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Abstract
Medroxyprogesterone acetate (MPA) commonly is used in contraception and hormone replacement
therapy. However, little is known about its effects within the central nervous system. Using
ovariectomized pigtail macaques (Macaca nemestrina), we evaluated the potential for MPA to
antagonize estradiol (E2) effects on female sociosexual behavior. Subjects (n = 6) were treated
sequentially with placebo, E2 alone, E2 + progesterone (P4), and E2 + MPA. The order of treatments
was balanced among subjects, and equimolar quantities of P4 and MPA were administered. During
each treatment period, female sexual initiation rates, anxiety-related behavior, and aggression were
recorded. Treatment with E2 alone induced a substantial rise in female sexual initiation rates.
Although concurrent P4 treatment failed to significantly inhibit sexual behavior, MPA treatment
markedly antagonized E2’s effects. Neither the E2-only nor the E2 + P4 treatment had an impact on
aggression rates, but the E2 + MPA treatment induced a significant rise in this behavior. Both MPA
and P4 counteracted the effect of E2 on measures of anxiety. These findings suggest that MPA
antagonizes certain behavioral effects of E2 that may be beneficial to women, and that it does so
more profoundly or in ways that endogenous P4 does not. The marked increase in aggression seen
during MPA treatment suggests that production of negative affect may be a particularly serious side
effect of MPA.

Abbreviations
CEE, Conjugated equine estrogens; DMSO, dimethylsulfoxoide; E2, estradiol; GABA, γ-
aminobutyric acid; MPA, medroxyprogesterone acetate; P4, progesterone

MEDROXYPROGESTERONE ACETATE (MPA) commonly is used both in contraception and hormone
replacement therapy. Like other progestogens, MPA counteracts the proliferative effects of
estrogen treatment in the uterus and protects against endometrial hyperplasia (1,2). By contrast,
in the breast, there is a growing consensus that the addition of MPA and other progestogens
increases mammographic density and breast cancer risk beyond that seen through unopposed
estrogen use (3–7) (but see Ref. 8). However, because of the cell cycle and pathway-dependent
effects of progestogens (4,9), they may have apoptotic as well as proliferative actions in
mammary tissue (3,4,7,8). Moreover, these effects may vary with the type of progestogen used
(10–13). Thus, although some in vitro studies have shown that MPA inhibits growth within
certain cellular contexts (11,13–16), in vivo studies in monkeys and humans suggest that,
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overall, MPA enhances proliferative estrogen effects in mammary tissue (17–19) and that it
may do so to a greater extent than some other progestogens (20).

Compared with what is known about the effects of MPA in uterine and mammary tissue, very
little is known about the impact of MPA on estrogen’s actions within the central nervous
system. However, some initial studies suggest that, within certain neurochemical systems,
MPA has antagonistic properties that differ from those of endogenous progesterone (P4). In
the dorsal raphe of macaques, P4 has little impact on estradiol’s (E2’s) ability to augment levels
of tryptophan hydroxylase, the rate limiting enzyme in serotonin synthesis, but MPA
significantly antagonizes the effects of conjugated equine estrogens (CEE) (21). Similarly, in
cultured hippocampal neurons, P4 only slightly diminishes E2’s ability to potentiate the
glutamate-mediated rises in intracellular Ca2+ that have been implicated in the enhancement
of learning and memory; moreover, P4 actually enhances E2’s ability to protect against
glutamate toxicity. By contrast, MPA markedly inhibits both of these E2-mediated actions
(22,23). Finally, with respect to cholinergic function, long-term treatment of macaques with
CEE + MPA, but not CEE alone, reduces choline acetyltransferase and acetylcholinesterase
activity in the medial septum and the diagonal band of Broca, areas of major cholinergic
innervation to the hippocampus and cerebral cortex (24).

In contrast to the molecular studies clearly illustrating the antagonistic properties of MPA
within certain neurochemical systems, the psychological effects of MPA are poorly understood.
Although data from several observational studies on the use of MPA in contraception have
shown a tendency for women to complain of mood changes, depression, and loss of libido,
other such studies have failed to find these effects, and the role of MPA in the etiology of these
symptoms has been debated (25). For use in hormone replacement therapy, a number of double-
blind studies using a placebo-controlled or crossover design have shown that MPA is associated
with a decline in libido and a rise in anxiety, irritability, and depression during the progestogen
phase of cyclic regimes (26–28). Nonetheless, other controlled studies have found that MPA
does not antagonize the effects of estrogen treatment (29), and that its use in hormone
replacement therapy may result in more favorable mood outcomes than seen through the use
of formulations containing other progestogens (28,30,31).

To overcome the difficulties associated with studying changes in mood and libido in women,
we have used pigtail macaques (Macaca nemestrina) in a monkey model for evaluating the
effects of MPA on behavior. Through the use of an animal model, we eliminated the need for
subjective assessments and retrospective reports. Instead, we quantified the spontaneous
expression of relevant behaviors and used these measures as proxies for emotional states that
women experience. Macaques were chosen because they share many aspects of reproductive
biology with women, including an approximately 28-d cycle with a nearly identical pattern of
hormonal fluctuation (32). Moreover, female macaques maintain complex social networks
(33), and, as in other primates, including women, gonadal hormones modulate sexual
motivation rather than the ability to copulate (34). Given these similarities, we used a macaque
model to test the hypothesis that MPA would attenuate the effects of E2 replacement therapy
on sociosexual behavior in ovariectomized females.

Subjects and Methods
Subjects and housing

Study subjects were six ovariectomized pigtail macaques (Macaca nemestrina) living in a
stable social group consisting of one adult male and 22 adult females and their dependent
offspring. The group was housed at the Field Station of the Yerkes National Primate Research
Center, Emory University, Lawrenceville, GA. The enclosure for the group consisted of an
outdoor compound (~230 m2) with an attached indoor area (~16.5 m2). To minimize dominance
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effects, the two top- and bottom-ranking individuals in this social group were avoided for use
as subjects. All subjects were parous but had undergone bilateral ovariectomy 6 months before
the start of this study. All research was conducted in accordance with the National Institutes
of Health and United States Department of Agriculture guidelines and standards and was
approved by the Emory University Institutional Animal Care and Use Committee.

Hormone treatments
Subjects were tested from October 2002 through July 2003 under the following conditions: 1)
placebo; 2) 17β-E2 alone; 3) E2 + P4; and 4) E2 + MPA. All subjects were pretested initially
under the placebo condition, but the order of all subsequent treatments was balanced among
subjects. Each hormone treatment was administered for 1 wk and was separated by a minimum
3-wk washout period.

E2 was administered through the use of SILASTIC (Dow Corning Corp., Midland, MI)
capsules (3 × 4.5 cm; inside diameter, 3.35 mm; outside diameter, 4.65 mm) containing
crystalline 17β-E2 (Product E-8875, Sigma-Aldrich, St. Louis, MO). MPA (Product M-1629,
Sigma-Aldrich) was dissolved in a vehicle of dimethylsulfoxide (DMSO) and infused via
osmotic minipump (2ML/1, Alza Corp., Palo Alto, CA) at a rate of 160 μg/kg·d. This dose was
selected to mimic circulating levels women experience when using MPA in contraception and
hormone replacement therapy. The concentration of MPA delivered ranged from 4.7–6.7 mg/
ml to compensate for differences in each subject’s body weight. P4 (Product P-3972, Sigma-
Aldrich) was delivered similarly via osmotic minipump in a vehicle of DMSO. A dose of 130
μg/kg·d was used as the molar equivalent of the MPA treatment and was delivered at a
concentration of 3.8–5.4 mg/ml. Both the SILASTIC capsules and the osmotic minipumps
were implanted sc in the space between the scapulae while subjects were under general
anesthesia (ketamine hydrochloride, 10 mg/kg, im).

Behavioral testing
Subjects were observed on d 3–7 of each treatment period. During behavioral testing, the social
group was locked into the outdoor area of its enclosure and observed from a tower with an
unobstructed view of the entire compound. Data were entered directly into a personal Data
Assistant (III XE, Palm Corp., Milpitas, CA) running a custom software program (HandObs,
Center for Behavioral Neuroscience, Atlanta, GA) that captured event-sequential data with an
elapsed time in thousandths of a minute from the test start. Postprocessing programs allowed
for the extraction of frequencies, durations, and sequences of behavior in real time.

Two different sets of observations were carried out each day: one set in which the subjects’
social group remained intact, and another in which the adult male was temporarily removed.
Female sexual initiation rates were recorded during the observations with the adult male in the
group, whereas other behaviors were monitored during the observations with the adult male
separated. This separation was used to control for differences in behavior attributable to sexual
competition rather than underlying differences in hormonal effects on behaviors related to
anxiety states. The order of the two observation types was alternated each day so that the
recording of sexual behavior was balanced, taking place before the male’s separation in some
cases and following his return in others.

For the observations focusing on sexual behavior, the adult male was followed for 1 h. During
this period, all sexual initiations that study subjects directed toward him were recorded.
Copulations also were noted, but were not included in the data analysis because they were
thought to reflect the interaction between male and female sexual interest, and we were
interested specifically in hormonal effects on female sexual motivation. For the behavior
sampling that took place while the male was out of the group, the study subjects were ordered
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randomly each day and followed for a half-hour focal observation period. During these
observations, all cases of aggression, self-scratching, and the amount of time spent locomoting
were recorded. Aggression was used as a measure of irritability and the propensity to engage
in conflict due to an underlying state of anxiety. However, because changes in other
motivational states could lead to an increase in aggressive behavior, we also recorded rates of
self-scratching, an established measure of anxiety in nonhuman primates (35). This behavior
pattern has been found to increase in situations of psychosocial stress (36–41), and it is
selectively enhanced or reduced through the respective administration of anxiogenic and
anxiolytic drugs (36,42–45). Finally, because at high levels progestogens can have a sedative
effect (46,47), we monitored the amount of time subjects spent locomoting under each of the
treatments. We chose this behavior because it is a good indicator of overall activity levels and
has been used as a measure of general sedation in nonhuman primates (43,48,49).

Behavioral definitions for female sexual initiations and aggression followed those established
in Short et al. (50), whereas the definitions for self-scratching and locomotion followed those
established in Schino et al. (43). Sexual initiating behaviors included approach to within 1 m
of the male (proximity), presentation of hindquarters (present), and individualized stereotyped
behaviors for gaining the male’s attention (solicitations). Aggressive behaviors included open-
mouth stares and non-contact lunges (threats), slapping of other individuals (hit), vigorous
swaying movements and shaking of physical substrates (display), the rapid antagonistic pursuit
of other individuals (chase), and aggressive contact, including biting, grabbing, pulling hair,
and restraining others (attack). Self-scratching was defined as commonly observed in humans
with a rapid repetitive movement of the hand or foot. Locomotion included walking, running,
and climbing. All behaviors were recorded by a single observer, and thus interrater reliability
measures have not been reported.

Hormone analyses
Blood samples were collected from each subject between 0830 and 1330 h on d 3, 5, and 7 of
each treatment period. Samples were obtained by saphenous venipuncture while subjects were
unanesthetized and held under light hand restraint. For this procedure, subjects were trained
to go into the indoor area of their compound and enter a transfer box. The transfer box then
was used to place individuals in a cage with a small opening through which they could extend
a leg for blood collection. Subjects were well accustomed to this procedure, which has no
adverse effects on the reproduction or behavior of habituated animals (51)—handling time
before collection of the blood sample typically was under 1 min for each animal, and subjects
were released quickly into their group after blood collection. Subsequently, the blood samples
were centrifuged, and the plasma was frozen at −20 C for later analysis.

Commercially available RIA kits (Diagnostic Products Corp., Los Angeles, CA) were used for
the analysis of E2 and P4, with the addition of an extraction step (diethyl ether with 2% ethanol,
J. T. Baker Pharmaceuticals, Phillipsburg, NJ). Use of the P4 assay kit without extraction has
been established previously (52), but examination of the E2 kit has indicated that the addition
of the extraction step markedly improves assay performance (53). Using 200-μl aliquots, the
E2 assay has a sensitivity of 2.5 pg/ml and an upper limit of 500 pg/ml. The intraassay CV was
7.95%, and the interassay CV was 12.30% at 11.50 pg/ml and 4.50% at 96.23 pg/ml. Using
100-μl aliquots, the P4 assay has a sensitivity of 0.1 ng/ml and an upper limit of 40 ng/ml. The
intraassay CV was 8.44%, and the interassay CV was 14.7% at 1.58 ng/ml and 11.67% at 12.01
ng/ml. MPA was analyzed using a commercially available kit (Immunometrics Ltd., London,
UK). Using 200-μl aliquots, this assay has a sensitivity of 0.08 ng/ml and an upper limit of 2.5
ng/ml. The intraassay CV was 7.79%, and the interassay CV was 9.54% at 0.61 ng/ml and
2.47% at 2.27 ng/ml.
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Statistical analyses
Differences in behavior and hormone concentration across treatments were analyzed with
ANOVA models for repeated measures using a log transformation for the analysis of behavioral
data to control for non-homogeniety of variance. Post hoc analyses, using the Bonferroni test
to adjust the observed significance level for multiple comparisons, were conducted in
comparing each mean to the other means in a series and identifying significant main effects of
categorical variables. Statistical analyses were performed using SPSS software (version 11.5;
SPSS, Inc., Chicago, IL), and tests having a P value of 0.05 or less were considered significant.

In addition to determining whether differences between means were statistically significant,
we evaluated the magnitude of difference between means by computing Cohen’s d as an
indicator of effect size (41). Cohen’s d is a measure of explained variance that describes the
magnitude of a difference between means in SD units. It is calculated as the difference between
means divided by the SD of the means. By convention, d = 0.2 indicates a small effect, d = 0.5
indicates a moderate effect, and d > 0.8 indicates a large effect (54). A measure of effect size
provides an important complement to traditional data testing because of the possibility for
finding a statistically significant difference that represents only a small degree of variance,
which is of less theoretical interest than a significant finding that reflects a large magnitude of
change (d > 0.8).

To confirm the absence of order effects, we used a one-way ANOVA to determine whether
overall rates of behavior remained constant across the first, second, and third treatment periods;
in the absence of treatment carryover effects, rates of behavior were expected to remain
constant because the same number of subjects was placed on each of the treatments during all
of the test periods. For ease of interpretation, means ± SEM for our behavioral measures have
been reported and presented graphically using the original rather than the log-transformed data.
Individual data points have been presented in tabular form.

Results
Serum hormone levels varied across the four treatment conditions for E2 (F3,15 = 57.8, P <
0.001) and P4 (F3,15 = 29.3, P < 0.001). MPA was below the limit of detection except when it
was administered during the E2 + MPA condition (Table 1). Post hoc analyses for serum E2
levels revealed that placebo values differed from those obtained during the other treatment
periods (placebo vs. all other treatments, P ≤0.001). Serum P4 values from the E2 + P4
treatment condition were significantly higher than those obtained during all other treatment
periods (E2 + P4 vs. all other treatments, P < 0.03), with effect size analyses revealing the
greatest elevation relative to the placebo condition (E2 + P4 vs. placebo, Cohen’s d = 3.88; E2
+ P4 vs. E2-only, Cohen’s d = 1.74; E2 + P4 vs. E2 + MPA, Cohen’s d = 1.56).

Across successive test periods, there was no difference in overall rates of sexual initiations
(F2,15 = 0.098; P = 0.91), aggression (F2,15 = 1.06, P = 0.37), or self-scratching (F2,15 = 0.14,
P = 0.88), suggesting a lack of carryover effects. Moreover, the hormone treatments had no
influence on locomotion rates (F3,18 = 1.415; P = 0.27), indicating that a general sedation effect
could not account for changes in our measures intended as proxies for underlying emotional
states.

Female sexual initiation rates varied significantly across the treatment conditions (F3,15 = 20.4,
P < 0.001; Fig. 1 and Table 2). Post hoc analyses revealed that the E2-only treatment induced
a rise in female sexual initiation rates relative to the placebo condition (P = 0.016). The addition
of P4 failed to significantly attenuate the effect of E2 on female sexual initiations (P = 0.276),
although rates of behavior during the E2 + P4 condition also failed to rise above those observed
under the placebo condition (P = 0.181). By contrast, the MPA + E2 treatment significantly
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attenuated rates of female sexual behavior, both in comparison with the E2-only (P = 0.001)
and the E2 + P4 condition (P = 0.038). The magnitude of the inhibitory effect on female sexual
initiations also was much greater for MPA compared with P4; the effect size was moderate for
the difference in initiation rates between the E2-only vs. the E2 +P4 condition (Cohen’s d =
0.62), whereas it was quite large for the difference in initiation rates between the E2-only vs.
the E2 + MPA condition (Cohen’s d = 2.56).

The significant variation in aggression rates across conditions (F3,15 = 4.2, P = 0.023; Fig. 2
and Table 2) reflected the large increase in behavior induced through MPA treatment. Rates
of aggression failed to differ from the placebo condition during the E2-only (P = 1.00) or the
E2 + P4 treatment period (P = 1.00). By contrast, the addition of MPA induced a significant
rise in behavior relative to the placebo condition (P = 0.007), with an effect size indicating a
large magnitude of change (Cohen’s d = 0.80). Aggression rates did not differ significantly
between the E2 + MPA and the E2 + P4 treatment (P = 1.0), and the effect size indicated a
moderate difference (Cohen’s d = 0.66).

The hormonal treatments also had a significant effect on rates of self-scratching behavior
(F3,15 = 7.51, P = 0.003; Fig 3 and Table 2). The E2-only treatment induced a downward trend
in self-scratching relative to the placebo condition, but this difference failed to reach
significance (P = 0.086). This effect was countered by both progestogen treatments, although
the increase relative to the E2-only treatment reached significance under the MPA + E2 (P =
0.050) but not the P4 + E2 condition (P = 0.072). Moreover, the effect size for the E2-only
vs. the E2 + MPA treatment (Cohen’s d = 1.91) was more than 75% larger than the effect size
for the E2-only vs. the E2 + P4 treatment (Cohen’s d = 1.07).

Discussion
In this study using a monkey model, MPA dramatically altered female sociosexual behavior,
inducing certain undesirable effects and offsetting several beneficial behavioral actions of E2.
Treatment with E2 alone induced a substantial rise in female sexual initiation rates. Although
cotreatment with P4 did not significantly reduce the effects of E2, MPA markedly antagonized
its actions. Both P4 and MPA counteracted the effects of E2 on self-scratching behavior as a
measure of anxiety. By contrast, although neither E2 treatment alone or in combination with
P4 impacted aggression rates, the addition of MPA induced a significant rise in this behavior.
These behavioral changes suggest that MPA may disrupt the mood-elevating effects of estrogen
treatment in women (3,55), and that it may do so more profoundly or in ways that natural P4
does not.

The P4 levels we produced in this study were somewhat elevated under all of our experimental
treatment as compared to our placebo condition. This rise in P4 among our ovariectomized
subjects may be attributable to E2 stimulation of adrenal P4 output stemming from decreased
P4 metabolism. Indeed, E2 treatment curtails the conversion of P4 to its reduced metabolite,
allopregnanolone (56,57). Therefore, under our experimental conditions, all of which included
E2 treatment, P4 may have accumulated in its unchanged form; by contrast under our placebo
condition, it may have been converted to a form that was easily eliminated or not detected with
our assay. Nonetheless, irrespective of the mechanism behind this difference, the small rise in
endogenous P4 was outweighed by the change we produced through our P4 treatments.
Moreover, this relatively small increase induced through E2 treatment was present in all of our
experimental conditions, yet it failed to prevent our E2-only treatment from inducing
behavioral changes that were attenuated by the addition of exogenous P4, and especially MPA.

The serum levels of MPA and P4 that we did produce under the respective treatment periods
are of clear biological relevance because they are less than, or equivalent to, the blood levels
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women experience on contraception and hormone replacement therapy. The mean circulating
level of MPA for the females in our study was 0.92 ± 0.06 ng/ml. By comparison, long-acting
injectable contraceptives routinely produce blood levels that reach 1 ng/ml and may even
approach 2 ng/ml during the initial weeks after administration (58–60). Similarly, hormone
replacement formulations containing a 5-mg oral dose of MPA commonly produce peak blood
levels exceeding 1.5 ng/ml that may approach 2 ng/ml (61). For P4, the mean circulating
concentration we produced during our E2 + P4 treatment was 1.9 ± 0.06 ng/ml. This level is
again similar or somewhat lower than the serum concentrations women commonly experience
when using P4 in hormone replacement—whereas the use of a 45-mg dose of transvaginal gel
produces somewhat higher blood concentrations, approaching 4 ng/ml (62), a 100-mg oral dose
of micronized P4 has been found to produce peak blood levels of 1.0–2.5 ng/ml, when measured
through assay protocols that eliminate cross-reactivity with the substantial quantity of
conjugated metabolites produced by oral administration (63,64). Hence, the MPA and P4 levels
we produced among our subjects clearly were within the range that woman routinely experience
on contraception and hormone replacement and may have generated similar effects on behavior
and neurochemical function.

Although we did generate analogous conditions by closely approximating serum hormone
levels, other aspects of our study limit the extent to which our findings can be used to infer that
the use of MPA will have negative mood consequences for women. In particular, our subjects
were treated over a limited period, and their behavior was monitored after they had only 3–7
d of hormone exposure. This period is far shorter than women experience through the use of
continuous combined hormone replacement regimes and long-acting injectable contraceptives.
Even monthly contraceptive pills and cyclic hormone replacement regimes expose women to
progestogens for a more prolonged period. Hence, in the future, it will be important to evaluate
the effects of MPA over the course of weeks and months to determine whether the changes it
induces are temporary or chronic. Moreover, our findings must be interpreted carefully because
of our need to rely on behavioral measures that are proxies rather than direct measures of
emotional states. As such, these measures potentially can be influenced by factors other than
changes in mood. In particular, both E2 and P4 receptors are present in the skin (65,66), and
although many women experience a decline in collagen synthesis at menopause, resulting in
a thinning and drying out of the skin (67–69), estrogen replacement can restore skin quality
and alleviate these symptoms (70–72). Thus it is possible that the reduction in scratching we
observed during our E2-only treatment was due to the alleviation of dryness and itchiness of
the skin, which was then countered through our progestogen treatments. However, estrogen
treatment has been shown to improve skin quality over the course months (71–73), in contrast
to the acute time period over which our observations were conducted. Moreover, self-
scratching is a well-established measure of anxiety among nonhuman primates (35–45), and
the increase in aggression we observed suggests that MPA, in fact, exerts effects within certain
neurochemical systems.

Having shown that MPA can have a pronounced impact on behavior, the molecular
mechanisms through which MPA exerts its effects must now be determined. Potentially, MPA
simply could act as a potent agonist at progesterone receptors. The inhibition of sexual behavior
we observed through progestogen treatment, in fact, was expected on the basis of prior research.
Rodent studies have shown that acutely P4 stimulates sexual behavior through its action at E2-
induced hypothalamic progesterone receptors; however through prolonged exposure, P4 exerts
inhibitory effects by blocking the continued induction of its own receptor (74). Although this
mechanism of inhibition has not been demonstrated in primates, research on monkeys has
shown that the inhibitory effects of P4 are most pronounced when levels rise relative to E2
(75,76). Given the potential for P4 to inhibit sexual behavior through its own receptor, MPA
could exert even more pronounced effects by binding more strongly to relevant P4 receptors
within the brain. Relative binding studies, in fact, have shown that, in comparison with P4,
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MPA has an equal or greater affinity for P4 receptors (77,78). Moreover, the potential for MPA
to bind to P4 receptors within relevant neurochemical systems is suggested by the finding in
male macaques that both MPA and P4 accumulate in their unchanged form in cell nuclei of
the hypothalamus and preoptic area, regions of the brain critical for the regulation of sexual
behavior (79,80). Nonetheless, most studies examining the biological potency of MPA once
bound to P4 receptors have been conducted in peripheral tissues of the reproductive system
(e.g. Refs. 81–83). Because the relative strength of action among various progestogens can
differ across organ systems (81), the results of these studies focusing on MPA’s potency in
peripheral tissues cannot be extrapolated with confidence to predict its central effects.

In addition to actions mediated through progesterone receptors, MPA may induce changes in
behavior through its effects at other steroid receptors. Indeed, at androgen receptors, some
studies have shown MPA to have pronounced agonistic properties (e.g. Refs. 84–86). However,
other studies have found MPA to antagonize androgen receptor mediated effects (e.g. Ref.
87), and MPA’s relative binding affinity for androgen receptors is considerably weaker than
has been found for the 19-nortestosterone derived progestogens (77,78). By contrast, at
glucocorticoid receptors, MPA has a relative binding affinity intermediate to dexamethasone
and the natural ligand cortisol (77,78,88). Additionally, MPA has been shown to induce
pronounced glucocorticoid-like effects (88–93). Indeed, Gibbs et al. (24) speculate that MPA
impairs cholinergic function, whereas P4 may not, because of its substantial glucocorticoid
properties. Nonetheless, because the relative effects of MPA have the potential to vary across
tissue types, its actions at glucocorticoid receptors within relevant neurochemical systems must
be evaluated to determine whether the glucocorticoid properties of MPA underlie the
behavioral changes we observed.

In addition to countering the effects of E2 through its actions at glucocorticoid receptors, MPA
also may offset E2’s actions by blocking the conversion of endogenous P4 to its neuroactive
metabolite, allopregnanolone. Synthesized peripherally and within the brain through the
sequential actions of 5α-reductase and 3α-hydroxysteroid dehydrogenase, allopregnanolone
acts as a positive allosteric modulator of γ-aminobutyric acid (GABA)A receptors (94–96). The
importance of allopregnanolone in the regulation of behavior has been illustrated clearly in
rodent studies, which have shown that allopregnanolone has anxiolytic and antidepressive
effects on behavior that can be potentiated or inhibited through the respective administration
of a GABAA agonist or antagonist (97–102). In women, some studies have shown that, during
the luteal phase, individuals diagnosed with premenstrual syndrome or dysphoric disorder have
lower allopregnanolone levels (103,104), whereas others have found the opposite or no effect
(105–107). Nonetheless, women who have been diagnosed with premenstrual mood disorders
report greater increases in anxiety and irritability during cycles in which they have lower
allopregnanolone levels (104,106,107). Similarly, individuals suffering from depression also
have been shown to have reduced allopregnanolone levels that are normalized through
successful treatment with antidepressants (108–110). Hence, because alterations in
allopregnanolone levels have been linked to mood disorders, MPA could have induced the
changes we observed through its effects on the metabolism of this reduced P4 metabolite. MPA,
in fact, acts as a competitive inhibitor of 3α-hydroxysteroid dehydrogenase activity, and
therefore blocks the conversion and accumulation of allopregnanolone (111–113). Moreover,
the parallel metabolite of MPA (tetrahydroMPA) has no effect on GABAA receptors, and MPA
itself acts as a negative modulator (114). Hence, although estrogens are thought to elevate
mood (3,55), MPA may offset this effect by blocking the anxiolytic and antidepressive actions
of allopregnanolone.

In conclusion, we have demonstrated that MPA has a pronounced impact on social and sexual
behavior in female macaques. These changes in behavior likely reflect alterations in
neurochemical function that underlie the changes in mood and loss of libido that women may
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experience when using MPA for contraception or hormone replacement therapy. Our results
suggest that investigations of the sexual and mood consequences of MPA administration in
humans would be an important addition to the literature on hormone therapy. Having
determined that MPA can profoundly affect behavior, future research must focus on the
molecular mechanisms through which MPA exerts these actions, and how these are different
from or similar to the actions of other progestogens.
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Fig. 1.
Female sexual initiation rates. Treatment with E2 alone increased female sexual initiation rates.
Cotreatment with P4 diminished this effect somewhat, whereas a molar equivalent dose of
MPA markedly antagonized E2’s actions.
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Fig. 2.
Aggression rates. Neither treatment with E2 alone nor E2 + MPA impacted aggression rates,
but the addition of MPA to E2 induced a significant rise in behavior. ns, Not significant.
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Fig. 3.
Self-scratching rates. Both P4 and MPA countered the ameliorative effect of E2 on self-
scratching, an established measure of anxiety in non-human primates.
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