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Terminal restriction fragment length polymorphism (T-RFLP) is a culture-independent method of obtaining
a genetic fingerprint of the composition of a microbial community. Comparisons of the utility of different
methods of (i) including peaks, (ii) computing the difference (or distance) between profiles, and (iii) perform-
ing statistical analysis were made by using replicated profiles of eubacterial communities. These samples
included soil collected from three regions of the United States, soil fractions derived from three agronomic field
treatments, soil samples taken from within one meter of each other in an alfalfa field, and replicate laboratory
bioreactors. Cluster analysis by Ward’s method and by the unweighted-pair group method using arithmetic
averages (UPGMA) were compared. Ward’s method was more effective at differentiating major groups within
sets of profiles; UPGMA had a slightly reduced error rate in clustering of replicate profiles and was more
sensitive to outliers. Most replicate profiles were clustered together when relative peak height or Hellinger-
transformed peak height was used, in contrast to raw peak height. Redundancy analysis was more effective than
cluster analysis at detecting differences between similar samples. Redundancy analysis using Hellinger dis-
tance was more sensitive than that using Euclidean distance between relative peak height profiles. Analysis of
Jaccard distance between profiles, which considers only the presence or absence of a terminal restriction
fragment, was the most sensitive in redundancy analysis, and was equally sensitive in cluster analysis, if all
profiles had cumulative peak heights greater than 10,000 fluorescence units. It is concluded that T-RFLP is a
sensitive method of differentiating between microbial communities when the optimal statistical method is used
for the situation at hand. It is recommended that hypothesis testing be performed by redundancy analysis of
Hellinger-transformed data and that exploratory data analysis be performed by cluster analysis using Ward’s
method to find natural groups or by UPGMA to identify potential outliers. Analyses can also be based on
Jaccard distance if all profiles have cumulative peak heights greater than 10,000 fluorescence units.

Culture-independent methods of microbial community anal-
ysis involve the analysis of signature biochemicals extracted
directly from environmental samples. Molecular genetic tech-
niques, utilizing extracted genomic or ribosomal nucleic acids,
allow microbial community analysis to be coupled with a phy-
logenetic framework (1, 29). The use of such techniques has
shown that methods relying on growth of the organisms ex situ
reveal a small fraction of the diversity present in soil microbial
communities (see, for example, references 27 and 28). This
uncultured diversity includes both species that are closely re-
lated to cultured organisms and species that represent virtually
uncultured phylogenetic lineages (6, 8, 12).

Most molecular methods involve the separation of PCR
amplicons based on differences in DNA sequence of genes of
functional or phylogenetic interest, often the 16S rRNA gene.
These include denaturing gradient gel electrophoresis (20),
ribosomal intergenic spacer analysis (2), single-strand confor-
mation polymorphism (25), amplified ribosomal DNA restric-
tion analysis (19), and terminal restriction fragment length
polymorphism (T-RFLP) (3, 16). These methods do not reveal

diversity per se unless the community is very simple, since only
a fraction of the species indicated by DNA rehybridization
rates or sequence analysis of a clone library can be visualized
on a gel (4, 21). These methods do provide a way to determine
the relative abundance of common species present in a sample,
free of the constraint that the organisms must be amenable to
growth in the laboratory. They are valuable as rapid methods
of finding major differences between communities and testing
hypotheses based on a comparison of samples.

T-RFLP has been shown to be effective at discriminating
between microbial communities in a range of environments
(26). It involves tagging one end of PCR amplicons through the
use of a fluorescent molecule attached to a primer. The am-
plified product is then cut with a restriction enzyme. Terminal
restriction fragments (T-RFs) are separated by electrophoresis
and visualized by excitation of the fluor. T-RFLP analysis pro-
vides quantitative data about each T-RF detected, including
size in base pairs and intensity of fluorescence (peak height).
T-RF sizes can be compared to a database of theoretical T-RFs
derived from sequence information (for example, see refer-
ences 5 and 18). T-RFLP profiles have been shown to be
relatively stable to variability in PCR conditions (22, 23).

Presently, the least-well-defined technical aspect of T-RFLP
is the data processing and analysis of profiles. A wide range of
methods has been used in the literature. The goal of this study
was to find an optimal procedure for use in comparing complex
environmental T-RFLP profiles, resulting in the lowest prob-
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ability of type II errors (not finding differences between pro-
files when they are actually different). Analytical replicates
were used in this assessment so that the actual relationships
between some of the profiles would be known with certainty,
allowing us to test the statistical methods themselves. Several
aspects of analysis of T-RFLP data were examined, including
(i) rules for including peaks in analysis, (ii) the basis for how
differences between aligned profiles are measured (i.e., the
distance metric used), and (iii) analysis of the relationships
between profiles. The sensitivity of statistical methods to these
factors is dependent not only on the analytical consistency of
replicate profiles, but also on the degree of divergence between
communities. We used four sets of samples, representing a
range of biological complexity and environmental differentia-
tion, to determine the relative utility of different methods of
statistical analysis of T-RFLP profiles.

MATERIALS AND METHODS

(i) KBS soil fractions. Soil samples were collected from agricultural field plots
of the Long-Term Ecological Research (LTER) site and the Living Field Lab at
the W. K. Kellogg Biological Station (KBS) in southwestern Michigan. Soils at
this site are Typic Hapludalfs and are approximately 43% sand and 40% silt (24).
Samples were 0.9 to 1.3% organic matter, with a pH of 6.2 to 6.7. Field treat-
ments included continuous alfalfa, conventionally managed continuous corn, and
organically managed first-year corn in a corn-corn-soybean-wheat rotation with
cover crops (10) (http://lter.kbs.msu.edu). Three intact soil cores, weighing ap-
proximately 350 g, were excavated and pooled for each of four field plots of each
treatment. Sampling depth was 10 cm. The soil was fractionated into rhizosphere,
shoot residue, and light and heavy fractions from various sizes of soil macroag-
gregates (C. Blackwood and E. Paul, submitted for publication). Samples were
stored at 4°C until fractionation was complete, which was within 8 weeks.

(ii) Bioreactor samples. Bioreactor samples were taken from a fluidized-bed
reactor with activated carbon as the particulate carrier. The reactor was inocu-
lated with an anaerobic enrichment culture derived from Milan soil (see below)
and fed continuously with ethanol and essential nutrients. Samples were re-
moved, pelleted, and stored at �20°C until needed.

(iii) KBS alfalfa soil samples. Ten-gram soil samples were collected from five
locations within a 1.5- by 2-m plot within an alfalfa field at the KBS LTER site.
Samples were collected from the layer of soil 2 to 4 cm deep. Samples were
immediately placed on dry ice and kept frozen until processing. These samples
were part of a larger study of the spatial structure of soil microbial communities.

(iv) Multiregion soil samples. Soils were collected from Sault Saint Marie,
Mich., Milan, Tenn., and Hawthorne, Nev. (pH 7.0, 6.3, and 7.9, respectively; the
Nevada and Tennessee soils were provided by Robert Hickey, RETEC Group,
Inc.). One 500-g sample of soil was removed from the top 5 cm of soil, homog-
enized, and aliquoted to 100-ml specimen containers. Samples were stored at
�20°C until needed.

T-RFLP experiments 1 and 3. Mixed community DNA was extracted from 0.2-
to 0.3-g soil fractions with the Ultraclean soil DNA extraction kit (Mo Bio
Laboratories, Solana Beach, Calif.), including a 10-min. bead-beating step per-
formed with a vortexer. DNA was extracted from the 10-g alfalfa soil samples by
using the large-scale Ultraclean soil DNA extraction kit, including a 30-min.
incubation at 65°C with rotary shaking with beads. Optimization of PCR was
performed for each sample by adjusting the amount of genomic DNA extract
used (0.4 to 2 �l) to obtain a strong band on an agarose gel, without visible
nonspecific product. This method was found to be more efficient than quantita-
tion of the DNA in each sample, which did not necessarily result in optimal PCR
conditions. PCR was performed by using a reaction mixture of 0.2 �g of bovine
serum albumin (Boehringer Mannheim Biochemicals, Indianapolis, Ind.)/�l, 160
�M each deoxynucleoside triphosphate, 3 mM MgCl2, 0.05 U of Gibco Taq DNA
polymerase/�l, 1� PCR buffer (Gibco BRL, Gaithersburg, Md.), and 0.4 �M
each primer. The primers used were the general eubacterial primer 8-27F (AG
AGTTTGATCCTGGCTCAG, with Escherichia coli numbering and with se-
quences derived from reference 1) (manufactured by Integrated DNA Technol-
ogies, Coralville, Iowa) and the universal primer 1392-1406R (ACGGGCGGT
GTGTACA) amplifying the 16S ribosomal gene. PCR was performed in a
Perkin-Elmer 9600 thermocycler by using an initial denaturation step of 95°C for
3 min, followed by 22 cycles of a program consisting of denaturation at 94°C for

30 s, primer annealing at 55°C for 30 s, and extension at 72°C for 30 s. PCR tubes
were placed in the thermocycler when the block temperature reached 80°C. A
final extension at 72°C for 7 min was performed after the programmed number
of cycles was complete.

PCRs (50 to 75 �l) were performed in triplicate under the optimal conditions
found previously, except that the forward primer was 0.6 �M hexachlorofluors-
cein (hex)-labeled 8-27F (Integrated DNA Technologies). PCR replicates were
then pooled and purified by using the Promega PCR Preps Wizard kit as directed
by the supplier, except that elution was performed with 19 �l of sterile water
heated to 55 to 65°C. Five microliters of purified PCR product (approximately
600 ng) was mixed with 5 �l of restriction enzyme master mix containing 1.5 U
of restriction enzyme (RsaI)/�l and 1� reaction buffer (Gibco). Restriction
reactions were incubated for 3 h at 37°C, followed by 16 min at 65°C to denature
the restriction enzyme. Three microliters of the restricted PCR product was
mixed with 1 �l of 2500 TAMRA size standard (Applied Biosystems Instru-
ments, Foster City, Calif.). DNA fragments were separated by size by electro-
phoresis at 1,800 V for 14 h on an ABI 373 automated DNA sequencer at
Michigan State University’s DNA sequencing facility. The 5� terminal fragments
were visualized by excitation of the hex molecule attached to the forward primer.
The gel image was captured and analyzed by using Genescan version 3.1 analysis
software. A peak height threshold of 50 fluorescence units was used in the initial
analysis of the electropherogram. Negative controls (no genomic DNA) were
conducted with every PCR and run on several Genescan gels. Contamination in
PCRs was not detected. Small peaks occasionally appeared in negative control
lanes on Genescan gels, but the cumulative peak height was always below 1,000
units.

T-RFLP experiments 2 and 4. Amplifications of bioreactor and multiregion
soil samples were performed as above with the following modifications. The
reverse primer used was 1492R (GGTTACCTTGTTACGACTT), and one
100-�l PCR was performed per sample with 0.2 mM deoxynucleoside triphos-
phates, 1.5 mM MgCl2, 0.4 �M hex-labeled 8-27F primer, 0.2 �M 1492R primer,
0.1 �g of bovine serum albumin/�l, 0.2 ng of template DNA/�l, and 0.05 U of
Taq polymerase (PE Amplitaq)/�l. Thermocycling was performed in a Gene-
Amp 2400 PCR System thermal cycler (Perkin Elmer, Norwalk, Conn.) at 94°C
for 5 min followed by 30 cycles of 94°C for 50 s, 55°C for 50 s, and 72°C for 1 min
30 s, with a final extension step at 72°C for 7 min. Amplifications were cleaned
and concentrated by using Microcon YM-100 centrifugal filters (Millipore Corp.,
Bedford, Mass.). Restrictions with HhaI, MspI, and RsaI were performed inde-
pendently.

Replication experiments. For the set of KBS soil fraction samples, one PCR
replicate (generated by pooling three PCRs) was digested per sample. Two
aliquots of digest from each of 32 samples were run on two different Genescan
gels. Hence, replication was at the level of the Genescan gel.

For the remaining sets of samples, two PCR replicates were generated for each
sample. For the alfalfa soil samples, six PCRs were run per sample, and three of
these were pooled for each PCR replicate, while for the bioreactor and multire-
gional samples, each PCR replicate was from one PCR. The PCR replicates were
then restricted, and two aliquots of each restriction were run on a Genescan gel,
resulting in a total of four replicate T-RFLP profiles per sample. Replication was
at the level of the PCR, restriction, and Genescan lane.

Data processing. Data sets were constructed by using minimum peak height
thresholds of 50, 100, and 200 fluorescence units. Rarefaction was also used as a
method of determining which small peaks should be included in the analysis (7).
Occasionally, the baseline fluorescence of the T-RFLP electropherograms was
elevated (i.e., fluorescence did not reach zero between widely spaced peaks). If
the value of the baseline could be ascertained, the baseline was subtracted from
peak height in that region. If the baseline varied inconsistently, the sample was
rerun. Data sets were also created by using either all profiles or only profiles with
a cumulative peak height greater than 10,000 fluorescence units. T-RFLP profiles
were aligned by inspection of the electropherogram and by manual grouping of
the peaks into categories. Alignment of peaks by manual inspection was based
primarily on the size of peaks in base pairs, although the pattern of peaks was
also used to determine their alignment when groups of overlapping peaks were
found between samples. The identities of samples were concealed during manual
alignment.

Statistical analyses. Several different distance metrics were compared, includ-
ing Euclidean distance between profiles calculated from either raw or relative
peak heights, Hellinger distance, and Jaccard distance (JD) (equal to 1 minus
Jaccard’s coefficient). Hellinger distance is equivalent to the Euclidean distance
between profiles after square root transformation of relative peak heights (14).
Jaccard’s coefficient is based on binary variables of peak presence and is equal to
the ratio of the number of matching T-RFs to the total number of T-RFs present
in either profile (15).
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Statistical methods of analyzing the relationships between T-RFLP profiles
that were compared included redundancy analysis and two methods of hierar-
chical cluster analysis, namely, the unweighted-pair group method using arith-
metic averages (UPGMA) and Ward’s method (SAS Institute, Inc.) (9). The
cophenetic correlation was calculated for dendrograms by using an algorithm
written in SAS IML. Evaluation of clustering errors was performed by using
dendrograms showing the hierarchical relationships between T-RFLP profiles as
found by the clustering procedure. The number of clusters examined was chosen
to be the number required to explain a constant arbitrary proportion of the
variance in the entire data set (50 percent). An error was counted when two
replicate T-RFLP profiles (i.e., profiles derived from the same DNA extract)
were clustered into different groups.

Statistical significance of the difference between samples, and, as a corollary,
the similarity of replicate profiles, was tested by using redundancy analysis with
Canoco software (Microcomputer Power, Ithaca, N.Y.). This compares a pseu-
do-F statistic, calculated from the proportion of the total variance explained by
sample identity, to the values of F of 9,999 random permutations of the sample
identities of the profiles (15). Redundancy analysis was also used to test the
significance of differences between replicate PCRs, with permutation restricted
by sample. Distance-based redundancy analysis was used to determine signifi-
cance when using JD (13), with calculation of the JD matrix and its principal
coordinates being performed by using an algorithm written in SAS IML, adapted
from original code provided by Carl Ramm at Michigan State University. SAS
code is available from C. Blackwood upon request.

RESULTS

(i) KBS LTER soil fraction samples. In the first set of
samples, there were 32 replicated profiles. An example of two
replicated profiles is shown in Fig. 1. There are differences
between these two profiles, such as the prominent peak at 310
bp in corn and the 85-bp peak in alfalfa. The analytical repli-
cates also differ, primarily because of differences in peak
height, although there is some noise in the size of fragments as
well.

The mean value of the fragment size ranges for T-RF cate-

gories resulting from the alignment procedure was 1.4 bp (the
maximum range was 4.4 bp). Clustering using raw, unstand-
ardized peak height consistently resulted in the greatest num-
ber of errors (Table 1). Use of relative peak height (peak
height divided by the cumulative peak height of the given
sample) resulted in the fewest number of errors. Clustering
using binary variables (JD) had an error rate higher than that
for relative peak height but still much lower than that for raw
peak heights (Table 1). Neither deletion of peaks with heights
of less than 100 fluorescence units or less than 1% of the
cumulative peak height nor rarefaction resulted in improve-
ment of clustering, relative to results with the use of all peaks
with heights of more than 50 units. Deleting all peaks with
heights of less than 200 units increased the number of errors
(Table 1). Use of the Hellinger transformation resulted in an
increase of up to two errors over the analogous dendrogram
based on relative peak height. UPGMA clustering typically
contained one to two fewer errors than clustering by Ward’s
method and also resulted in a higher cophenetic correlation
(or correlation between elements of the original distance ma-
trix and a distance matrix constructed from the results of the
cluster analysis). However, clustering by Ward’s method re-
quired fewer clusters to explain 50 percent of the variance in
the data set.

Deletion of samples with cumulative peak height of less than
10,000 fluorescence units resulted in 22 replicated profiles.
There were one or zero errors for all combinations of cluster-
ing methods and distance metrics tested.

(ii) Bioreactor samples. The bioreactors were treated iden-
tically, so their communities should be very similar to each

FIG. 1. Example of analytical replicates of T-RFLP profiles from two soil eubacterial communities. PCR fragments were cut with RsaI.
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other. Hence, a statistical method with a high level of sensitiv-
ity is required to tell apart the T-RFLP profiles, or errors in
determining which profiles are derived from the same samples
will occur.

The various methods of data processing and analysis did not
greatly affect the error rate of clustering of bioreactor repli-
cates, and no method appeared to perform best (see Table 2).
This was consistent for RsaI, MspI, and HhaI digests analyzed
separately, as well as for analysis of all three digests simulta-
neously. There were typically nine errors in each dendrogram

(out of a potential 18 possible errors). For this set, each sample
was represented by two replicate PCRs, each of which was run
twice. Approximately half of the errors could be traced to
differences between replicate PCRs, with the two profiles of
one PCR clustering together but apart from the two profiles of
the other replicate PCR of the same sample (as opposed to
random errors due to lane-to-lane variability of the gel).

The significance of the differences between sample profiles
was tested by using redundancy analysis of standardized peak
heights, Hellinger-transformed peak heights, and principal co-

TABLE 2. Dendrogram characteristics for cluster analyses of T-RFLP profiles of bioreactor samples by using a variety of data processing
methods and clustering algorithms

Statistics for MspI,
RsaI, and HhaI Variablea Baselineb

Ward’s method UPGMA

No. of errors
(out of 18)

No. of
clusters

Cophenetic
correlation

No. of errors
(out of 18)

No. of
clusters

Cophenetic
correlation

Average, analyzed Height 100 9.7 3.3 0.81 10.3 3.3 0.92
separately Relative height 100 8.3 3.7 0.80 9.7 3.7 0.94

Relative height Rarefaction 8.3 3.7 0.79 9.7 3.7 0.94
Hellinger transformed 100 9 4 0.82 9 4.3 0.96
Hellinger transformed Rarefaction 8.7 3.7 0.82 9 4 0.96
JD 100 9.7 3.4 0.74 6.3 3.7 0.94
JD Rarefaction 7.3 3.3 0.75 7.7 3.3 0.94

Analyzed together Height 100 13 4 0.79 12 4 0.94
Relative height 100 13 5 0.77 14 5 0.95
Relative height Rarefaction 11 4 0.78 14 5 0.94
Hellinger transformed 100 13 5 0.80 8 5 0.97
Hellinger transformed Rarefaction 13 5 0.81 8 5 0.97
JD 100 5 4 0.74 8 4 0.97
JD Rarefaction 7 4 0.78 6 4 0.97

a All sample profiles had cumulative peak heights of �10,000 fluorescence units except some RsaI profiles.
b Baseline refers to a minimum peak height (fluorescence units) cutoff or other method of determining how small peaks are excluded.

TABLE 1. Dendrogram characteristics for cluster analyses of T-RFLP profiles of KBS soil fractions by using a variety of data processing
methods and clustering algorithms

Variablea Baselineb

Ward’s method UPGMA

No. of errors
(out of 32) No. of clusters No. of errors

(out of 32) No. of clusters

Height 50 14 6 12 9
100 14 6 12 9
200 18 6 12 9

Relative height 50 2 6 1 10
100 2 6 1 8
200 3 6 5 7

Rarefaction 2 6 1 9
1% 2 6 1 10

Hellinger transformed 50 2 11 1 13
100 2 11 1 13
200 7 11 5 12

Rarefaction 4 11 2 12
1% 3 11 2 12

JD 50 6 6 5 8
100 11 5 5 7
200 8 4 9 4

Rarefaction 7 7 3 9
1% 5 7 4 7

a All profiles were included in analysis; the minimum cumulative peak height is 4,000 fluorescence units. See the text for a description of the results when profiles
with less 10,000 fluorescence units are excluded.

b Baseline refers to a minimum peak height cutoff (fluorescence units) or other method of determining how small peaks are excluded.
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ordinates of JD. The sample identities were found to explain a
significant amount of variance in the data set for the RsaI and
HhaI profiles analyzed separately and for the RsaI, MspI, and
HhaI profiles analyzed together (see Table 3). Sample identi-
ties were significant for the MspI profiles only for JD. P values
for all digests were lowest for analysis of JD and highest for
standardized peak heights, except for the RsaI profile, where
analysis of JD had the highest P value. The RsaI data set
included several profiles where the cumulative peak height was
less than 10,000 fluorescence units.

PCR replicate identity explained approximately as much
variability as did sample identity, but PCR replicate identity
was only marginally significant for relative and Hellinger-trans-
formed heights (Table 3). For JD, the variability explained by
PCR replicate was not significant. The residual variability after
accounting for sample identity and PCR replicate is due to
random lane-to-lane variability.

(iii) Alfalfa soil samples. Like the bioreactor samples, the
adjacent alfalfa soil samples are likely to harbor similar com-
munities, resulting in errors in determining which profiles
came from the same samples when statistical methods that are
not sensitive enough are used. While clustering using JD re-
sulted in the lowest number of errors for the alfalfa soil sam-
ples, all dendrograms had error rates that were quite high
(Table 4). Clustering by PCR replicate did not occur. Redun-
dancy analysis detected significant differences between com-

munity profiles with analysis of Hellinger-transformed vari-
ables and of principal coordinates of JD but not with analysis
of relative peak height variables (Table 5). PCR replicate iden-
tity accounted for slightly less variability than did sample iden-
tity and was not significant for any distance metric.

(iv) Multiregional soil samples. No errors were observed in
cluster analysis of replicate profiles from the multiregional set
of soil samples by any method of processing and analysis (data
not shown). This result was consistent for RsaI, MspI, and HhaI
digests. In general, two groups were required to explain 50% of
the variance in the data set. This grouping divided all four
replicate profiles of one sample from the eight replicate pro-
files of the remaining two samples. Three groups explained 75
to 85 percent of the total variance in the data set, with each
group being made up by all of one sample’s replicate profiles.

Peak height baseline. Deletion of the smallest peaks by using
any of a variety of algorithms had relatively little effect on the
error rate of analyses, except that an increase in the number of
errors was observed where larger peaks started to be deleted
(i.e., peaks with heights between 100 and 200 fluorescence
units; see Table 1).

Comparison of community distance metrics. Analysis of rel-
ative peak height and Hellinger-transformed peak height re-
sulted in similar error rates (Tables 1, 2, and 4). The Hellinger
transformation did consistently result in a greater number of
groups being required to account for 50 percent of the variance

TABLE 3. Redundancy analysis results from testing the null hypothesis that there is no difference between bioreactor sample
T-RFLP profiles

Profilea Variable

Sample PCR replicate

Proportion
explained

(%)
P value

Proportion
explained

(%)
P value

RsaI Relative height 46 0.0017 —b 0.22
Hellinger transformed 35 0.0003 — 0.19
JD 35 0.012 — 0.37

MspI Relative height 23 0.19 41 0.034
Hellinger transformed 22 0.15 36 0.070
JD 24 0.0054 — 0.34

HhaI Relative height 33 0.024 38 0.072
Hellinger transformed 33 0.0061 32 0.072
JD 29 0.0005 — 0.19

MspI, RsaI, and Relative height 30 0.0071 31 0.073
HhaI Hellinger transformed 28 0.0032 30 0.073

JD 26 0.0003 — 0.34

a All sample profiles had cumulative peak heights of �10,000 fluorescence units except some RsaI profiles.
b —, variability explained is not significant at the P � 0.1 level.

TABLE 4. Dendrogram characteristics for the set of alfalfa soil samples

Variablea

Ward’s method UPGMA

No. of errors
(out of 30) No. of clusters Cophenetic

correlation
No. of errors
(out of 30) No. of clusters Cophenetic

correlation

Relative height 15 3 0.83 16 4 0.90
Hellinger transformed 21 5 0.76 14 5 0.95
JD 13 4 0.68 9 5 0.92

a All sample profiles had cumulative peak heights of �10,000 fluorescence units.
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in the data set, although other changes in the topologies of the
dendrograms were minor. Cluster analyses based on Euclidean
distance calculated from raw peak heights resulted in an un-
acceptable number of errors for all sets of samples except the
most divergent (Tables 1 and 2). The Hellinger transformation
consistently resulted in a lower P value when redundancy anal-
ysis was performed to test the significance of the differences
between samples (Tables 3 and 5). This reduction in P value
was dramatic for the set of closely spaced alfalfa soil samples.
Other data transformations examined by Legendre and Gal-
lagher (14) were discarded either in preliminary analyses (i.e.,
the chord distance) or because of the heavy weighting of rare
T-RFs (e.g., the chi-square distance). The latter property
makes a distance metric inappropriate for T-RFLP data, since
rarity of a T-RF might not reflect rarity of the associated
genotype but may simply reflect sampling variability in detec-
tion of small peaks (see references 14 and 15 for discussions on
weighting of rare species).

The use of JD when some profiles had low cumulative peak
heights (�10,000 fluorescence units) resulted in a large num-
ber of errors in cluster analysis (Table 1) and a higher P value
in redundancy analysis (Table 3). When all profiles analyzed
had cumulative peak heights of �10,000 units, clustering with
the use of JD was as good as that with the use of relative or
Hellinger-transformed peak heights, and redundancy analysis
was more sensitive (with a lower P value; see Tables 2 to 5).
Analysis of JD was also the least sensitive to variability be-
tween PCR replicates, with P values of �0.15 in all cases
(Tables 3 and 5). However, there was no corresponding de-
crease in the total variability in the JD data sets, which implies
that JD was more sensitive to random lane-to-lane variability.

Comparison of statistical methods. The number of errors
found in cluster dendrograms was dependent on the set of
samples being analyzed. The error rate was lower by UPGMA
than by Ward’s method if some profiles had cumulative peak
heights of less than 10,000 fluorescence units (Table 1). The
two methods had essentially equivalent error rates if all sam-
ples had cumulative peak heights greater than 10,000 units.
UPGMA clustering was more true to the original distances
between samples, as indicated by higher cophenetic correlation
(9), and is more sensitive to outliers. This is reflected in the
increased number of groups required to explain 50 percent of
the total variance in the data sets in UPGMA analyses. Re-
dundancy analysis was able to detect significant differences
between samples and, as a corollary, significant similarities
between analytical replicates, for both data sets tested (Tables
3 and 5).

DISCUSSION

This study was designed to aid in the choice of methods to
process and analyze quantitative T-RFLP data. The results of
the analyses are different, in absolute terms, for each of the sets
of samples examined because the sets represent a wide range in
degree of sample divergence; however, the trends in the sen-
sitivity of data analysis methods were consistent across this
gradient and resulted in some methods being clearly prefera-
ble. The best method of data analysis would find significant
differences between samples in spite of PCR and lane-to-lane
variability. Variability between PCR replicates was more sig-
nificant for the bioreactor samples than for alfalfa soil samples.
Each PCR replicate was formed by pooling three PCRs for the
alfalfa soil samples, while in the bioreactor samples, each PCR
replicate was from an individual PCR.

The fact that deletion of the smallest peaks either had little
effect on the dendrogram error rate or increased it is surpris-
ing, because small peaks were thought to be the most incon-
sistent. These results imply that there were a number of T-RFs
that occurred frequently and were important for distinguishing
samples, yet had small peaks. Generally the statistical methods
examined here deal with random PCR and gel variability but
do not correct for other sorts of artifacts, such as PCR bias,
which can, for instance, cause abundant organisms to generate
small T-RF peaks. The effects of these artifacts, strictly on
comparisons of communities, are reduced by treating all sam-
ples identically, although further research into the causes of
artifacts is needed. The effects of PCR bias on peak height can
also be reduced in the statistical analysis by using a metric such
as JD, which accounts for presence or absence of peaks only.
However, JD performed as well as Hellinger distance only if
cumulative peak height, primarily affected by DNA load, was
uniformly high and the presence of small peaks was stabilized.

Hellinger distance was more sensitive than relative peak
height in redundancy analysis (see Tables 3 and 5) and was
equally sensitive in cluster analysis. Hellinger distance is also
recommended by Legendre and Gallagher (14) based on the-
oretical considerations and simulations, and it was used by
Lukow et al. (17) in an attempt to normalize peak height
distribution.

The goal of hierarchical cluster analysis is to summarize as
much variability in a data set as possible within a dendrogram;
hence, cluster analysis is essentially a tool for exploratory data
analysis (11). The goal of redundancy analysis is to explicitly
test whether that variability which can be attributed to the
differences between experimental groups is significant. There-
fore, it would be expected that redundancy analysis detected
significant differences between samples in the less divergent
sample sets, while cluster analysis often failed to show them,
because these differences accounted for only 25 to 40% of the
variance in the data sets. Calculation of a P value by random
permutation avoids the assumption of multinormality and re-
strictions on the number of variables that can be analyzed (13).

Ward’s method of hierarchical cluster analysis sacrifices
some precision in clustering compared to UPGMA, but it is
more efficient at identifying major groups within T-RFLP data-
sets. Also, the scale of the dendrogram plot is more heteroge-
neous across different levels in the hierarchy, resulting in the
ability to more easily choose the number of major groups in the

TABLE 5. Redundancy analysis results for the set of
alfalfa soil samples

Variablea

Sample PCR replicate

Proportion
explained

(%)
P value

Proportion
explained

(%)
P value

Relative height 30 0.12 —b 0.45
Hellinger transformed 31 0.0093 — 0.61
JD 32 0.0001 — 0.16

a All sample profiles had cumulative peak heights of �10,000 fluorescence
units.

b —, variability explained is not significant at the P � 0.1 level.
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dendrogram. The UPGMA method may be considered a more
conservative method of finding natural groups and outliers
within sets of T-RFLP profiles (9). The problems associated
with choosing the number of important groups that are present
when comparing dendrograms with differing scales were
avoided in the current study by examining whatever number of
groups was required to account for 50% of the total variance.
This was done to compare error rates of dendrograms on an
equal basis, but it is not recommended for applications of
cluster analysis other than assessing error rates, since the 50%
level may not correspond to a biologically meaningful number
of groups.

CONCLUSIONS

Given statistical analyses that were sensitive enough (low
probabilities of type II error), it was possible to use T-RFLP to
reject the null hypotheses that communities were identical in
replicate bioreactors or in soil samples collected within two
meters of each other. With this level of sensitivity, the utility of
T-RFLP in quantitative comparison of microbial communities
is obvious. If the experimental design is such that appropriate
hypotheses can be formulated, redundancy analysis of Hell-
inger-transformed peak height and/or JD (if all profiles have a
cumulative peak height greater than 10,000 fluorescence units)
are recommended as the most sensitive methods to distinguish
between groups of profiles. If the goal of data analysis is ex-
ploratory, clustering by using both Ward’s method (to find
natural groups) and UPGMA (to identify potential outliers) is
recommended. The validity of clustering results are basically
equivalent with the use of relative peak height, Hellinger-
transformed peak height, or JD (if all samples have cumulative
peak height greater than 10,000 units). This study was not an
exhaustive examination of all multivariate statistical methods
that could be used for T-RFLP data. Future work could ex-
amine the potential of other distance metrics and other meth-
ods of data analysis, such as correspondence analysis, principal
coordinates plots, and the use of artificial neural networks, as
well as more complex methods of defining the fluorescence
baseline. The use of quantitative statistical analysis coupled
with molecular methods creates new opportunities for address-
ing applied and ecological problems in microbial community
analysis.
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