliding is impeded
more drastically by an increase in bulk viscosity than is
normal translational diffusion. Of course, surface sliding
might still play an important role in this system.

Sommer et al. (1982) have investigated the reaction
between small reactive centers on various proteins. To
explain the fast rates observed, they have to assume that
two proteins can be held together nonspecifically, while
they are free to reorient so that their respective reactive
centers can come together. This is a reaction between two
equal asymmetric molecules, and we can use the results
from the previous section to interpret the results. Since the
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reaction sites are very small their data require that surface
diffusion is dominant, and from Eq. 33 we can take

ko= ks = (D,/R})/(~1 — Iny) (40)

as the reorientation rate. From Eq. 34, the sliding rate is at
most D, ~ 4D,, where D, is the free diffusion rate of one
protein molecule. The interaction radius is R = 2r, and one
finds D,/R* ~ (4)D,. Thus, the effective transfer rate
would be at most k, ~ (45)D,,,/(—1 — Iny). Since Solc and
Stockmayer (1973) did not assign any particular values to
the rates of reorientation in their quasichemical model,
Sommer et al. (1982) instead use the rotational correlation
time, 7, = %D, and effectively take k, = 6yD,, as a
measure of the reorientation rate for a nonspecifically
bound complex. Thus, these considerations lead to a lower
limit of the estimated lifetimes of the nonspecific com-
plexes that are a factor ~5¢(—1 — Iny)—(varying
between 4 and Y for their data) smaller than those
derived by Sommer et al. (1982). Thus, for most of the
proteins investigated by them, the lifetime of the nonspe-
cific complex would be at least a few microseconds. Since
the diffusion-limited rate of bringing the proteins together
is ~3 x 10° M~'s™!, this would correspond to a nonspecific
affinity between these proteins of ~10* M~' or greater.

DISCUSSION

A reactive site embedded in a larger molecular structure
can have its effective capture radius increased dramatical-
ly, if ligands can slide along the regions flanking the site. In
this way the larger molecular structure can serve as a kind
of antenna guiding the ligands to the reactive site, thereby
also confining the diffusional search to only one or two
(rather than three) dimensions (Adam and Delbriick,
1968). This idea has proven very fruitful, especially in the
one-dimensional case where detailed theoretical calcula-
tions have been used for the interpretation of experimental
data to confirm the existence of sliding as a rate-enhancing
mechanism.

The two-dimensional surface sliding can produce rate
enhancements just as dramatic as in the one-dimensional
case. However, as shown above, surface sliding has proper-
ties markedly different from the linear sliding. This is due
to the strong spatial correlations in the nonspecific disso-
ciations; a ligand dissociating from the surface will remem-
ber from which part of the surface it came.

Sliding along a spherical surface can also be regarded as
a molecular reorientation within an encounter complex,
and is a way of overcoming orientation constraints. Again,
the strong correlations in the nonspecific dissociations have
to be accounted for. In the diffusion-controlled limit, this is
the major source of error in the independent two-step
approximation discussed above.

Note that when surface sliding contributes, the associa-
tion can be governed primarily by the surface properties;
even in the diffusion-controlled limit the translational
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diffusion rate through bulk solution can be of negligible
importance for the determination of the association rate
constant. Surface sliding is a local motion partially deter-
mined by rotations that are slowed down much less in vivo
than is translation (Lepock et al., 1983). Thus, a diffusion-
controlled rate constant measured in vitro will not neces-
sarily be slowed down in vivo as much as the translational
diffusion rate, and this could make an order-of-magnitude
difference for the estimate of an association rate constant
in the living cell.

Just as in the one-dimensional case, theoretical calcula-
tions elucidating how the rate enhancement depends on the
molecular parameters should be useful when more experi-
mental data becomes available. It is to be expected that
two-dimensional sliding will also prove to be a rate-
enhancing mechanism used in nature.

APPENDIX A

The general solution to Eq. 1 can be expressed as

c(r6) = 3 AuCyar/R)""Ky s oo/ R) Py(cos 0)

n=1

+ Ay/r + co (Al)

where v, = [n(n + 1) DgR?*/D]'. K,,,, is a modified Bessel function
and P, is a Legendre polynomial. For the distribution of nonspecifically
bound ligands on the surface, we can make the ansatz

® 0; 0<0,
> B,P,(cos 0) =
n=0 u(0);

(A2)
0, <0 <m.

This ansatz is always valid because of the completeness of the Legendre
polynomials.

Inserting the expansions Egs. A1 and A2 into the boundary conditions,
Eq. 3, and using the orthogonality properties, Eq. CS5, of the Legendre
polynomials gives the following relations

S sin 0 P, (cos 0) ¢ (6)do
= (D/R) (n + )" (va) "4,
 [nKni12(Yn) = VnKani3 ()]
= (n+ B 7" (va) " [k Aukns 12 (V)
- Mr)'?B));  n#0

(A3a)

and forn =0

O = 21rR2./‘; sin 0¢(0)do
= —4xDAy = 4wR*kcy + 47w Rk Ay — 4w R*\B,.

(A3b)

From these equations, the relation between A4, and B, can be solved.
Inserting the ansatz Eq. A2 in the differential Eq. 2 gives

(D,/R? i n(n + 1)B,P,(cos 8)

n=0
@(0); Op<0<m
=|—(27xR?sin 6,) ' ¢,6(0 — 6,); 6 =6, (Ad)
0; 0 <6,.
11



The é-function contribution at 6 = 8, appears because du/dé from Eq. A2
is discontinuous at § = 6, jumping from zero at § = 6,— to (du/df),,. at
0 = 6,+. The magnitude of this jump is determined from Eq. 7, which
gives the surface flux ¢, onto the reactive patch. In this way Eq. A4
effectively extends the differential Eq. 2 to be valid over the whole surface
by forcing the gradient at 6 = 6,+ to give the as yet undetermined surface
flux ¢,.

Using the orthogonality properties of Legendre polynomials, Eq. C5, in
Eq. A4, B, can be solved for as

(D./R*)(n + /) "'n(n + 1)B,
= j; " sin 0 P,(cos 0) ¢ (0)d 6 — (¢,/27R?) P,(cos 6,). (AS)

Before continuing, let us simplify the notations and introduce dimension-
less variables

x = cos 0, Xy = cos b, (A6a)
V= 0/br  ¥(x) = 47R’$(0)/d0;  (A6D)
b, = B, 47D, /¢ (Aé6c)

a =Dx/D\R, B =D/kR, v = DgR*/D.(A6d)

Then Eq. A5 with the aid of Eq. A3a can be expressed as

b, n+'h

a _C,,+an(n +1)

. |:2‘P;P,.(xo) + j);l P,,(x)¢(x)dx]; -n#0 (A7)
where

L 6 _ Kn+l/2 ('Yn)
Cn nKn+l/2 (7n) - 7nKn+3/2 (‘Yn)

(A8a)

and
Yo = [n(n+1)7]'"2

Numerically one finds that for all » and v, C, can be approximated to
within a few percent by

1/Co~ B8 +2/[1+@2n + 1) (1 + 7). (A8b)

Now, Eq. A7 determines the expansion coefficients from the surface flux
¥, and the direct absorption flux y(x) onto the reactive patch. The surface
flux onto the reactive patch is from Eq. 7

1[/5= —lib,,M[Pn—l(xo_) - Pn+l(x0_)]

A9
2,,_| 2n + 1 ( )

and the direct association flux Y(x) is to be determined from the
requirement (Eq. A2)

3> bPu(x) = O;

n=0

Xo=x=1. (A10)

Thus, the problem is in principle determined by Eqs. A7-A10.
Eq. A7 excludes the case n = 0; from Eq. A3b we can write the effective
association rate constant
ki = ¢i/co = 4TDR/(bo/a + 1), (A11)

where b, must be determined from the other b, and the condition in Eq.
A10. One possibility is to require that this condition be valid on the

12

average over the patch; i.e.,

['3 bPx)dx -0,

X0 n=0
which gives
1 & b,
by = — Y [P (X)) — Puyy (x0)]. (AL2)

1 —xga2n+1

The fluxes ¥, and yY(x) still remain to be determined. One simple
approximation that works well in the case when there is no surface
diffusion (Shoup et al., 1981) is to assume the direct association flux Y(x)
to be homogeneous over the reactive patch (i.e., ¥[x] = constant for
Xo < x < 1). With this approximation of the system of equations can be
closed and the effective association rate constant calculated. Thus, since
the total flux is conserved, Eq. A6b, we can set

v(x) =2(1 = ¥)/(1 — xo).

Inserting this in Eq. A9 and solving for y, gives

(A13)

1 — x4+ i [1 + an(n + 1)/C,] ' P,(x,)
[P () = Prar(x0)]
1 +x0— (1 =xp)7" i [1 +an(n+1)/C]1"
C @14 1) [Py (x0) — Pri ()
(A14)

+

(For reasons of convergence we have replaced an[n + 1]/

{C, + an[n + 11} = 1 — C,/IC, + an[n + 1]} and carried out a partial

summation with the aid of Eqs. C1 and C2 from Appendix C.)
Furthermore, from Eqs. A11-A13 we get

47DR
k,

=1+8

PR P,_i(xo) — P, 1(x)
+ (1= xo) Z C,+ann+ 1)

(A15)

Thus, with the explicit expressions for C, from Eq. A8, y, can be
calculated from Eq. A14 and inserted in Eq. Al5 to give a closed
expression for the effective association rate constant.

APPENDIX B

The association onto a reactive patch on an infinite plane with surface
diffusion follows in principle as a special case of the spherical problem
discussed above. However, to derive a closed expression for the effective
association rate constant, it is more convenient to consider the plane
problem separately. Since the basic assumptions and the general proce-
dure of solution is the same as for the spherical case, the discussions below
will be very brief. The main difference is a change from spherical
coordinates to cylindrical coordinates, and the fact that the infinite plane
requires solutions that are integrals rather than sums over eigenfunc-
tions.

Consider a reactive patch (r < b, z = 0) on an infinite plane surface
(r > b,z = 0), ¢f. Fig. 1. In this case, Eqs. 1-9 of the main text transform
to Eqs. B1-B9 below

=0; z>0; (B1)
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Dd 3 sn-0  ras (B2)
rdr dr
¢(ry =D % = ke(r, 0) — Au(r). (B3)

9z |20
The nonspecific binding constant per unit area is
K =«/\ (B4)
At infinite distance from the reactive patch

c(r,z) — ¢, u(r) — ug = kco/\;

r— o r—o (BS)
Oorz— o
u(r) = 0; r<b; (B6)

(B7)

- [ du
¢ = 2w A ¢(r)rdr = 21rDsbd’

H
r=b+

¢q = 21rj3 o(r)rdr = 2m<ij c(r,0)rdr; (B8)

kaco = ¢to( = d’s + ¢d- (B9)

The general solutions can be expressed as

c(rz) - 60[1 - ./o. QA(E)C_EZJO(Er)dg]; (B10)
® 0, r=<b
wlt+ [ B@REd -, o, BID

From these solutions and the closure relation for the Bessel functions
(e.g., Arken, 1970, Eq. 11.59), one gets

B(§) = A(§) (Dg/x + 1).

The net flux onto the surface is

(B12)

dac w
#(r) = 05 ’Z_O=Dc° [ AE)J, (¢r) ede (B13)

valid for all 7 = 0. The direct flux onto the reactive patch (7 < b) can also
be expressed as

B() = xe(r, 0) = ey [1 = [~ 4@, @PdEL: r<b (B19)

0

and the effective association rate constant from Eq. B9 is

ko=ci'2r [ o()rdr - 22DA0).  (BLS)
Inserting Eq. B11 in Eq. B2 gives
~Du, |7 B@ Jo(eniat
o(r); r>b
| _@mest—b); r-b (B16)
0; r<b.

The magnitude of the é-function contribution at r = b is from Eq. B7

b, = 2wbDy [ B®J, (Gb+) gag. (BIY)
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B(&) can be solved from Eq. B16. With Eqs. B12 and B13 the result can be
arranged to give for A(§)

27 Dco[1 + (xDy/AD)E + (D,/NE] A(F)

- 0.Jo(gb) + 27 [ 6() JoEr)rdr. (B18)

Introducing the dimensionless quantities

y=r/b, x = ¢b; (B19a)

V() = 7b'6(N) b Vs = /D (B19b)
F(x) = A(¢)/A4(0); (B19¢c)
o' = Dx/\Db, B = D/«b. (B19d)

Eqs. B18, B13-B14, and B17 can be expressed, respectively, as
(1 + &'x + &BX)F(x) = Y Jo(x)

+2 fo ' WOMoxy)ydy; (B20)
2000 - | F (%) Jo(xp)xdx

=B7'[2xbD/k, — lQF(x) Jo(xy)dx]; y<1; (B21)

Vo—o [TFOOL(x+) (Bx + Dxdx.  (B22)
These relations completely determine the problem, and in principle &, can
be solved for. In practice we have to look for suitable approximations.

In the limit when there is no surface diffusion (Shoup et al., 1981), a
satisfactory result can be derived from the assumptions that the direct
association flux is homogeneous over the reactive patch (i.e., ¥[y] = con-
stant for y < 1), and that the absorbing boundary condition, Eq. B21 is
satisfied on the average over the patch. Thus let

v =1-v¥; y<l (B23)
The average of Eq. B21 gives
wbD/k, - [ F(0U(0) B + 1/x)dx.  (B24)

Inserting Eq. B23 in B20 gives
(1 + &x + aBx)F(x) = 2Ji(x)/(x) — ¢ Jo(x). (B25)

This can be inserted in Eq. B22 to give the fraction y, of ligands
associating via surface diffusion

, «JE(x)(1 + Bx)dx
2a -[ 1 +a'x + a'Bx?
v, = . (B26)
B fm J| (x) Jz(x)dx
(]

1 +a'x + a'Bx?

Inserting Eq. B25 in Eq. B24 finally gives for the effective association rate
constant k,

D LA/ B + 1)dx
T “Jdo 1+ a'x + a'fx?

k-
f« [Ji(x)/x] J(x)(Bx + 1)dx
“ Vs 1 +a'x + a'Bx? ’

(B27)

where ¢, is given by Eq. B26. The first integral dominates this result both
for small and large values of the parameter o'.
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APPENDIX C

Some sums and integrals over Legendre polynomials employed in the
calculations:

i [Pry(x) = P (0] @n+ 1) =1—x%  (Cl)

’

x—-1;, x<x
2 P[P (X) = Poi ()] = x5 x=x (C2)
- x+1; x>x
S PP (X) = Prat())/(n + 1)
1+x 1 -x
(1 + x)In — (1 = x)In 5 ;o x=<x
- , (©3)
(1 + x)In ! +x—(l —x')ln] _Zx; x=x";
> (Pus(%) = Pun(O1/n(n + 120 + 1)
n=1
--q +x)21nl-¥— (1 = x)’In 1-x_ (1 = x%); (C4)

L Pu(cos 6)Pu(cos 6) sin 646 = (1 + 1) b (CS)
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