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When we consider the extraordinary abilities of our 
brains, we tend to focus on much-valued capabilities 
for the manipulation of abstract symbols and for 

the representation of the self. It is these capabilities that allow 
us to use language, do mathematics, create music, play chess, 
and maintain, as we do all this and much more, a unifi ed 
and continuous sense of who we are. As much as we delight 
in these features, most likely to characterize the human 
brain as somewhat unique within an evolutionary scale, a 
crucial function of our brains, as well as the brains of many 
other organisms, is to provide an interface with the external 
world. This interface has two fundamental components: 
the processing of sensory information and the control of 
movement.

Sensory information is typically represented by the 
collective activity of large populations of neurons. Consider, 
for instance, neurons that fi re action potentials in response to 
visual inputs. The spiking activity of an individual neuron in 
this ensemble represents a reduced part of the visual world: 
the receptive fi eld. Within its receptive fi eld, the neuron is 
sensitive to the presence of a few specifi c features, such as an 
edge separating brightness from darkness, or an illuminated 
bar against a dark background. However, neurons are seldom 
all-or-nothing feature detectors; they respond not only to 
the presence or absence of features but also to their values. 
Neurons use their ability to produce graded responses 
by controlling the number of spikes they fi re, in order to 
encode the value of continuous features such as the location 
of an edge or the orientation of a bright bar. This ability 
to encode continuous features through graded responses 
leads to the concept of a tuning curve, which describes the 
average number of spikes fi red by a neuron in response to 
specifi c features of a visual stimulus. A population of neurons 
will therefore implement a distributed code in which each 
participating neuron responds best to certain feature values 
and less well to others. Each neuron will contribute to the 
ensemble information by responding to the visual input 
according to its own preferred values for the relevant features. 

Consider a visual input such as an illuminated bar: its 
location, orientation, and brightness are each described by 
a continuous variable, and n such variables are needed to 
describe n features. But neural responses are noisy: even if 
the values of these n features are held constant, the response 
will still vary from trial to trial. It is useful to describe this 
variability as fl uctuations around a mean value; it is precisely 
this mean value that is captured by the tuning curve. Much 
has been investigated about the relation between tuning 
curves and the ability to process information. For instance, 
if information is typically represented by a population of 
neurons that respond quite broadly to a range of feature 
values, how will the accuracy of this representation depend 
on the width of the tuning curve [1,2]? The answer, it turns 

out, depends crucially on the dimensionality of the encoded 
variable: a sharpening of the tuning curve (a decrease in 
its width) improves the coding accuracy if neurons encode 
only one feature (n = 1), has no effect for n = 2, and actually 
reduces the amount of encoded information for n ≥ 3. Thus, 
only extremely specialized neurons benefi t from narrow 
tuning curves, while neurons that respond to and encode for 
a multidimensional set of features benefi t from broad tuning. 

Accuracy of representation is only one aspect of the 
problem that sensory neurons are engaged in solving. For 
instance, we may consider what tuning curve properties would 
result in a pattern of activity that is maximally informative 
about the various features that characterize a specifi c stimulus 
[3]. Or it might be useful to ask what type of tuning curves 
would result in maximal ability to discriminate between 
two stimuli [3]. Do these two related but not identical 
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Box 1. Glossary
Fisher information provides a useful measure of encoding 
accuracy because its inverse is the Cramer-Rao bound on the 
squared error [12]. To understand the relevance of this bound, 
consider all possible ways of estimating features from neural 
activity, without systematic error. Among these unbiased 
estimators, the optimal, most effi cient readout method [13] is 
the one with smallest variance, as specifi ed by the inverse of the 
Fisher information. 

Mutual information between the response of a population of 
neurons and the features that the collective activity encodes 
for provides a measure of the average amount of information 
about n stimulus features gained through the observation of the 
activity of N neurons [14,15]. 

Response-specifi c information (RSI) focuses on an observed 
response, and computes the amount of information that this 
observation provides about stimulus features [10]. The response 
is held fi xed, and the information gained is averaged over all 
stimuli that could have elicited it. 

Stimulus-specifi c information (SSI) evaluates the information 
content of a stimulus. This stimulus can elicit a distribution of 
responses, each of them characterized by an RSI value. The SSI 
is simply the average RSI over the distribution of responses 
associated with this stimulus [11]. 
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characterizations of optimal performance lead to the same 
solution as to what type of tuning curves are most desirable? 
Another important aspect of population codes is their 
redundancy; it is generally believed that this redundancy 
serves to compensate for the variability of individual neural 
responses, as the population average should improve the 
signal-to-noise ratio. But what happens when this noise is 
actually correlated among neurons in a population? Does the 
information capacity of the population still increase as the 
number of neurons increases [4,5]? 

In order to investigate these and related questions, 
theorists have mostly relied on two distinct mathematical 
tools to characterize performance; these two formal 
measures are the Fisher information, which characterizes 
the effi ciency of reading out the population code, and 
the mutual information, which characterizes the average 
amount of information carried by the neural activity of the 
population about the features it encodes for. These two 
measures of information are not the same, and a signifi cant 
amount of theoretical research has been devoted to clarifying 
the relationships and differences between them [6–8]. To 
develop an intuition about these measures, consider the 
case of a population of neurons that respond to only the 
orientation of a visual stimulus, as measured by a single 
angular variable θ that takes values between −π and +π. 
The activity of a population of N neurons is described as a 
multidimensional response. Each neuron is characterized 
by a tuning curve fi(θ), for i = 1,...,N. The tuning curves are 
all assumed to be bell shaped and identical in form, but the 
peak of the mean fi ring rate occurs at different values of θ for 
different neurons. Each neuron has a preferred orientation 
for which the average fi ring rate is maximum; this is where 
the tuning curve peaks. Let us now consider one of these 
neurons, for which the peak of the tuning curve occurs 
for a preferred orientation  θ0, and ask a simple question: 
if we consider all possible stimulus orientations and the 
corresponding responses, for which stimuli is the response 
most informative? A very interesting puzzle arises when this 
simple problem is considered. If the mutual information is 
computed, the answer is that the most informative responses 
occur for stimuli with θ close to θ0. The most informative 
stimuli are those with orientation around the preferred 
orientation; these are stimuli that elicit, on average, 
maximal responses. If the Fisher information is computed, 
the answer turns out to be different. In this approach, the 
most informative responses occur for stimuli associated not 
with the peak of the tuning curve but with regions where 
the tuning curve has maximal slope. These stimuli have 
orientations quite different from the preferred orientation θ0. 
These orientations are selected because the large slope of the 
tuning curve facilitates the discrimination between different 
but close values of θ. This sensitivity to small changes in 
orientation is lost at the peak of the tuning curve [3,7]. 

We are thus faced with an apparent contradiction: the 
answer seems to depend on the way in which we look at 
the problem! This situation clashes with our expectations 
about the lack of ambiguity of mathematical theories. The 
way out of this puzzle resides in refl ecting upon the nature 
of mathematical models. A mathematical theory provides 
a conceptual framework for analyzing a problem. The 
framework is complemented by analytical and numerical 
tools that lead to solutions. When confronted with a problem, 

the theorist needs to choose a conceptual framework, a 
mathematical probe that will lead to answers. Different 
frameworks are likely to focus on different aspects of 
the problem, and thus illuminate different aspects of its 
underlying structure. In this, alternative mathematical 
theories are not so different from alternative experimental 
tools: they are simply a set of probes that in a complementary 
manner reveal different aspects of the problem. As is often 
the case in experimental work, the resolution of this paradox 
has required the design of a new probe. 

This is precisely the path taken by Daniel Butts and Mark 
Goldman in work reported in this issue of PLoS Biology [9]. 
The key was to go back to the principles of information 
theory and look for a tool better suited to the investigation 
of this problem. In the idealized problem discussed here, the 
question is simple and well posed: which are the stimuli that 
elicit most informative responses? The appropriate tools had 
already been laid out. A response-specifi c information (RSI) 
had been defi ned to characterize the amount of information 
about the stimulus gained by the observation of a particular 
response [10]. The RSI can be computed for every observed 
response, and responses can be ranked according to their RSI 
value. This concept led to a novel and quite useful tool for 
quantifying stimulus-specifi c information (SSI): for a given 
stimulus, characterize the responses it elicits, and compute 
the weighted average of the RSI value of these responses [11]. 
In this framework, the most informative stimuli are those that 
elicit the most informative responses. 

It is the SSI concept that was used by Butts and Goldman 
[9] to re-examine the pending paradox about tuning 
curves. Their investigations revealed a fundamental aspect 
of the problem that had been overlooked: the role of noise. 
They found that in low-noise environments, it is indeed 
advantageous from the information point of view to operate 
neurons in the maximal slope regime, so as to obtain better 
discrimination between similar but different orientations. 
However, fi ne orientation discrimination cannot be reliable 
in high-noise environments. In this regime, it is advantageous 
to operate neurons in the maximal fi ring regime, close to 
the peak of their tuning curves. This fi nding provides an 
intuitively satisfying solution to the paradox, and suggests the 
potential existence of an adaptive readout mechanism that 
would adjust its strategy according to the noise level. 

The relevance of the Butts and Goldman paper [9] goes 
beyond the resolution of a long-standing puzzle. In its 
elegant formulation, it illustrates the power and limitations of 
mathematical modeling. This story reminds us of the need to 
match the probe to the problem—this is as true in designing 
an experimental setup as it is in formulating the appropriate 
mathematical formalism. �
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