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ABSTRACT A stochastic theory of channel-gating transitions is developed for a stationary system with many channels,
with applications to patch-clamp single-channel experiments. Exact probability density and distribution functions for
closed times, open times, and first transit times in an N-channel system are obtained in terms ofN and the solutions for a
one-channel system. Once N is determined, the expressions derived here can be used to analyze data records that are
crowded by many channel openings and where multilevel events are common. The three-state model is treated as a
specific example. Computer simulations of three-state models indicate that the equations derived here can be used to
recover useful information from crowded single-channel current records. The simulations also revealed some of the
limitations to the usefulness of these equations. The probability that a channel that has not opened is in a particular
closed state was examined as a function of time. This analysis led to a useful limit where the distribution of unopened
channels between various closed states is constant in time. This limit simplifies the mathematical treatment of
closed-time probabilities, and provides a general method for the analysis of many-channel systems when channels open
infrequently.

INTRODUCTION

Analysis of distributions of conductance-state lifetimes
plays an important role in the interpretation of single-
channel current data. Different kinetic models predict
different forms of distributions; distributions are often used
in quantitative determinations of rate constants.
When a single conducting state and a single nonconduct-

ing state interconvert with first-order kinetics, open times
and closed times are distributed exponentially (Ehrenstein
et al., 1974). The recent surge of single-channel studies,
especially with patch-clamp techniques that make it possi-
ble to record single-channel currents through cell mem-
branes (Hamill et al., 1981), has shown such simple
two-state behavior to be rather exceptional. Most biologi-
cally important channels exhibit bursting behavior (Nelson
and Sachs, 1979; Sakmann et al., 1980) and display
open-time and closed-time distributions that are complex
(Colquhoun and Sakmann, 1981, 1983; Cull-Candy and
Parker, 1982; Gration et al., 1982; Dionne and Liebowitz,
1982; Liebowitz and Dionne, 1984; Jackson et al., 1982a,
b, 1983; Auerbach and Sachs, 1983, 1984; Montal et al.,
1984; Sine and Steinbach, 1984).

This more complex behavior can be explained by a
number of models that invoke multiple states with the
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same conductance. Colquhoun and Hawkes (1981 and
1982) have developed systematic methods for deriving
probability density functions for the lifetimes of conduc-
tance levels for such models. Their treatment is formally
limited to the stochastic behavior of systems with only one
membrane channel. This theory is very useful in the
analysis of data where channel activation is infrequent, and
bursts of successive openings of a single channel are well
separated from one another. However, there is always
some ambiguity for a system with more than one channel: a
closed time could be a time interval between a closure and
opening of the same or of different channels. This ambigu-
ity is inconsequential when channel openings are infre-
quent, but can be serious when data records become more
crowded with many single-channel currents. In addition,
when the rate of channel activation is high, records contain
multilevel events produced by simultaneous openings of
channels. In such cases open times cannot be uniquely
determined because there is ambiguity as to which channel
closes when.

There have been several reports of closed-time distribu-
tions that are well described by two exponentials (Colqu-
houn and Sakmann, 1981; Cull-Candy and Parker, 1982;
Gration et al., 1982; Auerbach and Sachs, 1983; Jackson et
al., 1983), but some investigators suggest that some closed-
time data are more complex and are not adequately
described by two exponential components (Colquhoun and
Sakmann, 1981, 1983; Sine and Steinbach, 1984; Montal
et al., 1984; Auerbach and Sachs, 1984; M. B. Jackson,
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unpublished results). Interpreting these results is very
important because bursts of successive openings and clos-
ings of one channel are generally considered to be strong
evidence for the existence of a special closed state that can
open more rapidly than the other closed states of a channel.
A rapidly opening closed state is often referred to as an
activated closed state. Short closed times between openings
may then be sojourns in an activated closed state, where
the channel may have been activated by the binding of
agonists to a receptor. Analysis of bursts of openings is
therefore useful in understanding the mechanism of recep-
tor-mediated channel activation.

In the above-cited experimental studies, conditions were
controlled to provide a frequency of channel opening that is
sufficiently low so as to allow the application of one-
channel stochastic theory. Conditions under which channel
openings are very frequent and where multilevel events are
common are also easy to achieve, but the data obtained
from experimets done under such conditions are more
difficult to analyze. In such cases a stochastic theory for
systems with many channels would be useful. Here a
theory of the stochastic behavior of a stationary many-
channel system is developed. These results may be useful in
the analysis of single-channel current records where chan-
nel opening is frequent and multilevel events are prevalent.
The theory developed here can be used to extract the true
single-channel properties from data produced by the activ-
ity of many channels.

GENERAL THEORY

The general treatment of Colquhoun and Hawkes (1981 and 1982) for
one channel with different states interconverting with first-order kinetics
starts with a system of differential equations that includes terms for all of
the transitions that the channel can undergo. The system of equations
describes the evolution through time of the probability of being in any
state. To incorporate the constraint of not opening in a time interval (0, t),
this system of differential equations is truncated by making the open
states absorbing. This amounts to setting the closing kinetic coefficients
equal to zero. The solutions of these differential equations are generally
sums of one or more exponentials. These exponentials can be thought of as
the elements of a basis set. The decay constants for the exponentials of the
basis set are the eigenvalues of the appropriate transition matrix. Initial
conditions for the probabilities of being in the various closed states at t = 0
are needed to define the solutions completely.
The closed-time probability density of a model with only one activated

closed state capable of opening (see the three-state model below) is
specified by the initial condition that the probability of being in the
activated closed state is I and the probability of being in any other closed
state is zero. When a channel has many states into which it can close, the
initial conditions for the closed-time probability are determined by the
distribution among the various closed states immediately after closing.

Here the probability density and distribution for first transit times will
also be calculated. The first transit time is defined as the time one waits
until the first opening occurs, starting from an arbitrary point in time
when all channels are closed. To calculate first-transit-time probability
densities, we use the same differential equations that are used to calculate
closed-time probabilities, but the initial condition is the equilibrium
distribution between all closed states.

In general, systems with N identical channels will be discussed. Each
channel has available to it m closed states. See the Glossary for definitions
of the symbols. For a one-channel system, the closed-time probability
density and distribution are sums over all closed states.

GLOSSARY

pi(t) the probability of a particular channel being in closed state i
at time t subject to the constraint of not opening in the
interval (0, t), where initial conditions have not been speci-
fied

r,(t) pi(t) where the initial condition is that the channel closed at
t =O

sj(t) p,(t) where the initial condition is that the channel was closed
at t = 0, and underwent a closing transition any time before
or at t = 0

gN(t) the closed-time probability density for a system with N
channels

GN(t) the tail distribution of the closed-time probability, i.e., the
probability of a closed time being t or longer, GN(t) -

] tgN(x)dx
qN(t) the first transit time probability density for an N-channel

system
QN(t) the tail distribution of the first-transit time probability, i.e.,

the probability of a first-transit time being I or longer,
QN(t) = fx qN(x)dx

h(t) the single-channel open-time probability density
hN(t) the open-time probability density for an N-channel system

where only isolated single open events are used
xi the ith eigenvalue of a transition matrix. These eigenvalues

are the exponential decay constants for the basis set of
exponentials that form pi. r,, and s,

ai the rate of opening from closed state i. If closed state i cannot
open, then ai = 0

f(t) the fraction of channels that have not opened in the time
interval (0, t) and are in closed state i,f (t) = p1(t)/Zi I pi(t).

in

gl(t) = X ajri(t),
i=,

Similarly, for first-transit-times

in

qI(t) = E aisi(t),
i-I

m

Gi(t) = Ej ri(t).
i-I

(1 a)

(I b)
m

Q (t) = E SA(O).
i-I

The many-channel probability functions will now be expressed in terms of
these one-channel functions.

There are two approaches to computing probabilities for a system with
N channels. The probability density can be computed directly by
summing over the probability densities for opening from all possible
configurations, weighted by the probabilities of finding those configura-
tions. Alternatively, the probability tail distribution can be computed
directly by multiplying together the independent probabilities that each of
the N channels does not open in the designated time interval. These
procedures give identical results for all of the cases that I have analyzed,
with the distribution approach being simpler. For this reason, the
distribution approach is used in the derivations presented here.

Starting with the first-transit-time probability distribution QN(I), the
probability that no channel opens in the interval (0, t) is the product of all
the probabilities that each individual channel does not open. Since the
probability that a particular channel does not open in this interval is
identical with the probability that it stays closed until t or longer, we can
use the one-channel distributions to obtain

(2)QN(t) = Q, (t)N.

The probability density function is obtained by differentiating with
respect to time and changing sign

qN(t) = Nq,(t)Q,(t)N-1. (3)
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The derivation of the closed-time distribution is similar to the deriva-
tion of the first-transit-time distribution, except that one channel is
different from the other N - 1 channels, having undergone a closure at
time t = 0. The probability that no channels open is now the product of the
probability that the channel that closed at t = 0 does not open multiplied
by the probability that the otherN - 1 channels that were closed at t = 0
do not open. Thus, instead of Eq. 2, we have

GN(t) = GI(t)QN- (t) = GI(t) [Q,(t)IN , (4)

where QN I(t) was taken from Eq. 2. Differentiating Eq. 4 with respect to
time and changing sign gives gN(t) = gi(t)QN I(t) + GI(t)qN (t) for the
closed-time probability density.

According to Eq. 1, gl(t), GC(t), q,(t), and Q1(t) are different sums of
the same basis set of exponentials (Colquhoun and Hawkes, 1981). From
Eqs. 2-4 it can be seen that the corresponding functions for an N-channel
system are products of these sums and are therefore different sums of a
larger basis set of exponentials. The decay constants for the N-channel
basis set are formed by adding together the decay constants of the
one-channel basis set in various combinations of N.
The above equations can be made more useful with a relation between

the closed-time and first-transit-time probability functions. Each closed
time contains all first-transit-times shorter than or equal to itself. Thus, if
one examines a data set and develops a histogram of closed times, any
first-transit-time shorter than t will be counted for each closed time longer
than t. Therefore, the first-transit-time probability density is proportional
to the probability that a closed time is t or longer. Normalization gives

qN(t) = GN(t) /f GN(X)dx

and

QN(t) GN(x)dx/f GN(x)dx. (5)

Ordinarily, the closed-time distribution GN(t) is readily obtained from
a single-channel experiment. Eqs. 2, 4, and 5 can be combined to give
GI(t) in terms of GN(t)

GI(t) = GN(t) (6)

GN(x)dxf GN(x)dx] )/

If a record has many simultaneous channel openings, then it is feasible to
perform a binomial analysis to determine N. Eq. 6 can then be used to
determine GC(t). In practice GN(t) can be either the raw data or an
appropriate function determined by curve fitting. When N is large it is
tempting to forego a determination of N and replace N/(N - 1) in Eq. 6
with 1. The approximation is clearly valid at t = 0 since all quantities are
1, but for large values of t, GI (t) would approach a constant value rather
than decay to 0. This is because both QN(t) and GN(t) are sums of the
same basis set of exponential functions, and when t is large, the same most
slowly decaying exponential dominates in both expressions. Therefore,
such an approximation cannot work no matter how large N is. The
practical difficulty in replacing N/(N - 1) with 1 indicates a limitation
in the usefulness of Eq. 6 for large N and t, which will be illustrated
below.

Open-Time Distributions
The distinction between a one-channel and an N-channel system is not as
clear for open times as it is for closed times. In single-channel records with
simultaneous channel openings, confusion in open-time distributions
results from ambiguity in ascertaining which channel closes first after two
or more channels are open simultaneously. Simply ignoring the multi-

channel currents would produce errors because longer openings are more
likely to have other channel openings superimposed. Nevertheless, the
selection of isolated single-level openings defines precisely an observable
distribution that can be extracted from single-channel current records
without ambiguity. This can then be related to the open-time distribution
that would be seen in a system with only one membrane channel by the
relation presented below.
The probability density for isolated single-level channel events that are

not superimposed on other channel openings is the product of the
one-channel open-time probability density multiplied by the probability
that no other channels open in the same time interval.

hN(t) = h(t)QN-I (t). (7)

hN(t) can be constructed from a crowded data record by ignoring
multilevel events and used to compute h(t). Here, the approximation of
QN ,(t) with QN(t) when N is large may not break down as it must with
Eq. 4, since the basis set of exponentials for open times is different from
that for closed times.

THREE-STATE MODEL

The simple addition of an activated closed state to the
two-state model gives a three-state model of the form

ly a

Cl C2 O, (

where C2 is an activated closed state, C1 is a closed state
incapable of opening directly, and 0 is the open state. a, f,
-y, and 6 are the rate constants for the indicated steps. This
is one of the simplest models available for describing
closed-time distributions with two exponential compo-
nents. When activation is caused by a receptor binding
interaction, the concentration of the ligand can be incorpo-
rated into the rate -y. The procedure of Colquhoun and
Hawkes (1981 ) is used to set up differential equations that
describe the evolution through time of the probabilities, p,
and P2, of being in states C1 or C2. If no openings occur in
the time interval (0, t), we have

dpi

dp2 = ypi - (a + 6)P2-

If initial conditions are specified in terms of the initial
probabilities P2(O) = f2 and P, (0) = 1 - f2, where f2 is a
constant between 0 and 1, the solutions are

P2(t)= [(e + f2X+)e+f - (y + f2X )eA-]
X+- x-

pi (t) =

{[(A+ + a)(1 -f2) +6]le+\ -{[(A_ +a)(1 -f2) + 6]ee (10)
x+ -x_

where the eigenvalues are

- (a + -y + 6) + V(a + +y 6)2 - 4ay
2 , (11)
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f2 = P2(O) = 1 is the appropriate initial condition for r, and
r2 since a channel that closes at t = 0 is in state C2. Since C I

cannot open, ar2 is the closed-time probability density for
the one-channel system. s, and s2 are determined by the
initial conditionf2 = P2(0) = 'y/(y + 6)

For the N-channel system Eq. 4 gives the following
expression for the closed-time probability distribution

GN(t) = (r, + r2)(s, + S2)N-I.

Putting in the explicit forms based on Eqs. 10 for s1,S2, rl,
and r2 gives

GN(t) = [(,y + 6 + X+)eC+I - (y + 6 + X )e ]}

[(y + 6 + A+ + +)ea_ y + + + a6 ]e 1
(A+-A+ )

N

When N = 1 this expression reduces to the one-channel
case of Colquhoun and Hawkes (1981).
An approximation for Eq. 12 can be found that is

applicable when the average number of channels in the
activated state, Ny/(Qy + 6) is low. This would be useful in
applications to conditions where one-channel theory is
currently applied. The type of bursting commonly seen
experimentally is explained by a high a and 6 relative to -y.
This would suggest that an appropriate strategy for
approximating Eq. 12 would be to expand it and retain
lower order terms in -y. The product oyN appears through-
out Eq. 12 and its expansion. The validity of this approxi-
mation therefore depends on this product being small.
Neglecting all but first-order terms from the expansion, we
obtain

GN(t 6 6)-(N -l)a-y(26 +a)eX
[(a + a) (a + a) j

a (Na - a - 26)a-y [(N- I)A, +X-II
L(a + 6) 6(a + 6)2 e(NaN - 62J1
a3y(N 1) e[(N- 2)A++22lt; (13)

(a + 6)3 13

X+ and X were retained in the exponents but elsewhere
were replaced by the approximate quantities -ay/(a + 6)
and -a-6- 6y/(a + 6), respectively (small y limit of Eq.
1 1). The terms that are zero order in -y can be taken to give
the relatively simple expression

beNX ael(N- I)X++X-It

GN( ~a±6 +6 * (14)

Horn ( 1984) has derived a similar approximate expression.
This calculation suggests that for a sufficiently low rate of
channel activation in a many-channel system the closed-
time probability distribution of the three-state model
approaches a sum of two exponentials. One term is slowly

decaying and accounts for a fraction 6/(a + 6) of all closed
times. The other term is rapidly decaying and accounts for
a fraction a/(a + 6) of all closed times. The first-order
corrections to the small y limit decrease the amplitude of
the two exponential components of Eq. 14 and add a third
exponential component with a decay constant of 2X +
(N -2)X+.

COMPUTER SIMULATION

The current fluctuations in a system with many channels
were simulated with the aid of a computer to test the utility
of the above results. Two varieties of the three-state model
were considered, Eq. 8 and a variation of Eq. 8 where C2 is
replaced by a second open state. Thus, in the first case the
one-channel closed-time distribution is a sum of two ex-
ponentials and the open-time distribution is a single
exponential. In the second case the one-channel closed-
time distribution is a single exponential and the open-time
distribution is a sum of two exponentials.
The state of a system with N channels will be described

by a composition (n1,n2,n3), where n1 is the number of
channels in the left-most state, n2 the number in the middle
state, and n3 the number in the right-most state (Horn and
Lange, 1983). n, +n2+n3=N. The lifetime probability of a
composition decays exponentially with time with a decay
rate of yn, + (a+6)n2 + fin3. A random lifetime of the
composition can be generated by dividing the natural
logarithm of a random number (with uniform distribution
in [0, 1]) by this rate constant. The destination of the
composition is another composition found by generating
another random number and comparing it with the proba-
bilities of the various destinations. In this way we can
simulate the successive passage from composition to com-
position indefinitely. In all cases the simulation proceeded
until 20,000 closed times were generated. The curve fits
described below were obtained by least-square minimiza-
tion using the Marquardt-Levenberg algorithm.

Simulation of a Two Closed-State Model
The simulated closed-time distribution of a system of 50
channels operating by this model

'y a

Cl - C2 -=vO

is plotted as curve A in Fig. 1. The rate constants are given
in the figure legend. The parameters were chosen so that
all 50 channels are closed only 9% of the time. At times as
many as I I channels were open simultaneously. This would
be considered a very crowded data record where the
application of one-channel theory (Colquhoun and
Hawkes, 1981) would not be valid.
The simulated closed-time distribution overlies the curve

of GN(t) computed for the same parameters using Eq. 12.
A sum of two exponentials can be found that fits the
simulated distribution very well, but for the same choice of
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FIGURE 1 Semilogarithmic plots of closed-time distributions from a
computer simulation of channels gating by a three-state mechanism C1
C2 0. The simulation produced 20,000 closed times. The parameters
used in thissimulationwerea =0.1I0, # 3 x 10 2,y= 3 x 104 6= 2 x
1022, N =50. Curve A is the closed-time distribution taken from this
simulation. A plot of Eq. 12 for these parameters overlies curve A. Curve
B is a plot of Eq. 14 for the same parameters. Curve C was G1(t)
computed from curve A using a binomial estimate ofN (58) and Eq. 6. A
closed-time distribution obtained from a simulation with the above
parameters except with N - 1 overlies curve C in the time range of this
plot, but for longer times showed some slight deviations. A sum of two
exponentials fit curve C very well. The decay constants of the fit were
X_ - 0.120 and X+ = 2.7 x 1066* The computed exponential decay
constants (from Eq. 11) were X_ =0.120 and X+ = -2.5 x 104~.The
slow exponential decay constant obtained from a curve fit to curve A was
1.23 x 10-'. Dividing byN-= 58 gave an estimate of X+

--2.1 X 10-4.
Using this value of X+ with X_ and the preexponential terms from the
curve fit to curve C to solve for the original rate constants yielded a =

0.098, -Y = 2.5 x 10-4, c5 = 2 x 10-2.The time scale in this figure is 0 to
140 (in arbitrary units).

parameters, Eq. 14 (curve B of Fig. 1) fails to reproduce
the simulated closed-time distribution. With the average
number of channels in the activated state N-y/Q,y + 3) =

0.74, appreciable deviations from Eq. 14 are evident. The
deviations from Eq. 14 do not produce a discernible
deviation from two exponentials, even though the first-
order corrections (Eq. 13) include a third exponential
component. For the parameters chosen here, the third
exponential correction term is small compared with the
other two correction terms. This illuminates a potential
source of error. If an observed closed-time distribution
obtained from a crowded single-channel current record
were well fit by a sum of two exponentials, this could be
misconstrued as meaning that Eq. 14 is applicable. If Eq.
14 were used to analyze such data and estimate rate
constants, the estimated rate constants would not be
correct.
The analysis can be improved considerably by com-

puting the one-channel system closed-time distribution

using Eq. 6. To use Eq. 6, N must be estimated. The mean
and variance in number of open channels were calculated
during the simulation and used to estimate N as 58 from
the predicted mean and variance of the binomial distribu-
tion. Although better methods of binomial analysis have
been used to estimate N in other studies (Patlak and Horn,
1982; Sachs et al., 1982), using the variance and mean is
satisfactory for the testing of these theoretical methods.

Eq. 6 was then used to compute the one-channel closed-
time distribution from the simulated N-channel closed-
time distribution (curve A) and the estimated value of N.
This computation was performed numerically, point by
point. The computed one-channel closed-time distribution
is shown as curve C in Fig. 1. The computed one-channel
closed-time distribution was indistinguishable from a
simulated closed-time distribution for a one-channel sys-
tem in the time range shown. Small but significant devia-
tions were seen for larger t. Except for the slope of the slow
exponential component, curve C of Fig. 1 is very similar to
the true one-channel closed-time distribution. The diffi-
culty in reconstructing GI (t) for large t and N discussed
above is borne out by this simulation.

Reconstruction of GI (t) using Eq. 6 is independent of
the actual model that controls channel gating. If the model
is assumed, then specific model-dependent theory can be
used to recover the rate constants. The fast exponential
decay constant (X ) and the two preexponential factors are
obtained from a curve fit to curve C of Fig. 1. Because the
determination of the slow component decay constant of
curve C has so much uncertainty, X+ should be determined
by taking the slow exponential decay constant from curve
A of Fig. 1 as an estimate of the quantity NAI+, and
dividing by 58, the estimated value of N. XA, XA, and
the preexponential factors can then be used to solve for a,
'y, and 6 using the theoretical expression predicted for the

E B

E
z

Open time

FIGURE 2 Semilogarithmic plots of open-time distributions from the
same computer simulation used to generate the curves in Fig. 1. Curve A
is the open-time distribution formed from isolated openings corresponding
to h'(t). A dashed line is drawn to show the deviation of curve A from a
single exponential. h(t) (curve B) was computed from h'(t) (curve A) and
GN(t) (curve A of Fig. 1) using Eqs. 2, 5, and 7. The best single-
exponential fit to curve B yields a value of ,B = 0.0298 compared with the
input value of 0.03. The time scale in this figure is 0 to 60 (in arbitrary
units).
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three-state model (see legend of Fig. 1). This represents a
recovery of the original rate constants without referral to
the input rate constants used in the simulation. a and 6
determined in this way are remarkably close to the original
values. N and oy differ by <20% from the original values.
The greater uncertainty in estimating N and -y reflects the
two problems of the binomial estimate of N and the
reconstruction of the slow component of G1 (t).
The open-time distribution from the same simulated

experiment, constructed from isolated openings (9,846
isolated open events occurred in the course of the simula-
tion), is clearly not a single exponential (curve A of Fig. 2).
The dashed line illustrates the deviation from single-
exponential behavior. Using Eq. 7 to compute h(t), yields a
computed one-channel open-time distribution that is a
single exponential with the correct decay constant (curve B
of Fig. 2). The variations in this decay constant using N =
58 or N = 50 are insignificant.

Simulation of a Two Open-State Model
Simulating this model of channel gating for a 50-channel
system

C y a

produces an open-time distribution for isolated openings
that deviates from the open-time distribution obtained
from a simulation of a one-channel system with the same
rate constants (compare curves A and C of Fig. 3). For
20,000 closed times there should be 20,000 open times.
Only 14,562 isolated openings were seen, indicating that
5,438 open events included simultaneous openings of more

C
E
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z

Open time

FIGURE 3 Semilogarithmic plots of open-time distributions from a
computer simulation of channels, gating by a three-state mechanism C
0l 02. The simulation produced 20,000 closed times and 14,562
isolated one-channel open events. The parameters used in this simulation
were a = 0.100, B = 10-2, _ = 3 x 10-4, 6= 0.20, N = 50. CurveA is the
open-time distribution of isolated single-channel openings. Curve B is the
single-channel open-time distribution computed from curve A and the
observed closed-time distribution using Eqs. 2, 5, and 7. Curve C is the
open-time distribution obtained from a one-channel simulation with the
same rate constants. Parameters were computed directly from a sum of
two experimental curve fits to curve C to give a = 0.0882, j3 = 9.66 x
10-3, a = 0.200. The binomial estimate ofN was 32 and y was determined
from GN(t) to be 4.7 x 10'-. The time scale In this figure is 0 to 50 (in
arbitrary units).

than one channel. All channels were closed 44% of the
time. Using Eqs. 2, 5, and 7, h'(t) and the observed
closed-time distribution were used to compute h(t) (Fig. 3
curve B). The rate constants determined in a sum of two
exponential curve fit to curve B can be compared with the
original values used in the simulation (see Fig. 3, legend).

With higher frequencies of channel opening the simula-
tion gave an open-time distribution for isolated openings
that deviated dramatically from that obtained by simula-
tion of a one-channel system (compare broken curve A
with curve D of Fig. 4). In this simulation parameters were
chosen such that all of the channels were closed 7% of the
time. After simulating 20,000 closed times 12,114 isolated
one-channel openings occurred.
The single-channel open-time density was computed

point by point from the observed open-time and closed time
distributions using Eqs. 2, 5, and 7. The distribution is
shown as curve C of Fig. 4. This curve should be similar to

0

E
z

Time

FIGURE 4 Semilogarithmic plots of open-time distributions from a
computer simulation of channels gating by a three-state mechanism C-
0102. The simulation produced 20,000 closed times and 12,114

isolated one-channel open events. The parameters used in this simulation
were a = 0.100, 3 = 10-2, 7 = 10-3, 6 = 0.20, N = 50. The binomial
estimate of N was 48. Curve A is the open-time distribution of isolated
single-channel openings. The best-fitting sum of two exponentials was
determined and differentiated with respect to time to give h'(t). QN(t)
(curve B) was calculated from the best-fitting single exponential to the
observed closed-time distribution [for a single exponential G(t) =

QN(t)], and then raised to the 47/48 power to give QN ,(t). The intercept
of curve B was shifted down one decade to compare its slope with the long
time slope of curve A. The similarity caused difficulty in recovering the
single-channel behavior. h(t) was computed using Eq. 7, and integrated to
form a distribution (curve C). Curve D is an open-time distribution from
a simulation using the same parameters used to generate curve A, except
with N = 1. The parameters recovered from the expression for h(t)
computed from the observed h'(t) were a = 0.0857, ,B = 1.35 x 10-2, 6 =
0.227. These estimates were better than those obtained from a curve fit to
curve C. From the closed-time distribution and the estimate of N, a value
for -y was estimated to be 1.06 x 10-3. The time scale in this figure is 0 to
35 (in arbitrary units).
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curve D, but is not, especially for longer times. This is not
because Eq. 7 is wrong, since broken curve A of Fig. 4
deviates only slightly from the predicted hN(t) (solid curve
A of Fig. 4 computed from the input parameters with Eq.
7). In fact, for the parameters used here the methods are
strained to a point where a limitation appears. The reason
that the method fails is that when t is large, both h'N(t) and
QN-I(t) decay rapidly with nearly the same rates. Their
ratio, h(t), which decays slowly at large t, amplifies these
small variations. The small differences between the simu-
lated and predicted hN(t) (solid and broken curve A of Fig.
4) are within the range of statistical variations, but produce
a large error in computing h(t). Recovered parameters
presented in the legend of Fig. 4 reflect this problem.

LOW FREQUENCY OF CHANNEL
ACTIVATION

So far, the major avenue of simplification has been to
approximate by letting the rate of channel activation, y, be
small (Colquhoun and Sakmann, 1981; Dionne and Liebo-
witz, 1982; Horn, 1984). Although this approach is suc-
cessful in simplifying the three-state model, a method that
can be generalized to other models would be useful. In this
section an analysis of the fraction, fi(t), of channels that
have not opened in the time interval (0, t), and that are in
closed state i, leads to approximations that can be used
more generally.

Three-State Model
For the three-state model (Eq. 8), the fraction of unopened
channels in state C2 is

P) PA(t (15)

p,(t) + p2(t)

The numerator and denominator of f2(t) are different
linear combinations of the same two exponentials. If one of
the decay constants is larger than the other (-A >> -X+),
then, after a sufficient time, the rapidly decaying terms
will become negligible compared with the slowly decaying
terms. The remaining slow exponentials in both the numer-
ator and denominator cancel, leaving an expression for
f2(t) that is independent of time. This limiting value off2(t)
is denoted asf2,. Using Eqs. 10 gives

f2 =
+

Y +f2X+(X+ +a)(1-f2) + It+o+f2X+'

are closed, then the probability that a channel is activated
is the equilibrium valuef2, = y/(Qy + 6). However, as we
follow the current with time, if no openings occur, then
f2(t) relaxes to f2,. We can then think in terms of a
characteristic time during which, if no opening transitions
occur, the system has relaxed to this limit. This relaxation
time will be denoted as t<r. We can now decomposef2eq into
two parts. More than ta. after the most recent closuref2 =
f2A., and we are between bursts of openings. Immediately
after a closuref2 (0) = 1, and a burst of openings is more
likely to continue. f2(t) decays from 1 and passes through
f2eq on the way tof2.. f2eq reflects the aggregate behavior of
closed times within bursts and closed time between bursts.
A system where all channels are closed most of the time

is in the f2z. limit most of the time. Immediately after a
channel closes, it is obviously not in the f2. limit, but the
other N - 1 channels are. As long as channel closing
transitions are far apart relative to tx, the initial conditions
off2 =f20 are reasonable in determining s, and s2 of QN- I
For r1 and r2 we still have f2 = 1. With Eqs. 2 and 4 this
leads to

(-y + 6 + X+)e`A+' (y + 6 + y )eA-+(N-I)A,Jt
GN(t) ~-

A+ _ A- (17)

and

(18)QN(t) eNA+

for the closed-time and first-transit-time probability distri-
butions for the three-state model. Eq. 17 goes to Eq. 14 for
small 'y.

Eqs. 17 and 18 are clearly inconsistent with Eq. 5, i.e.,
Eq. 17 cannot be integrated to give Eq. 18. This is because
in calculating the closed-time probability thef20. limit was
applied as an initial condition to all channels, except for the
one that had just closed, whereas for the first-transit-time
probability thef2<. limit was applied to all channels.

f2. for the three-state model can be obtained by another
more intuitive method as follows. After t >> to, p,(t) and
P2(t) decay as single exponentials with a rate of XA, so

d[p1(t) +p2(t)] = X+[pI(t) + P2(t)]
dt

The only way for pl(t) + p2(t) to decrease is via C2 with
rate a, so

d [p1 (t) + P2(t)]
dt = -P2(t)

which simplifies to

f2- = X+/a. (16)

This expression is independent of the initial state. When
X+/a is substituted for f2 in Eqs. 10, the fast exponential
terms of p, and P2 are identically zero.

Ordinarily, we can select a time point in a membrane
current record, and if all we know is that all the channels

This means that XA+ [p(t) + p2(t)] = -ap2(t), and Eq. 16 is
recovered by applying the definition off2(t) (Eq. 15).

General Models
These results for the three-state model can be generalized
to more complicated models of channel gating. Since the
probabilities of being in various closed states are sums of
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exponential terms, regardless of the initial conditions, the
fraction of unopened channels in a given closed state is a
quotient of different linear sums of these same exponential
terms. After a sufficiently long time, the slowest term will
dominate and the fraction of unopened channels in each
closed state will become constant; the probabilities of being
in those states will then decay exponentially with a single
rate, a, which is defined as the smallest eigenvalue of the
appropriate transition matrix. In cases where the transition
matrix has more than one small eigenvalue of comparable
magnitude, it would be difficult to realize the appropriate
long time limit; it would be dangerous to assume that the
fraction of unopened channels in a given state goes to a
constant limit. Nevertheless, in systems where one decay
constant stands out as slower than the others, a generalfO.
limit analogous to thef20. limit will be valid.

In the f. limit, all pi's decay as single exponentials with
the same rate, a, i.e., pi(t)cjf,e`'. The first-transit-time
probability distribution is then a single exponential

m N m N

QN(t) ( Pi|) e(efiz - eaNt (19)

where Y, - 1. The first-transit-time probability den-
sity is then

qN(t) = aNeNoI. (20)

Eq. 19 can be used to simplify the more general closed-time
probability distribution of Eq. 4. Now, the N-channel
closed-time distribution can be related to the predictions of
a one-channel system by adding (N - 1)a to each of the
exponential rate constants of GI(t)

GN(t) = G,(t)eT(N I) (21 )

Thus, we see that thef. limit leads to very simple approxi-
mate expressions for probability functions of an N-channel
system.

It would be useful to have some guideline as to when
expressions derived for thefj. limit are valid. The validity of
Eq. 19 is necessary and sufficient for the validity of Eq. 21,
since Eq. 4 is exact. Thus, QN ,(t) should be examined.
QN(t) can be determined from GN(t) by Eq. 5. Here, the
difference between QN ,(t) and QN(t) is unimportant for
large N. The extent of its deviation from a single exponen-
tial can be determined by curve fitting to ascertain for
what fraction of all closures the f- -limit is valid. The
closed-time distribution can have very pronounced fast
components, but if most times are part of a slow compo-
nent, then it will be difficult to see the fast components in
its integral and Eq. 19 will be valid.

N Different Channels

Consider a system with N channels each with a stablef.
limit. The channels are all different in terms of rate
constants and can even have different gating mechanisms.
Since each channel reaches a limit where the fractional

probability of being in each closed state is constant, the
first-transit-time probability distribution of channel j is

Qj(t) f e-it.

The first-transit-time probability distribution for the whole
system is

N

II Qj(t)
j_-

or
(22)QN(t) c e";JN laj

A single exponential of similar form was obtained by
R. Horn using renewal theory for the probability density of
interburst intervals (Horn, 1984). The uncertainty in
assessing whether a burst has ended after the last closure is
comparable to waiting t-. until the fS. limit has been
reached. If rates vary too widely and some channels have
stable slowly decaying activated states, such channels
would reach thef, limit slowly and make the application of
thef,, limit and Eq. 22 problematic.

DISCUSSION

The extension of the stochastic theory of a one-channel
system to an N-channel system is straightforward. In
analyzing a system with many identical channels, the
observed open-time and closed-time distributions can be
used to compute the open-time and closed-time distribu-
tions for a single channel, which can then be compared
with explicit model predictions as derived by Colquhoun
and Hawkes (1981, 1982).
The experimental conditions in many studies involve

large N and a small individual probability of opening.
Under these conditions the binomial distribution goes to
the Poisson distribution and information about the number
of channels is lost. If conditions are altered to increase the
probability of channel opening, N can be determined, but
one-channel stochastic models would no longer be ade-
quate. The theory presented here allows a determination of
one-channel open-time and closed-time distributions from
a crowded data record where N can also be determined.
The computer simulations demonstrate that these meth-

ods work well under ideal conditions. There are limitations
that are faced as data records become increasingly
crowded, especially when the kinetic mechanism is com-
plex. It is difficult to determine systematically how the
uncertainty increases as records become more crowded.
This depends on many factors pertaining to the specific
properties of the channels. A few useful tests help in
evaluating the reliability of these methods. One test in
using Eq. 7 to recover the open-time probability density,
h(t), is to compare the long-time decay constant of GN(t)
with that of h'(t), the open-time density obtained from
single-channel records by neglecting multiple-channel
events. If they are similar, then h'(t) at long times is more a
reflection of QN_ (t) than h(t). The reliability of Eq. 6 at
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long times should be suspected if the error estimate of X+ or
the slowest decay constant from a curve fit to the computed
GI(t) is large. The success of this approach depends on how
well N is known. In practice, the method of likelihood
maximization will provide better estimates ofN (Sachs et
al., 1982; Patlak and Horn, 1982) and should improve the
application of the relations presented here.

Under the less than ideal conditions that are typical in a
patch-clamp experiment, many additional problems can
arise. Rarely are recordings stable enough to obtain a
record containing 20,000 closed times. Fewer events would
lead to greater variability in the number of events in a
lifetime-duration interval. This would amplify the prob-
lems described above. The methods described here would
also encounter difficulty if an attempt were made to apply
them to the analysis of kinetic processes that are faster
than the sampling frequency or amplifier bandwidth used
in an experiment.
The main value in thef,. limit is that it corresponds well

to the limit of low frequency of channel opening. Its
application to the acetylcholine receptor channel may be
questionable because of the various very slow processes
evident in the distribution of closed times (Colquhoun and
Sakmann, 1983; Sine and Steinbach, 1984).
The commonly used approximation strategy of letting y,

the rate of activation, be small has been examined for the
three-state model starting with an exact expression.
Another strategy proposed here is to assume that all but
one of the channels in the system have reached thef,. limit,
where the fraction of unopened channels in a particular
closed state is constant. It is difficult to establish a
procedure for judging the general applicability of the small
y approximation. This will depend on the specific model
and its rate constants, and on the quality of the data. In the
small y limit and the f. limit, the closed-time probability
distributions of the three-state model are very similar (Eqs.
14 and 17). Thus, the condition that the rate of activation is
low is similar to the condition that closures of different
channels rarely follow one another in quick succession.
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