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ABSTRACT We have studied periodic as well as aperiodic behavior in the self-sustained oscillations exhibited by the
Hodgkin-Huxley type model of Chay, T. R., and J. Keizer (Biophys. J., 1983, 42:181-190) for the pancreatic (3-cell.
Numerical solutions reveal a variety of patterns as the glucose-dependent parameter kca is varied. These include regimes
of periodic beating (continuous spiking) and bursting modes and, in the transition between these modes, aperiodic
responses. Such aperiodic behavior for a nonrandom system has been called deterministic chaos and is characterized by
distinguishing features found in previous studies of chaos in nonbiophysical systems and here identified for an
(endogenously active) excitable membrane model. To parallel the successful analysis of chaos in other physical/
chemical contexts we introduce a simplified, but quantitative, one-variable, discrete-time representation of the
dynamics. It describes the evolution of intracellular calcium (which activates a potassium conductance) from one spike
upstroke to the next and exhibits the various modes of behavior.

INTRODUCTION

A wide variety of oscillation patterns have been observed in
membrane potential recordings from (3-cells of isolated
pancreatic islets. Atwater et al. (1) found that as glucose
conentration is increased the response evolves from a
steady state of polarization into a bursting pattern with
interburst period on the order of seconds. As glucose is
increased adequately the bursting gives way to continuous
spiking or beating. At very high glucose concentrations one
finds a steady depolarization. These features are also found
in the theoretical model of Chay and Keizer (2), a model of
the Hodgkin-Huxley (3) type in which the depolarizing
current is due to calcium rather than sodium ions.

Here, we examine in greater detail the transition
between the beating and bursting modes for this theoretical
model. We have found that for certain parameter ranges
the transition regime is characterized by aperiodic
responses-irregular bursting or irregular spiking. We
emphasize that the model is deterministic so that this
irregularity in the response cannot be explained in terms of
any stochastic feature of the biophysical formulation.
Rather, it reflects a not uncommon phenomenon in non-
linear dynamical systems often referred to as deterministic
chaos.

Aperiodic dynamics and the transition from periodic to
aperiodic behavior in other contexts has been studied
ambitiously in recent years by chemists, physicists, and
mathematicians. Some applications include the transition
to turbulence in fluid dynamics (4), sustained oscillations
in open chemical systems (5, 6), dynamics of nonlinear
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electronic circuits (7), and models of population dynamics
in ecology (8). The literature in this area is vast; some
recent reviews are (9-12). Experiments and theory have
identified some distinguishing routes to chaos, i.e., charac-
teristic sequences of successively more complex patterns as
a parameter is adjusted. For example, one may observe a
predictable heirarchy of doublet patterns (period-doubling
cascade) as in (6, 8, 11). Another possibility is intermit-
tency (13) in which long periods of relative regularity are
abruptly and irregularly interrupted by bursts of quite
different activity; the mean duration of regular periods
grows predictably as a critical parameter value is
approached. A useful quantitative tool for studying such
chaotic behavior is a discrete time one-variable representa-
tion of the observed dynamics (e.g., see reference 5-8,
10-20).

Aperiodic responses have been observed both theoreti-
cally and experimentally for excitable cells driven by a
sinusoidal stimulating current (14-16, 26). Period-multu-
pling of the cardiac rhythm under drug application has
been reported (18). Yet we know of no previous systematic
identification of chaos in a model for a nondriven (endoge-
nous) electrically excitable membrane system. Here we
report that the Chay-Keizer model exhibits aperiodic
responses as the parameter kCa (the rate of intracellular
Ca"+ uptake) is varied; decreasing this parameter in the
model represents decreasing the glucose concentration. We
find as kCa is decreased that loss of the regular beating
mode is accompanied by a sequence of period-doublings
which is succeeded by chaotic spiking. As kCa is decreased
further we find that bursts of spikes begin to form.
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However, these bursting patterns are aperiodic until kca
decreases adequately. We have supported and comple-
mented these findings by a description of the dynamics in
terms of a one-variable, discrete-time model that relates
the level of intracellular calcium from one spike upstroke to
the next. This map and its solution behavior correlate well
with the full five-variable Chay-Keizer model. Although
we present quantitative results, our analysis and interpre-
tations are qualitative and we expect that the mechanism
for aperiodic behavior which we have found may be
operative in other excitable system.

THE MODEL AND ITS DYNAMIC
BEHAVIOR

The A-cell model of Chay and Keizer (2) consists of five
first-order, simultaneous, nonlinear equations containing
the following dynamic variables: (a) n, the degree of
activation for the voltage-dependent K+-channel; (b) m,
the degree of activation for the voltage-dependent Ca++-
channel; (c) h, the inactivation for the same channel; (d)
the intracellular calcium concentration, denoted by Ca,
whose rate equation consists of the inward calcium current
and a first-order disappearance of Ca, written as kCa [Ca],
where kCa is the rate constant; and (e) the membrane
potential, V, whose time derivative is proportional to the
sum of ionic currents carried by Ca"+ and K+ ions.
The differential equations representing these five

dynamic variables were solved numerically on a DEC-10
computer (Digital Equipment Corp., Marlboro, MA) with
a Gear algorithm, with absolute and relative error toler-
ances set at 10 '. The parametric values used for our
computations were taken from Table 1 of Chay and Keizer
(2) with the exception of temperature that is taken here to
be 170C.' At this temperature, the plateau membrane
potential of the active phase (i.e., spiking phase) becomes
very close to the minimum repolarizing membrane poten-
tial of the silent phase. Period doublings and chaos shown
below occur in the parameter region where the bursting
mode becomes the beating mode.

Fig. 1 shows an overall view of the bursting-spiking
patterns of the Chay-Keizer model as kca is increased from
0.038 to 0.045 ms- . The left column of plots shows the
time course of membrane potential and the right column
that of intracellular calcium concentration. The uppermost
panels (for kCa = 0.038 ms-') exhibit a periodic bursting
pattern with the following qualitative features. The spikes
appear to ride on a plateau potential and the interspike
interval increases dramatically near the end of the burst.
With each spike there is a net increase in calcium concen-
tration and thereby further activation of the Ca-dependent
potassium conductance. This rising conductance eventu-
ally inhibits the spiking mechanism and leads to the
K+-dominated silent phase. During the silent phase, cal-
cium concentration decreases (through uptake mecha-

'Here the temperature 1 70C corresponds to 3107.

nisms) and a slow depolarization develops. When the
membrane potential reaches threshold for spike initiation
the active phase is rekindled. The computed burst pattern
and this description closely resemble those for experimen-
tally observed (-cell responses in the presence of glucose. A
noticeable quantitative difference is that for the tempera-
ture chosen here the burst has relatively few pulses (com-
pare to Fig. 1 in reference 2).
The lowermost panels in Fig. 1 correspond to sufficient

glucose (kca = 0.045 ms- ) to cause continuous spiking or
beating. In this case there is zero net increment of calcium
from one spike to the next; kca is large enough so that
calcium uptake by intracellular compartments during the
interspike phase just balances the influx from membrane
calcium current during the spike's depolarized phase. The
two intermediate values of kca result in aperiodic
responses; even for much longer simulation times than
shown in Fig. 1, we find no apparent periodicity. We refer
descriptively to these two cases as chaotic bursting (kCa =
0.04 ms-') and chaotic spiking (kCa = 0.0415 ms-1). Such
irregular behavior is not due to numerical artifact nor to
extraordinary parameter settings.
To obtain additional insight into the model's responses it

is useful to view calcium as a dynamic parameter that
regulates the faster time scale spiking mechanism and
induces switching between the active and silent phases.
This is illustrated graphically in the leftmost panels of Fig.
2, where the (five-variable) response trajectory is projected
onto the Ca-V plane. Motion here is clockwise. Consider
first the upper set of panels; these correspond to the
uppermost case of Fig. 1. The periodic burst appears as a
closed curve (upper left) whose upper elongated loops are
the spikes and whose lower flat portion represents the silent
phase. The triple-branched, dashed curve results from a
pseudo-steady-state analysis of the model. When Ca is
treated as a parameter the remaining variables V, m, h, n
form an excitable subsystem that exhibits three different
steady state or rest potentials (dashed curves in left panels)
when kCa lies between the approximate values 0.315 and
1.884 ,uM. With calcium fixed (in this range) the lower
steady potential is stable for the subsystem and the inter-
mediate steady state has a saddle point structure with its
associated threshold separatrix (21). The upper steady
state in this example is not stable, as one might conjecture,
but rather unstable. Moreover, for a subinterval of Ca
values (0.321 _ Ca > -0.713) it is surrounded (a vague
but intuitive notion for the four-variable subsystem) by a
stable Ca-dependent oscillation that corresponds to the
repetitive spiking of the active phase. The minimum poten-
tial of this oscillation is relatively independent of Ca and
this corresponds to the plateau potential of the active
phase. Note, in this model, the upper steady state does not
represent the plateau potential as it does in Plant's (22)
treatment of the R- 15 bursting pacemaker of Aplysia.
Now let us reconsider the burst pattern generated with

Ca as a dynamic variable. As Ca increases from one spike
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FIGURE I Various periodic and aperiodic responses of Chay-Keizer model and dependence upon kc. the (glucose-dependent) uptake rate of
intracellular calcium. From top to bottom kc. = 0.038, 0.040, 0.0415, 0.045 ms-'. Left column shows membrane potential vs. time; right
column displays calcium concentration vs. time. Voltage and concentration scales are identical in all panels. Second row of panels has longer
time duration (18 s) than others (7.2 s) to illustrate lack of periodicity in burst activity. Note that range of calcium variation in beating cases is
much less than in bursting cases.
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FIGURE 2 Phase space analysis of bursting based on two-variable projections of solutions to five-variable Chay-Keizer model. Two rows of
panels here correspond to two top rows of Fig. 1: kc. = 0.038, 0.040 ms-'. Dashed curves (in left panels) represent multiple steady-state
potentials of model with calcium as fixed parameter. Upper left case shows the Vvs. Ca closed orbit of periodic bursting. Silent phase begins
when trajectory falls below threshold (middle dashed curve); active phase reentered after threshold and lower steady state coalesce and
disappear. The corresponding n vs. V projection (upper right) illustrates that successive interspike trajectories pass closer to saddle point
threshold (crosses, vertical arrows, and primed numbers) until downstroke of fifth spike falls below threshold. Lower left case illustrates how
trajectory of chaotic bursting pattern reenters active phase prematurely (inset magnifies one example; inset region defined by lines from axes

tics). The n vs. V projection (lower right) shows mechanism: downward drift of threshold actually overtakes polarizing spike trajectory (see
inset magnification). Numbered triangles and crosses (lower panels) represent trajectory and threshold positions, respectively, at successive
times.

to the next during the late active phase the threshold
voltage and interspike plateau potential become closer.
Finally, the burst terminates when the threshold exceeds
the instantaneous plateau potential following the spike
downstroke.

These features and the saddle point structure are

revealed even more clearly in the upper-right panel of Fig.
2, which shows the spike trajectories of the burst projected
onto the V-n plane. Here, we have magnified the interspike
phase when voltage is near its plateau value. Successive
spikes are numbered one through five. Crosses represent
pseudo-steady-state values of V, n for the saddle point
corresponding to the calcium level when the spike down-
stroke enters the picture from above. Because the third and
fourth trajectories are above the threshold saddle, they are

each followed by another spike. Note how these trajecto-
ries (especially the fourth) that pass close to the saddle
exhibit the incoming and outgoing directions of that singu-
lar point. When the fifth spike downstroke enters the
picture it is below threshold so the trajectory sweeps

downward abruptly, the burst terminates, and voltage
decreases to its minimum during the silent phase. The
active phase is not reentered until after the trajectory
passes beyond the dashed curve's knee where the threshold
and lower pseudo-steady state coalesce. We remark that,
although not for these parameter values, one typically sees

the silent phase trajectory more closely track the lower
pseudo-steady state of polarization. We further mention
that from the above phase space analysis we can interpret
more easily the decreased spike frequency near the end of
the burst. This occurs because the interspike trajectory
slows substantially when it passes close to the threshold
saddle point.

Next, we focus on the lower panels of Fig. 2, which
correspond to the chaotic bursting case of Fig. 1. A
noticeable difference here from the periodic bursting case

above is that the active phase is reentered prematurely, i.e.,
after the trajectory has fallen below threshold it crosses

back above threshold before Ca has decreased to below the
dashed curve knee. An example of this premature reentry
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is shown in the inset magnification. To understand this
behavior we must examine more closely the dynamics of
the Ca-dependent threshold migration and the subsystem
trajectory following the spike down stroke. Again we
exploit the V-n projection (lower-right panel) where the
many spikes of the aperiodic burst become overlaid. The
pointed tail at the lower left of this trajectory corresponds
to the interspike phases of near threshold and plateau
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potential behavior. The inset magnification isolates one
particular threshold crossing event; it corresponds to the
inset of the left panel. The triangles represent time marks
on the trajectory, whereas the crosses represent the posi-
tions of the saddle point determined by the calcium
concentration at the corresponding times. At the first two
times the trajectory is below threshold. However, the
saddle point is migrating leftward faster than the V-n
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FIGURE 3 Sequence of period-doubling patterns as kc, is decreased from 0.045 ms-' (the case of periodic beating). Left column: membrane
potential vs. time; middle column: calcium concentration vs. time; right column: membrane potential vs. calcium concentration. Voltage time
course shows spike doublets, whereas middle and right columns reveal greater detail of patterns. All panels in a given column have same

scale.
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trajectory and overtakes it before the third time mark.
When this happens the V-n trajectory turns around, a spike
upstroke is initiated, and the active phase is reentered
prematurely. A major factor for this occurrence is the
similar slow time scales of the voltage trajectory and the
Ca-dependent saddle point migration. For parameter set-
tings in which the repolarization of the silent phase is very
rapid, the threshold has little opportunity to overtake the
V-n trajectory and thereby cause premature reentry. Here,
the repolarization is slow because the threshold and lower
pseudo-steady state are very close together (so dV/dt is
small when the trajectory passes between them). Also, the
larger value of kCa makes the threshold migration relatively
faster, which contributes to the opportunity for reentry.

In Fig. 3 we illustrate another aspect of the model's
behavior that complements our observations of chaos in
this system. Here the starting point (upper row) is the
periodic beating pattern from Fig. 1. As kCa is then
decreased (proceed downward in Fig. 3), we observe a
cascade of period doublings; the approximate periods are
To, 2TO, 4TO, 8 TO, where To is the interspike interval of the
basic beating pattern in the upper panels. Although the
voltage time courses show little variation in the doublet
patterns from one case to the next, the calcium records
(middle column) reveal the fine structure of the successive
period doublings. The Ca-V projections (right column)
show vividly how a closed orbit bifurcates and is succeeded
by a closed orbit with twice as many loops. At bifurcation,
the period of the observed response doubles exactly. This
bifurcation phenomenon is caused by loss of stability of a
periodic solution and we shall discuss it further in the
following section. This period-doubling cascade is evi-
dently the route that leads to the chaotic beating pattern of
Fig. 1.

APPROXIMATION BY A ONE-VARIABLE
DYNAMIC MODEL

To motivate a one-variable dynamic model we again adopt
the view of calcium concentration as a regulating dynamic
parameter. We observe that throughout the active phase
the upstroke-downstroke segments of the successive spikes
are nearly identical (e.g., see the V-n trajectories in lower
right of Fig. 2). Thus, because V, m, h, n follow essentially
the same trajectory during each spike upstroke we may
describe approximately the dynamics of this five-variable
system by considering the changes in the calcium level
from one upstroke to the next. For this we let C denote the
calcium concentration at the -45-mV upcrossing of a
spike. Then by using the typical values of m, h, n for the
-45-mV upcrossing, along with V = -45 mV and Ca = C,
as initial conditions we integrate numerically the five
Chay-Keizer equations to obtain the calcium concentra-
tion F(C) at the next -45-mV upcrossing. By considering
a range of C values we thus generate the graph of F(C).
The evolution of Cn the calcium level at the nth spike
upstroke to C, I is then described by the difference equa-

tion (or discrete map):

C.+ = F(Cn). (1)

We remark that although time is discrete in this formula-
tion the implicit time increments are not equal because the
interspike interval increases with Ca throughout the active
phase. The approach we follow here is similar to that
employed in (19, 20) to describe complex oscillation pat-
terns of a chemical system.

In Fig. 4 we present the maps (shown dotted) corre-
sponding to the four period-doubling examples of Fig. 3.
They are qualitatively similar: a single-humped curve that
crosses the 450 ray or 1:1 line exactly once. Where F is
above the 1:1 line, there is a net increase of calcium with
each spike. For adequate Cn the curve falls below the 1:1
line and this corresponds to continuous trajectories that fall
below threshold after a spike but then cross back above
threshold (prematurely) without following a long silent
phase. This portion of the right branch of F(C) is steep
because the reentry phenomenon occurs for only a narrow
range of calcium levels. Where F crosses the 1:1 line,
Cn+ = Cn and this fixed point corresponds to a discrete
periodic solution of Eq 1. This fixed point of the upper left
panel approximates the periodic beating response of the
continuous model (Fig. 1 bottom and Fig. 3 top). Each of
the other panels of Fig. 4 exhibits a similar fixed point,
however, in those cases it is unstable and so does not
represent stable periodic beating. Note that a fixed point of
a discrete dynamical model like Eq. 1 is stable if dF/dC <
1 (unstable if dF/dC I> 1), where dF/dC is the slope ofF
at the fixed point. Because this slope becomes steeply
negative as kCa decreases in Fig. 4 the fixed point becomes
unstable.
The following features of single-humped maps are now

well described in the literature (see reference 8 and the
reviews and references in 9-12). When the fixed point
becomes unstable a pair of nearby points (one on each side)
is born to form a stable 2 cycle (upper-right panel). As the
parameter and map are varied further one finds a hierar-
chy of destabilizations and bifurcations to stable cycles of
period 2n that eventually leads to a regime of chaos.
The stable periodic 2'-cycles of the map are the discrete

analogs of the period-doubled solutions of Fig. 3. We have
indicated by crosses on these maps the calcium values at
the - 45-mV upcrossings for the continuous solutions from
Fig. 3 and these points fall on the map. For illustration we
have indicated the presumptive discrete trajectories for the
2To and 4To cases. Successive iterates C, alternate to the
right and left of the fixed point and are associated with
long and shorter succeeding interspike intervals, respec-
tively; this corresponds to the doublet appearance of the
continuous voltage records. We have also numerically
iterated the map according to Eq. 1 and thereby verified
convergence of the discrete solution to the corresponding
discrete 20, 2', 22, and 23 cycles.

Next we interpret the patterns of Fig. 1 in terms of the
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FIGURE 4 One-variable map representation (shown dotted) for discrete time dynamics of calcium concentration from one spike upstroke to
the next (see description in text and Eq. 1). Four panels here correspond to period-doubling sequence of Fig. 3. Crosses represent calcium
concentration at -45-mV upcrossing of continuous solution of Fig. 3. Fixed point of map (intersection with 450 line) corresponds to stable
periodic beating in one case (kc, = 0.04 ms-'); but in other cases fixed point is unstable and corresponds to unstable periodic solution of
Chay-Keizer model.

map. For this the graph of F has been computed over a
larger range of C values; computed maps are shown in Fig.
5 along with corresponding calcium data (shown as
crosses) from the continuous solutions. Again the maps are
qualitatively similar but now we clearly see evidence of the
silent phase. For large enough Cn there is a large drop in
calcium before the next upstroke. This reentry to the active
phase occurs in a characteristic way after the voltage
threshold and pseudo-steady-state potential of the silent
phase have coalesced (see dashed curves of the Ca- Vpanels

of Fig. 2). Moreover, this reentry point is relatively inde-
pendent of the initial calcium level when it is high enough.
Hence the map is flat for large C,. As in Fig. 4, the steeply
sloping right branch corresponds to premature reentry that
occurs for any value of kca but only for a narrow range of
Cn values.
The effect of decreasing kCa is to increase the net

increment of calcium from one spike to the next and
thereby basically to move the map upward. This moves the
fixed point onto the steep portion of the right branch; the
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FIGURE 5 One-variable map representations (Eq. 1) for parameter values of Fig. 1. Crosses show calcium concentration at -45-mV
upcrossing of continuous solutions of Fig. 1. For example, the case of periodic beating is represented by five points in upper left panel. The
chaotic patterns nearly fill out subintervals over which the map is defined.

periodic beating pattern becomes unstable. To understand
the chaotic patterns we notice carefully what action the
map has on points near the relatively flat hump. Suppose
such points are mapped onto the destabilizing steep right
branch. Intuitively, any perturbation on such a C,, places a
large uncertainty on the successor C,,,1. A periodic cycle
containing such points is likely unstable. In the case of
chaotic beating the hump is mapped only part way down
the negative slope region and we see only fine-structured,
locally contained chaos. For the case of kca = 0.04 ms-'
however, points near the hump are mapped onto nearly the
entire length of the destabilizing branch that in turn sends
points over a large range of the left branch. Hence we
observe premature reentry over a large range of calcium
(lower left of Fig. 2) and the aperiodic response has a

bursting appearance. Finally, for kCa = 0.038 ms-1, the
map ascends sufficiently for the hump to be mapped onto
the lower flat portion and we observe the stable five-spike
burst pattern. If kCa were decreased even further the left
branch would move higher corresponding to greater net
increment in calcium per spike. Hence fewer spikes would
occur during the active phase. For kCa = 0.035 ms-', we
find a periodic four-spike bursting pattern. There may, but
not necessarily, be a narrow parameter range of fine-
structured period-doubling and/or chaos between the five-
and four-spike regimes.

DISCUSSION

We have examined some aspects of a model for excitable
membrane electrical oscillations. We have shown that the
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Chay-Keizer model for the pancreatic f-cell exhibits ape-
riodic responses in the parameter range for transition
between the bursting and beating modes of activity. This
dynamic behavior was illustrated numerically and ana-
lyzed via phase space concepts (threshold separatrices,
multiple steady states, closed orbits, and reduced subsys-
tems) and in terms of one-variable discrete maps. The
success of these approaches rests on the biophysical moti-
vation that calcium plays the influential role of a regu-
lating dynamic parameter. This allows for a pseudo-
steady-state analysis and also includes consideration of the
subsystem's dynamics. For the discrete model, calcium is
the only dynamic variable but the spike action potential
and slow calcium uptake mechanisms are both accounted
for in this description of the evolution of calcium level from
one spike upstroke to the next.
The map representation is computed numerically here

although, based on the phase space analysis, its general
form could be qualitatively deduced. It allows a compact
and simplified way to understand the beating and bursting
modes and also the chaotic transition behavior. When kCa
is high there is a smaller net increment in calcium from one
spike to the next. This means the map's left branch is close
to the 1:1 line and the fixed point is stable (Fig. 5, lower
right). When kCa is low the net increment is greater
(because of less uptake between spikes) and the map is
higher. Then the fixed point corresponding to periodic
beating is unstable and trajectories visit both the left
branch and the lower flat right portion to develop a
periodic bursting pattern (Fig. 5, upper left). For interme-
diate parameter values the map sends an interval of points
near its maximum to the destabilizing steeply descending
right branch and hence aperiodic behavior is observed.
The continuous model and map will maintain their

qualitative features over a range of parameter variations so
that one may expect aperiodic behavior elsewhere in
parameter space. In some regimes, the parameter range for
aperiodic activity may be very small or even nonexistent,
for example, if transition behavior is dominated by hystere-
sis in which parameter intervals for different response
patterns are overlapping (e.g., see reference 20). Here, we
have adjusted the temperature to enhance the kCa range
over which chaos is found. In this case, the spiking plateau
potential is close to the silent phase minimum potential.
We suggest that this may provide at least one observable
signature by which to guide parameter selection for possi-
ble systematic experimental investigation of aperiodic phe-
nomena in the transition between bursting and beating.
While irregular activity has been observed in the fl-cell
preparation (e.g., see Figs. 6-7 of reference 23), it has not
been studied specifically. In this regard, we note that the
conditions described above may be induced in the f-cell
system by applying TEA and lowering temperature (I.
Atwater, personal communication).

Convincing detection of deterministic chaos is facilitated
if parameters can be controlled adequately and appropriate

variables can be measured experimentally to identify (via
systematic and slow parameter tuning) features of a known
route to chaos such as period doubling. In some situations,
the easily accessible variables are sufficiently revealing. In
cardiac rhythm studies for example, recordings of mem-
brane potential in the case of in vitro experiments (14) or
arterial blood pressure for intact animals (18) have been
useful. In our theoretical studies the voltage time courses of
quite similar doublet patterns do not reflect visually the
details of period-doubling.2 In such a case recordings of the
intracellular calcium level would be quite helpful. How-
ever, for some preparations, this experimental possibility
awaits further technical development. When such record-
ings are available then one might even hope to generate an
experimental one-variable map analogous to the theoreti-
cal ones computed here. We believe that for strongly
calcium-dependent systems it is insightful to formulate
simplified one-variable models in terms of calcium.
The mechanism for the oscillations explored here may

be summarized roughly as follows. There is an underlying
subsystem that exhibits some features of excitability and
that has multiple steady and/or oscillatory states over a
range of values for an identified parameter. This parame-
ter is a dynamic variable (often acting on a slower time
scale) for the full system that modulates the subsystem
behavior. It exhibits net increase or decrease depending on
which pseudo steady or oscillatory state of the subsystem is
currently being expressed. When sufficient increases or
decreases have accumulated, then activity switches to a
different state because the current state of the subsystem
has destabilized or disappeared (through coalescence with
another state). This general interpretation may be applied
in a variety of systems (19, 20, 22).3 Consequently, such
oscillatory systems may exhibit aperiodic behavior espe-
cially in parameter regions of transition behavior. Numer-
ical simulations (not described here) of a bursting neuron
model (24) also reveal aperiodic solutions. We remark that
the models themselves need not be complicated; three
variables are sufficient for continuous membrane models
(25).
The aperiodic behavior that we report is inherent in the

deterministic Chay-Keizer model. An experimental prepa-
ration or low-precision numerical calculation may be sub-
ject to detectable random noise. Hence, both deterministic
and stochastic factors may contribute to observed aperio-
dicity. (We have verified the deterministic cause for the
Chay-Keizer model by comparing our numerical results to

2To improve identifiability one might use plots (as described in reference
I 1) of V(t + T) vs. V(t) for T in some reasonable range and/or reliable
interspike interval data.

3After this paper was submitted for publication the authors learned of a
recent modeling study (Hindmarsh, J. L., and R. M. Rose. 1984. Proc.
Roy. Soc. Lond. B. 221:87-102) of endogenous bursting in which
aperiodic behavior was detected. The mathematical model, however, was
not based upon a biophysical model as is the Chay-Keizer model.
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those obtained with different integration schemes and
error tolerances.) Studies of deterministic chaos have
revealed parameter regimes with characteristic, and
extremely flne-structured, interleaving regions for periodic
and aperiodic behavior (e.g. see references 6, 11). The
identification of predictable patterns, their parameter
regions, and their order of appearance is a typical method
by which one presents an argument for deterministic
chaos. Dependent on the level of noise, one can expect
many of these details to be obscured yet some features of a
canonical route to chaos may be discernible just before the
first appearance of aperiodicity. Indeed, Guevara et al.
(14) identified various complex periodic patterns prior to
observing chaos in the heart cell aggregate. The islet
preparation however appears to be less tightly coupled (one
typically finds near synchrony of burst patterns but not of
individual spikes from cell to cell) so that the difference in
properties between cells and the presence of noise may
preclude distinguishing the two factors for aperiodicity,
especially on the time scale of individual spikes. Perhaps a
unicellular preparation or tightly-coupled islet might be
better for quantitative comparisons between theory and
experiment of periodic phenomena in endogenously burst-
ing systems.
One may ask about the implications of aperiodic behav-

ior from deterministic biological systems. In some cases,
such as cardiac arythmias or neuronal epileptic activity,
physiological pathologies may be direct functional conse-
quences (26). In other cases functional meaning is less
clear. If for the normally operating pancreas, islets are not
synchronized with each other then periods of chaotic
activity of individual islets may have little effect on pan-
creatic output. Nevertheless, for biophysical interpretation
of experimental data on isolated islets or neurons one need
not invoke hypotheses about environmental noise to
account for observed aperiodic behavior. In many cases,
such behavior can be quite consistent with, even supportive
of, a simple deterministic model without stochastic ele-
ments.
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