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Abstract
Most xenobiotics that enter the body are subjected to metabolism that functions primarily to facilitate
their elimination. Metabolism of certain xenobiotics can also result in the production of electrophilic
derivatives that can cause cell toxicity and transformation. Many xenobiotics can also activate
receptors that in turn induce the expression of genes encoding xenobiotic-metabolizing enzymes and
xenobiotic transporters. However, there are marked species differences in the way mammals respond
to xenobiotics, which are due in large part to molecular differences in receptors and xenobiotic-
metabolizing enzymes. This presents a problem in extrapolating data obtained with rodent model
systems to humans. There are also polymorphisms in xenobiotic-metabolizing enzymes that can
impact drug therapy and cancer susceptibility. In an effort to generate more reliable in vivo systems
to study and predict human response to xenobiotics, humanized mice are under development.
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INTRODUCTION
Upon entering the body, a foreign compound is subjected to metabolism by a large group of
enzymes, collectively referred as xenobiotic-metabolizing enzymes, that includes the phase 1
oxidative enzymes and the phase 2 conjugating enzymes. The cytochrome P450 (CYP)
enzymes are among the most important phase 1 enzymes (1–3); they metabolize most clinically
used drugs and are required for metabolic activation of chemical carcinogens and toxins. The
phase 2 enzymes facilitate the elimination of drugs and the inactivation of carcinogenic
metabolites produced by CYPs. The balance between the phase 1 and phase 2 enzymes will
determine the metabolic fate of a particular chemical. The expression of theses enzymes can
markedly vary between individuals owing to differences in the extent of induction and by
polymorphisms.

Most CYPs are inducible except the well-known polymorphic CYP2D6. Transcriptional
regulation of genes in the CYP1A, CYP1B, CYP2B, CYP2C, CYP3A, and CYP4A subfamilies
are primarily controlled by aryl hydrocarbon receptor (AHR), constitutive androstane receptor
(CAR, NR1I4), pregnant X receptor (PXR, NR1I2) and peroxisome proliferator-activated
receptor α (PPARα, NR1C1) (4–10). These receptors consist of a core DNA-binding domain
and a ligand-binding domain. After binding with a ligand, the receptors undergo certain
conformational changes that coordinately release corepressors and recruit coactivators to
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enable transcriptional activation of their target genes, including those encoding the xenobiotic-
metabolizing CYPs.

There are marked species differences in the response to xenobiotics (11–14). This is especially
notable between humans and rodents such as rats and mice, the most commonly used
experimental models for studies in pharmacology and toxicology. For instance, the CYP2D
subfamily in humans has a single active member CYP2D6 that is highly polymorphic; rats and
mice have at least five genes, none of which encodes a protein having the same enzymatic
activities as CYP2D6 (11,14). Among the nuclear receptors, the human and mouse PPARα
have different ligand-binding affinities (15,16) and expression levels in liver (17).
Consequently, striking species differences have been observed in the response to xenobiotics,
particularly between mice and humans.

One approach to overcome the gap of species difference is to generate humanized transgenic
mice by introducing a human gene into the mouse genome, thus offering a better animal system
to predict the human response to foreign chemicals and understand the underlying mechanisms
(18–21). There are a number of approaches that can be used to generate a humanized mouse.
The most common is to fuse the human cDNA to a promoter that drives expression of the
cDNA in the mouse. For example, the serum albumin promoter can be used to deliver
expression of a protein specifically in the liver. Another approach is to use the complete human
genomic clone as a transgene. Use of a bacterial artificial chromosome (BAC) is ideal because
one can obtain clones that contain the complete gene and all of the regulatory elements that
drive expression of the gene. The human transgene can then be bred onto a mouse line in which
the endogenous mouse gene has been disrupted. The third approach is to “knock-in” the human
gene or cDNA into the endogenous mouse gene. This would result in disruption of the mouse
gene and introduction of the human gene. In this case, a cDNA is commonly used because
production of a recombination vector containing a complete human gene and sufficient mouse
flanking sequence to promote recombination with the native mouse gene would be technically
difficult. All of these approaches have advantages and disadvantages, and the use of one
approach above another would depend on the questions that need to be addressed in the study.

BIOLOGICAL MEDIATORS IN RESPONSE TO XENOBIOTICS
Cytochrome P450s are Responsible for the Metabolism of Xenobiotics

The phase 1 enzymes largely consist of the flavin-containing monooxygenase (FMO)
superfamily and the CYP superfamily. The CYP superfamily is the most important contributor
to the metabolism of drugs and the metabolic activation of toxicants and chemical carcinogens
(1,22). Although there are a number of CYP families that are involved in critical pathways of
sterol and bile acid synthesis, four families primarily function to metabolize foreign compounds
(2,3). These include families CYP1 through CYP4. The CYP1 family is most notable for
carcinogen and toxicant metabolism, whereas the CYP2 and CYP3 families metabolize drugs
and other compounds, ultimately resulting, after phase 2 metabolism, in more stable and
hydrophilic derivatives, although there are exceptions.

CYP-mediated oxidation is the principal means of eliminating clinically administered drugs,
and thus the extent of metabolism governs the plasma half-lives of drugs. Most drugs are given
in chemical forms that have biological activity, and metabolism serves to inactivate this activity
by converting the drug to a derivative that can no longer bind to its cellular target and can be
easily excreted from human body. However, a few drugs are actually prodrugs that require
metabolism to convert them to active forms. The xenobiotic-metabolizing enzymes are
expressed at high levels in liver, and thus orally administered drugs are subjected to what is
commonly referred to as a “first-pass metabolism,” which can reduce drug bioavailability. As
the drug continues to circulate through the liver, its plasma concentration becomes lower and
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the extent of metabolism decreases. For drug therapy, phase I clinical trials serve to determine
the optimum dosing for a drug that leads to a favorable therapeutic outcome and no side effects.
For most orally administered drugs, this experimentally determined dose is the average, and
depending on the drugs safety index, it can be used to treat most adult patients with adjustments
for juveniles and infants. Differences in the extent of metabolism can be tolerated with drugs
exhibiting wide safety margins or therapeutic indexes. However, drugs with narrow therapeutic
indexes must be used cautiously, and variation in metabolism can have serious consequences.
Because metabolism can markedly influence the efficacy and safety of a drug, pharmaceutical
companies determine the route of metabolism of drug candidates very early in the drug
development or drug discovery process.

Adverse drug reactions can occur when a drug is not metabolized at a rate that leads to favorable
pharmacokinetics. Differences in rate of metabolism of a drug can be due to drug interactions
with another coadministered drug that is metabolized by the same enzyme. Thus, it becomes
important to determine the identity of the CYP that metabolizes a particular drug and to avoid
coadministering drugs that are metabolized by the same enzyme. Concomitant use of a CYP
substrate and inhibitor can also result in harmful events as the inhibitor diminishes the
metabolism of the substrate drug. For example, some selective serotonin reuptake inhibitors
(SSRIs), such as paroxetine and fluoxetine, are potent inhibitors of CYP2D6. These SSRIs
have been known to cause unwanted drug-drug interactions with other psychotropic drugs
metabolized by CYP2D6 (23). Therefore, it is advised not to use these drug substrates and
inhibitors concomitantly, and it is important to determine the potential inhibition of new drug
candidates in preclinical studies. However, in certain instances interactions can be directed as
an effective approach to increase the bioavailability of the substrate drug and has become a
potential therapeutic strategy. Moreover, some drugs are CYP inducers and can not only induce
their own metabolism but induce metabolism of other coadministered drugs. For example the
gastritis drug omeprazole is a ligand for the AHR and can induce CYP1A1 and CYP1A2
(24,25). Finally, drug metabolism can also be influenced by diet. CYP inhibitors and inducers
are commonly found in diets and in some cases these can influence the toxicity and efficacy
of a drug. Components found in grapefruit juice are potent inhibitors of CYP3A4 (26,27).
Steroid hormones and components of herbal products such as St. John’s wort can induce hepatic
levels of CYP3A4 (28). In fact, much information has been acquired about drug substrates and
inhibitors and inducers of various CYPs (Table 1), and this information should be used as a
resource to avoid harmful drug-drug interactions.

As noted earlier, interindividual differences in drug metabolism can be influenced by
polymorphisms in CYPs. The CYP2D6 polymorphism (29–31) led to the withdrawal of a few
clinically used drugs and the cautious use of others that are known CYP2D6 substrates. The
study of this and other polymorphisms in drug metabolism also led to the concept of
individualized medicine by adjusting dosing based on the extent of metabolism as determined
by therapeutic drug monitoring (32). Polymorphisms also exist in the CYP2A6, CYP2C9, and
CYP2C19 genes (29,33). A rare genetic deficiency exists in the CYP1B1 gene that leads to
congenital glaucoma (34) and the role of this CYP in ocular development was confirmed by
examining the Cyp1b1-null mice (35).

Xenobiotic Receptors Control the Regulation of Metabolism
There are a number of signal transduction pathways that are responsive to drugs and other
foreign compounds (6,36–39). As a general paradigm, a compound can induce its own
metabolism by activation of a receptor leading to induction of the expression of CYPs and
other phase 2 genes that result in enhanced metabolism of the compound. Although there are
a few examples of stimulation of metabolism by various chemicals, the numbers of foreign
chemical inducers of metabolism are more limited than the number of CYP substrates. There
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are several intracellular receptors that appear to be activated by foreign chemicals. These
include the AHR (40,41), CAR (42,43), PXR (44–46), and PPARα (15,47).

The AHR, a member of the Per-Arnt-Sim (PAS), beta helix-loop-helix superfamily, activates
the expression of CYP1A1, CYP1A2, and CYP1B1 genes (48). The AHR resides in the nucleus
bound to heat shock protein 90 (HSP90), hepatitis B virus X-associated protein 2 (XAP2), and
perhaps other chaperones that upon ligand binding to the AHR, are released coincident of
nuclear translocation and heterodimerization with the AHR nuclear translocator (ARNT),
culminating in target gene activation by binding of the AHR-ARNT to the xenobiotic response
element (XRE) site. AHR ligands include drugs such as omeprazole; natural products found
in plants including β-napthoflavone and β-carboline; and carcinogens such as benzo[a]pyrene,
3-methylcholanthrese, 7,12-dimethylbenz[a]anthracene, and 2,3,7,8-tetrachlorodibenzo-p-
dioxin (TCDD). There are polymorphisms in the AHR, particularly the well-studied aryl
hydrocarbon (AH) locus in mice that is due to allelic variants that results in altered ligand
binding (48). There are also a number of AHR allelic variants in humans but their functional
significance and role in susceptibility to environmentally based disease have not been
established (49).

PXR, CAR, and PPARα are members of the Type 2 nuclear receptors, historically referred to
as orphan receptors until their ligands were identified. Unlike steroid and other nuclear
receptors, these proteins are activated by a large number of xenobiotics, including drugs (50).
These receptors all use the retinoid X receptor (RXR) as a partner for heterodimerization and
bind to various cis-acting elements, usually direct repeats upstream of target genes.

PXR, also called the steroid X receptor (SXR), activates the expression of CYPs involved in
the metabolism of a large number of xenobiotics, including numerous clinically used drugs. In
particular, PXR induces expression of the CYP3A4 gene, and the phase 2 sulfotransferase
(SULT1A) (51) and UDP-glucuronosyltransferase 1A (UGT1A) genes (52). This receptor
exhibits species differences in ligand-binding specificities between humans and mice (12). For
example, the human PXR is activated by the drug rifampicin, whereas the mouse receptor does
not bind this ligand. Conversely, the mouse Pxr is activated by pregnenolone 16α-carbonitrile
(PCN), whereas this compound does not activate the human receptor.

CAR is a constitutively activated receptor that increases transcription of the CYP2B and
CYP3A genes (53–56) and the phase 2 glutathione S-transferase (GST) and UGT1A genes
(52,57,58). The inverse agonist androstanol, an endogenous steroid, binds to CAR and inhibits
its activity. There is also evidence that CAR regulates the degradation of bilirubin, the major
product of heme degradation (59). Among the activators of CAR are the drug phenobarbital
(56) and the insecticide contaminant 1,4-bis[2(3,5-dichloropyridyloxy)]benzene (TCPOBOP)
(60). Although TCPOBOP is a direct CAR ligand, phenobarbital and other CAR activators do
not directly bind CA but trigger a signal transduction pathway resulting in translocation of the
receptor from the cytoplasm to the nucleus (61). There is also species difference in the ligand
specificity of CAR. TCPOBOP is a potent murine Car ligand but does not activate rat or human
CAR (62). The compound 6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde O-
(3,4-dichlorobenzyl)oxime (CITCO) was identified as a specific human CAR agonist (63).
Meclizine, an antiemetic drug, is a potent agonist of the murine receptor, but it is an inverse
agonist of human CAR, similar to androstanol (64). On the other hand 6,7-dimethylesculetin,
the putative active component of the Chinese herbal medicine Yin Zhi Huang used in the
treatment of neonatal jaundice, activates both the mouse and human CAR (65).

PPARα is responsible for the phenomenon known as peroxisome proliferation that has been
described in rats and mice (66). PPARα also exhibits a major species difference that accounts
for the response to peroxisome proliferators (13). Rats and mice exhibit marked peroxisome
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proliferation and hepatomegaly that is a result of increased hepatocyte size and increased cell
proliferation. Most of the marked physiological consequences of PPARα activation are due to
increases in enzymes involved in peroxisomal and mitochondrial fatty acid β-oxidation. After
long-term administration, peroxisome proliferator chemicals cause liver cancer in susceptible
species. Fibrate drugs, lowering serum triglycerides and cholesterol, have been in clinical use
for more than 50 years. In stark contrast to rats and mice, these agents do not cause peroxisome
proliferation and hepatomegaly in humans or monkeys and epidemiology studies have revealed
no increase in liver cancers (8,67).

SPECIES DIFFERENCES IN DRUG METABOLISM
Rats and mice can metabolize a particular compound differently from humans (68), which is
due in large part to marked species differences in the expression and catalytic activities of
CYPs. It is particularly notable between human CYP2D6 and rodent Cyp2d, and CYP3A4 and
rodent Cyp3a, respectively (11,69). This is of particular importance because CYP2D6 and
CYP3A4 collectively metabolize more than 70% of the drugs on the market. There are striking
differences in the complexity of the CYP genes between humans and rats or mice, and in the
number of CYP genes expressed and their catalytic activities. There are also species differences
in the CYP3A genes, in particular, in their expression distribution in liver and extrahepatic
tissues. As discussed above, there are species differences in the nuclear receptors that regulate
the CYP genes that also account for species differences in the response to xenobiotics. These
differences reside in the ligand specificities between human and rodent receptors. The practical
result of these differences is that the metabolism and response of a particular compound in
rodents does not necessarily reflect its veracity in humans. Thus, animal models may not be of
value in predicting human responses to xenobiotics such as drugs. This problem can potentially
be circumvented through the production of humanized mice.

CYTOCHROME P450 AND XENOBIOTIC RECEPTOR HUMANIZED MICE
CYP2D6-Humanized Mice

CYP2D6 is involved in the metabolism of a large number of clinically used drugs (30,70)
(Table 1); it does not produce any electrophilic metabolites that would cause toxicity or cancer.
Two pseudogenes, designated CYP2D7P and CYP2D8P, are also found in humans. In contrast,
rats and mice contain nine Cyp2d genes, several of which are expressed (http://www.icgeb.org/
~p450srv/new/p450.html). Most importantly, none of the mouse genes appear to encode a
Cyp2d with a catalytic activity similar to CYP2D6 (14). This is one of the clearest and best
defined examples of a species difference in a CYP between mice and humans (11,68). In the
absence of this activity, humanized mice can be developed expressing the CYP2D6 gene in a
wild-type mouse containing the Cyp2d genes. A CYP2D6-humanized mouse was produced
using a lambda phage genomic clone containing the wild-type CYP2D6 gene. Out of several
founder lines, one expressed CYP2D6 in the liver, kidney, and small intestine, known sites of
expression of this CYP in humans (71). This line was used to determine the activity of CYP2D6
toward debrisoquine, an antihypertensive β-adrenoceptor blocking drug that is metabolized by
CYP2D6 primarily through 4-hydroxylation. Debrisoquine was originally used in the
discovery of the debrisoquine polymorphism in humans and the urinary ratio of debrisoquine/
4-hydroxydebrisoquine has been used for many years as a measure of CYP2D6 activity in
humans. The CYP2D6-humanized mice were able to efficiently metabolize debrisoquine
(Figure 1), with pharmacokinetic parameters and urinary metabolite levels reflective of human
extensive metabolizers (see below) of debrisoquine. To analyze the metabolism of
debrisoquine in vivo, pharmacokinetic (PK) analysis revealed that mice having five copies of
the transgene had a low area under the curve (AUC) for debrisoquine and a high AUC for the
4-hydroxydebrisoquine, whereas wild-type mice produced little of the metabolite and had a
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high AUC for the parent compound. Mice hemizygous for the transgene cluster were
intermediate between wild-type and homozygote.

The debrisoquine/4-hydroxydebrisoquine excreted in the urine of subjects given a dose of
debrisoquine has been used to estimate the extent of debrisoquine metabolism in humans. This
ratio, called the metabolic ratio (MR), is the standard method for analyzing debrisoquine
metabolism in humans because the parent compound and its principle metabolite are excreted
in the urine. This analysis was performed on wild-type and CYP2D6-humanized mice and
revealed that the MR in wild-type mice was approximately 10 and that of CYP2D6-humanized
mice, both homozygous and hemizygous, was approximately 1 (Figure 1); the latter value is
similar to that found in human extensive metabolizers. These studies confirm that wild-type
mice are similar to human poor metabolizers of debrisoquine, and that CYP2D6-humanized
mice are similar to human extensive metabolizers. The CYP2D6-humanized mice establish the
feasibility of using human genomic clones for the production of CYP-humanized mice that
exhibit metabolic activity in vivo that is similar to humans.

The CYP2D6-humanized mice can also be used to determine the mechanism of regulation of
the human gene (71) by introducing the transgene into a liver-specific null mouse for hepatocyte
nuclear factor 4α (HNF4α) (72). Mice lacking expression of HNF4α in the liver have decreased
expression of the CYP2D6 transgene, indicating a role for this factor in the control of the liver-
specific expression of CYP2D6. Expression is not lost in the absence of HNF4α, however,
indicating that other liver-enriched factors may have a role in its expression.

This CYP2D6-humanized mouse model has been further applied to the search for potential
endogenous substrates for CYP2D6. Polymorphic CYP2D6 is expressed in several types of
neurons in the central nervous system (73–78), but its function in the human brain remains
elusive even though personality differences have been reported between EMs and PMs,
suggesting the potential existence of endogenous substrates for CYP2D6 (79). It was revealed
that CYP2D6 in this model catalyzed the O-demethylation of a number of psychotropic
methoxyin-dolethylamines derived from serotonin (5-hydroxytryptamine, 5-HT) (70,80,81).
Serum 5-HT levels were markedly higher in CYP2D6-humanized mice than wild-type mice
dosed with 5-methoxytryptamine (5-MT). Some were directly produced from exogenously
administrated 5-MT by CYP2D6 catalysis, which was further confirmed by the finding that
deuterated 5-HT was produced from deuterated 5-MT in CYP2D6-humanized mice but not
from wild-type mice. Upon pretreatment with quinidine, a potent CYP2D6 inhibitor, the
CYP2D6-humanized mice did not produce any deuterated 5-HT from deuterated 5-MT. The
regeneration of 5-HT from 5-MT catalyzed by CYP2D6 was suggested as a missing link in a
serotonin-melatonin cycle (81). Taken together, this CYP2D6-humanized mouse model
provides the possibility to investigate the functional significance of CYP2D6 under controlled
conditions and at systemic levels, and it would be a unique addition for studying CYP2D6
pharmacogenetics.

CYP3A4-Humanized Mice
CYP3A4 is the most abundantly expressed CYP in human liver, although there is a wide degree
of interindividual variability in expression that is likely due to the differences in extent of
regulation of the CYP3A4 gene (82). CYP3A4 is known to metabolize more than 60% of all
therapeutic drugs used in the treatment of many disorders, including hypercholesterolemia
(statin drugs), bacterial infections (erythromycin), cancer (tamoxifen), and immune
suppression (cyclosporine) (Table 1). Because many drugs that are metabolized by CYP3A4
are coadministered, there is a potential for adverse drug reactions owing to drug interactions.
This is of great concern for the development of new drugs, particularly those that are used in
combination therapies with other drugs. Four CYP3A forms are expressed in humans:
CYP3A4, CYP3A5, CYP3A7, and CYP3A43. Interestingly, mice have eight CYP3A genes
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(http://www.icgeb.org/~p450srv/new/p450.html), which again illustrates the marked species
differences in complexity of CYP gene families. The most abundantly expressed CYP3A gene
in humans is CYP3A4. This CYP enzyme is especially of interest because it is not only
expressed in liver but also the most abundantly expressed in the gut (83–86), where it can
metabolize a large number of orally administered drugs (Table 1).

To generate mice that express human CYP3A4, a BAC clone was used as a transgene (87).
These mice expressed high levels of CYP3A4 protein in the small intestine. Surprisingly, little
expression was found in the liver, a major site of CYP3A4 expression in humans. However,
recent studies have revealed low constitutive and inducible expression in the livers of mature
female mice; no expression was found in adult males (88). Expression was observed in livers
of immature males and female mice. These studies revealed that CYP3A4 transgene expression
is not only dependent on sex but also on age in the humanized mice. Sex-dimorphism in the
expression of CYP3A4 was also observed in human livers (89). The CYP3A4 catalytic activity
in humanized mouse was demonstrated using the midazolam, which is commonly used as a
standard probe for CYP3A4 activity in humans. Midazolam is oxidized at the 4- and 1′- position
by CYP3A4. The pharmacokinetics of midazolam metabolism was determined upon oral
administration and differences in AUC for the parental compound and the primary 1′-
hydroxymidazolam were detected between the CYP3A4-humanized and wild-type mice,
indicating that the transgenics have a higher rate of midazolam metabolism and clearance. No
differences were observed between the transgenic mice and wild-type mice when the drug was
administered intravenously (87). Interestingly, these humanized mice exhibited an impaired
lactation phenotype, which was found to be associated with underdeveloped mammary alveoli,
deficient milk protein gene mRNA expression, and lower serum estradiol levels (Figure 2)
(88). One interpretation is that this phenotype is due to low estrogen as a result of enhanced
metabolism of estradiol and its precursor, testosterone (Figure 2). It is also an intriguing
possibility that this increased metabolism occurs in the gut during the course of enterohepatic
circulation of estradiol (Figure 2) because in untreated CYP3A4-humanized mice the enzyme
is expressed at highest levels in the intestine (87). Indeed, enterohepatic recycling of estrogen
has been demonstrated in humans (90). These observations from the CYP3A4-humanized mice
suggest that CYP3A4 may play an important role in the homeostasis of sex steroids. These
mice will aid in the in vivo analysis of orally administered drugs that are substrates for CYP3A4
and potentially be of great value in the prediction of drug interactions. They will also be of
value in determining the mechanism of tissue-specific and inducible regulation of the
CYP3A4 gene.

CYP2E1-Humanized Mice
CYP2E1 is an ethanol-inducible CYP abundantly expressed in human liver (91,92). It is also
expressed in extrahepatic tissues such as kidney, lung, and brain. CYP2E1 catalyzes the
oxidation of many toxicologically important low-molecular-weight chemicals to more toxic
electrophilic metabolites (1,22,93–95). CYP2E1 substrates include organic solvents (ethanol,
chloromethane, and benzene), nitrosamines (N-nitrosodimethylamine), and therapeutic drugs
[acetaminophen (APAP)] (Table 1). CYP2E1 is also involved in the oxidation of
physiologically important fatty acid metabolites (96–99). There are no reports of impaired
CYP2E1 expression or activity or polymorphisms in humans other than synonymous single
nucleotide polymorphisms and differ among ethnic populations (100–102). CYP2E1 is
believed to play an important role in alcohol-induced liver injury associated with oxidative
stress, mitochondrial damage and glutathione depletion (22,103), and alcohol-induced liver
disease (104,105).

A BAC clone containing the human CYP2E1 gene was used to make a transgenic mouse line
that was bred to the Cyp2e1-null mice (106) to generate CYP2E1-humanized mice (107).
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Human CYP2E1 protein and mRNA was largely expressed in the livers of the humanized mice,
and the mRNA was found in kidney, lung, and small intestine, indicating a similar tissue
distribution pattern as that observed in human. The human CYP2E1 enzymatic activity in
mouse livers was demonstrated by chlozoxazone and p-nitrophenol hydroxylations, which
were blocked by a CYP2E1 monoclonal antibody. There is no significant difference in
chlozoxa-zone 6-hydroxylase activity between human CYP2E1 and mouse Cyp2e1 (11). By
contrast, o-hydroxylation of p-nitrophenol revealed a difference between CYP2E1-humanized
and wild-type control mice (107). Additionally, the mRNA and protein were inducible by
treating the CYP2E1-humanized mice with acetone.

Therapeutic doses of the over-the-counter analgesic APAP are generally safe for patients;
however, an overdose can result in severe and sometimes fatal hepatotoxicity. CYP2E1
metabolizes APAP to a highly reactive metabolite, N-acetyl-p-benzoquinone imine (NAPQI),
that can covalently bind to cellular nucleophiles such as DNA, RNA, and proteins. NAPQI is
usually inactivated by GST; depletion of hepatic reduced glutathione (GSH) the cosubstrate
for GST, increases APAP toxicity. A critical role of CYP2E1 in APAP toxicity was
demonstrated by using Cyp2e1-null mice, which were found to be resistant to APAP-induced
hepatotoxicity (106). Studies using the CYP2E1-humanized mouse model revealed a potential
functional difference between human and mouse CYP2E1 in APAP toxicity (107). After
administration of 200 to 400 mg/kg APAP, most of the wild-type mice showed mild-to-
moderate degrees of centrilobular hepatocyte necrosis, whereas none of the Cyp2e1-null or
CYP2E1-humanized mice exhibited hepatic necrosis lesions (Table 2). These results were in
agreement with measurements of serum alanine aminotransferase (ALT) activity (107), a
surrogate biomarker for hepatotoxicity. These results demonstrated that the CYP2E1-
humanized mice allow the direct assessment of human CYP2E1 function in a whole animal
model, excluding any potential species difference caused by murine Cyp2e1, and thus they
may be of value in pharmacological and toxicological studies aimed to predict human risk
assessment.

AHR-Humanized Mice
One of the most well-studied genetic differences in response to xenobiotics is the AH locus in
mice, where there exists approximately a tenfold difference between strains of mice in response
to certain AHR ligands owing to a polymorphism that is a result of amino acid differences in
the C-terminal and ligand domain of the receptor (48). Humans appear to have a receptor type
that is more similar to the resistant mouse phenotype, yet there are distinct differences (49).
An AHR-humanized mouse was generated by knocking the human AHR cDNA into the mouse
Ahr gene promoter to develop a more predictive model to study dioxin toxicity and
susceptibility to birth defects and carcinogens as a result of exposure to AHR ligands (108).
Although the AHR-humanized mice exhibited similar target gene induction potential to the
classic resistant strain of mice in response to the “low-affinity” ligand 3-methylcholanthrene,
as expected from in vitro transfection studies, the humanized mice were more resistant to target
gene induction by TCDD. Neonatal exposure to TCDD resulted in cleft palate in the wild-type
mice of both the sensitive and resistant strains; the AHR-humanized mouse fetuses did not
display this teratogenic end-point, although they did develop hydronephrosis (108). The
AHR-humanized mouse could be a novel tool for use in human risk assessment for dioxin
toxicity and carcinogenicity.

PXR-Humanized Mice
PXR regulates the expression of the CYP3A and several phase 2 enzymes and thus has a major
impact on drug metabolism. There are major species differences in ligand specificities of PXR
(12,109). PCN activates the mouse and rat receptor but does not activate human PXR. In
contrast, the human receptor is activated by rifampicin and clotrimazole, whereas the mouse
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and rat Pxr are not activated by these drugs. A PXR-humanized mouse was produced with a
transgene in which the human PXR cDNA was fused to the albumin promoter (109). The
transgene was bred onto the murine Pxr-null background. Target gene induction with various
ligands revealed induction of the endogenous mouse Cyp3a11 gene by rifampicin and
clotrimazole; minimal induction was observed with the mouse Pxr ligand PCN in humanized
mice. Another transgenic mouse line was also produced in which the human PXR cDNA was
fused with the VP16 coactivator to yield a constitutively activated receptor. As expected, mice
expressing the fusion protein are resistant to tribromoethanol and zoxazolamine (109). These
mice represent an in vivo model to test for potential PXR ligands and possible endogenous
functions of this receptor, such as in controlling bilirubin metabolism (110) and protecting
against bile acid toxicity (111).

CAR-Humanized Mice
Similar to PXR, there are species differences in the ligand specificity of CAR. Therefore a
CAR-humanized mouse was produced with a transgene composed of the albumin promoter
fused to the human CAR cDNA (58). Treating wild-type mice with the drug meclizine activated
the Cyp2b10 target gene; there was no induction in Car-null mice, in agreement with the in
vitro findings that this drug is a murine Car agonist (64). However, meclizine did not induce
murine Cyp2b10 but suppressed its induction by phenobarbital in humanized mouse
hepatocytes. Indeed, meclizine, an antimetics that is used to treat the nausea associated with
acute APAP toxicity, was able to protect CAR-humanized mice against APAP-induced
hepatotoxicity. The CAR-humanized mice could be used to evaluate drugs under development
that target CAR for the control of bilirubin metabolism and to treat APAP-induced
hepatotoxicity in cases of APAP overdose.

PPARα-Humanized Mice
Peroxisome proliferation is a rodent-specific response when PPARα is activated by a diverse
group of chemicals termed peroxisome proliferators; a critical role for PPARα in this process
was demonstrated by using the Pparα-null mouse model (112,113). Peroxisome proliferators
include organic solvents (trichloroacetic acid, trichloroethylene), herbicides (haloxyfab,
lactyofen), and hypolipidemic fibrate drugs (clofibrate, fenofibrate, gemfibrozile). Coincident
with an increase in numbers of peroxisome is an elevation in the levels of a number of enzymes
involved in fatty acid β-oxidation, including peroxisomal acyl-CoA oxidase, thiolase and
bifunctional (hydratase + 3-hydroxyacyl-CoA dehydrogenase), numerous mitochondrial fatty
acid oxidizing enzymes, microsomal CYP4A (ω-oxidation), fatty acid binding protein, and
fatty acid transporters (114). Induction of acyl-CoA oxidase leads to generation of hydrogen
peroxide (H2O2) as a byproduct, causing oxidative stress. As a result, DNA can be damaged
or mutated, potentially resulting in cell transformation and hepatocarcinogenesis (115,116).
Chronic exposure to peroxisome proliferators leads to hepatocellular carcinomas (6,8,117).
However, there is no evidence of peroxisome proliferation in livers from humans and monkeys
given fibrate drugs (118–122). This is also supported by the studies using human hepatocyte
cultures. In contrast to rats and mice, human hepatocytes are unresponsive to peroxisome
proliferators (123). Humans do have a functional PPARα (124–126), but there exist striking
species differences in levels of expression PPARα (17) and ligands affinities between human
and mouse PPARα forms (15,16).

To better understand the underlying molecular mechanism of this species difference, a
PPARα-humanized mouse line was generated (127). Under the control of the tetracycline
responsive regulatory system, the human PPARα was expressed in the livers of murine
Pparα-null mice (112). The PPARα-humanized mice functionally responded to the PPARα
ligands Wy-14643 and fenofibrate in a manner similar to wild-type mice, as demonstrated by
the induction of genes encoding fatty acid synthesis, oxidation, and transport proteins and the
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decrease of serum triglycerides (127). However, the PPARα-humanized mice did not exhibit
hepatocellular proliferation that was observed in wild-type mice. This was associated with the
lack of high-level increases of catalase-enriched peroxisomes, incorporation of 5-bromo-2′-
deoxyuridine into hepatocyte nuclei, and induction of cell cycle control genes (Figure 3).
Because the expression levels of human PPARα in the humanized mouse hepatocytes were
comparable with murine PPARα in wild-type mice (127), the structural and functional
difference between human and mouse PPARα should be the determinant for the differential
susceptibility to hepatocarcinomas between species (15). To eliminate the potential species
difference, the PPARα-humanized mice would serve as an invaluable model to assess human
risk to these peroxisome proliferators, including the lipid and cholesterol-lowering fibrate
drugs.

Other Mice Bearing Human Cytochrome P450 or Xenobiotic Receptor Transgene
Although beyond the scope of this review, other transgenic mice have been reported that
express human CYP1A1 (128), CYP1A2 (128,129), CYP1B1 (130), CYP2E1 (131), CYP3A7
(132), CYP4B1 (133), CYP7A1 (134–136), CYP19 (137), and CYP27 (138). Mice bearing
the regulatory sequence of human CYP1A2 (139) and CYP3A4 (140,141) have also been
developed to investigate the regulation of human CYPs in mice. These unique models have
been widely used and will continue to be used for studying their functional roles in physiology,
pharmacology, pathology, and toxicology that contribute to better understanding, prediction,
and management of the situations in humans.

CONCLUSIONS AND PERSPECTIVES
Recent development of CYP and nuclear receptor humanized mouse models overcome the
species differences caused by the intrinsic genes. These humanized mouse models have proven
a valuable addition to the existing in vitro and in vivo assays for studying the function of CYPs
and xenobiotic receptors in a whole-animal system, directly assessing the consequent
functional significance under controlled conditions, and delineating the regulatory networks
and mechanistic basis for the responses to xenobiotics. These models should have broad
application in the understanding of hormone homeostasis and human disease and the evaluation
and prediction of the metabolism, pharmacokinetics, pharmacodynamics, and toxicity of drug
candidates in preclinical studies. To achieve quantitative assessments, a precise determination
of the functional proteins expressed in the humanized mice is essential. Because of the
physiological differences between mice and humans, particularly in body weight and blood
flow rate, an allometric scaling approach can be very helpful. Ultimately, a combined CYP
and nuclear receptor humanized mouse will allow us to investigate both the function and
regulation of CYP drug-metabolizing enzyme in an integrated biological system.
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Figure 1.
Serum concentrations of debrisoquine (DEB) (A) and 4-hydroxydebrisoquine (4-OH-DEB)
(B) versus time curves for the wild-type, CYP2D6-humanized heterozygous, and homozygous
mice after single oral administration of DEB (2.5 mg/kg). (C) DEB urinary metabolic ratio
(MR) in wild-type and CYP2D6-humanized mice.
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Figure 2.
Impaired lactogenesis of CYP3A4-humanized mice associated with low estradiol levels. (A)
Histological examination of mammary glands. In transgenic nursing mothers, it was sparsely
filled with underdeveloped alveoli. In wild-type mice, the alveoli were fully distended by the
accumulation of milk and minimal volume of adipose tissue (AD) was present. At higher
magnification, the lumen (Lu) and epithelial cells (black arrow) of the alveoli are indicated.
Scale bar: 50 μm. (B) Expression of milk protein genes in mammary glands as examined by
RT-PCR. In both wild-type and CYP3A4-humanized virgin mouse mammary glands, whey
acid protein (WAP) and β-casein were not detectable. During pregnancy and lactation, WAP
and β-casein were abundant in wild-type mice and reduced or undetectable in transgenic mice.
(C) Serum estradiol levels were significantly (*P < 0.05, n = 5 in each group) decreased in
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pregnant and lactating humanized mice. (D) Catabolism of testosterone and estradiol by
CYP3A4. (E) Estradiol under enterohepatic circulation hydroxylated by intestinal CYP3A4.
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Figure 3.
Differential peroxisome proliferation, replicative DNA synthesis, and regulation of genes
involved in cell cycle control in livers of PPARα-humanized and wild-type mice treated with
Wy-14643. (A) Immunohistochemical staining with anti-catalase antibody indicated that
peroxisomes (brown granular structures) were obviously increased in the wild-type mice
treated with Wy-14643. Magnification: 400×. (B) Labeling index of Wy-14643-induced
incorporation of 5-bromo-2′-deoxyuridine (BrdU) into hepatocyte nuclei as examined by
immunohistochemical analysis with anti-BrdU antibody. (C) Regulation of genes involved in
cell cycle control as revealed by Northern hybridization. ACOX, peroxisome acyl-CoA
oxidase; LCPT, liver carnitine palmitoyltransferase; PCNA, proliferating cellular nuclear
antigen; CDK, cyclin-dependent kinase.
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TABLE 1
Listed are some drug substrates, inhibitors, and inducers of human CYP2D6, CYP2E1, and CYP3A4 isozymes

CYP2D6 Substrate Psychotropic drugs:
Aimtriptyline, citalopram, clomipramine, clozapine, desipramine, fluoxetine, imipramine, mianserine,
mirtazapine, nortriptyline, paroxetine, venlafaxine
Cardiovascular drugs:
Alprenolol, bufuralol, encainide, flecainide, metoprolol, propafenone, propranolol, timolol
Miscellaneous drugs:
Codeine, debrisoquine, dextromethorphan, phenformin

Inhibitor Fluoxetine, fluvoxamine, methadone, norfluoxetine, paroxetine, quinidine, sertraline
Inducer None

CYP2E1 Substrate Acetaminophen, aniline, benzene, chlorzoxazone, dapsone, enflurane, ethanol, N,N-dimethyl formamide,
halothane, isoflurane, methoxyflurane, sevoflurane, theophylline

Inhibitor Diethyldiethiocarbamate, disulfiram
Inducer Ethanol, isoniazid

CYP3A4 Substrate Benzodiazepines:
Alprazolam, clonazepam, clorazepate, diazepam, flurazepam, halazepam, midazolam, prazepam, triazolam
Calcium channel blockers:
Amlodipine, diltiazem, felodipine, lercanidipine, nifedipine, nisoldipine, nitrendipine, verapamil
HIV antivirals:
Indinavir, nelfinavir, ritonavir, saquinavir
Immune modulators:
Cyclosporine, tacrolimus (FK506)
Macrolide antibiotics:
Clarithromycin, erythromycin
Steroids:
Estradiol, hydrocortisone, progesterone, testosterone
Miscellaneous drugs:
Codeine, dextromethorphan, methadone, taxol

Inhibitor Azole antifungals:
Clotrimazole, fluconazole, itraconazole, ketoconazole, miconazole
HIV antivirals:
Amprenavir, atazanavir, indinavir, nelfinavir, ritonavir, saquinavir
Miscellaneous drugs:
Gestodene, troleandomycin

Inducer Carbamazepine, dexamethasone, phenobarbital, rifampicin

Annu Rev Pharmacol Toxicol. Author manuscript; available in PMC 2006 April 17.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Gonzalez and Yu Page 25

TABLE 2
Degrees of centrilobular hepatic necrosis in mice treated with saline or APAP. The livers were examined
histologically and classed according to the degree of centrilobular hepatocyte necrosis, marked as none, mild,
moderate, or severe. Mice found dead 24 h after the APAP treatment were also noted. The numbers indicate how
many mice were classed with which degree of hepatocyte necrosis per total number of mice examined in each
group (total numbers of mice in each group, n = 5–10)

Genotype Saline APAP (200 mg/kg) APAP (400 mg/kg)

Wild-type None 5/5 None 3/5 Moderate 5/7
Mild 1/5 Found dead 2/7
Moderate 1/5

Cyp2e1-null None 5/5 None 6/6 None 5/5
CYP2E1-humanized None 8/8 None 9/9 Mild 3/10

Moderate 2/10
Severe 4/10
Found dead 1/10
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