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Replicability, Confidence, and Priors
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Abstract

All commentaries concern priors. In this issue of Psychological Science, Cumming graphically
demonstrates the implications of our ignorance of 8. Doros and Geier found mistakes in my
argument and provide the Bayesian account. Macdonald notes that my program is like Fisher’s,
Fisher’s is like the Bayesians’, and the Bayesians’ is incoherent. These Commentaries strengthen
the foundation while leaving all conclusions intact.

REPLICATING pyep

Cumming reminds us that pyep is an estimate of the probability that a replication with the
same power will support the original finding—that it will give an effect of the same sign.
The histogram of probabilities of replication (PRs) at the bottom of his Figure 1 is therefore
reassuring: All but 6 of the 139 cases have PRs greater than .5: More than 95% of the cases
therefore support the original finding. Indeed, because the distribution of PR is negatively
skewed, we can generally expect the typical (median) replicability to be better than claimed,
as was the case in Cumming’s example. In that sense, prep is a conservative estimate of
replicability.

Cumming’s real concern is not that a few replications may be victims of sampling error, but
that the original experiment might have been a victim. Again, there is consolation to be
found in his histogram: By current standards (corresponding to prep = .9), for none of his 139
cases did A go far enough in the wrong direction to have supported a decision to publish an
unreplicable finding (i.e., in no case was PR <.1). Define strong evidence as a prep greater
than ps. If we set pg to a relatively liberal .8, the probability that replication of an experiment
that provided strong evidence in the first place will provide strong contradictory evidence
(the repllcatlon S OWN Prep is greater than ps, but the effect is in the wrong direction) is less
than .05.1 Given Cumming’s original Prep OF .89, approximately 3 of Cumming’s cases
should have strongly contradicted the original; 2 did so.

Neither prep nor any other statistic can overcome the probabilistic nature of the relation
between evidence and inference. There is no surety, but only the relative safety of numbers,
good experimental design, and empirical replication.

I was edified by Cumming’s explanation of replication intervals in terms of confidence
intervals (CIs). Yet, although everyone agrees on the importance of reporting some measure
of effect size, Cls are less than ideal: First, most researchers do not understand what a Cl

Address correspondence to Peter Killeen, Department of Psychology, Box 1104, McAllister St., Arizona State University, Tempe, AZ
85287-1104; e-mail: killeen@asu.edu..

IThe probability of a replicate speaking strongly against an original, where strong means the replicate has a Prep of its own of pg, is 1
~NORMSDIST(NORMSINV(ps) + NORMSINV(prep)), where NORMSDIST is the standardized normal distribution, and
NORMSINV is its inverse. The probability of a repllcatlon speaking strongly for an original is 1 — NORMSDIST(NORMSINV(ps) —
NORMSINV(prep)). If we would call the top quartile of preps supportive, the bottom quartile contradictory, and the rest ambiguous,
then set pg as equal to .75.
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means (Cumming, Williams, & Fidler, 2004, p. 299). The problem is not confined to
psychologists: “A confidence interval is an assertion that an unknown parameter lies in a
computed range, with a specified probability [sic]” (Rinaman, Heil, Strauss, Mascagni, &
Sousa, 1996, p. 608). Such misunderstanding may be part of the reason why “of the 15
measurements of the Astronomical Unit that [Youden, 1972] presented, not a single one fell
within the range of the possible values given by its immediate predecessor” (Stigler, 1996, p.
780)—or at least may be a reason for the bemusement that attends such observations.
Second, as Fidler, Thomason, Cumming, Finch, and Leeman (2005) noted, “what to
construct Cls around—and how to display them—remain issues for debate” (p. 495). Third,
Cls are an impure measure of effect size, because they invoke a sampling distribution to set
the relation between level and interval (May, 2003), and that is an easily avoided source of
error: Justuse d or r.

If there is “still much to learn about confidence intervals” (Fidler et al., 2005), there is
fortunately much less to learn about replication intervals: Calculate the standard error, center
it over the statistic, and the long-run probability of a replication falling within those limits
(Cumming’s average probability of capture, or APC) is approximately 50%. Perhaps it is
time to start explaining the complicated in terms of the simple.

Cumming’s table, figures, and Web site should help readers to understand this alternative to
null-hypothesis significance testing, as his insightful and encouraging comments helped me
to understand it in the first place.

ERROR AND CORRECTION

I arrived at prep by conditioning on the unknown dand integrating it out, assuming flat priors.
This is also how Cumming simulated his PRs. | recognized this to be tantamount to a
convolution and took the variables | was differencing to be the sampling errors of the
original and replicate. But as Doros and Geier show, my reduction of the argumenttod’, =d
"1 — Al + A2, although correct in any particular case, does not give the expected value of d’y
Their fourth proposal (B2) provides the Bayesian route to my result. Treat o2 as a prior and
divide the numerator and denominator of their equation leading to Equation 4 by o2 If
knowledge of pc is vague or n is large, then 625 >> 624, whereupon their Equation 4 reduces

to P(d 2>0d )= ‘fjf“zv(o, 1), with p¢ ~ d'q (its maximum likelihood estimate), and

Oc=0y, ® \/Effdajust as in my original report (Killeen, 2005).

| did not use o2; as a prior but as the variance of the hyper-parameter d; for the reference
population of experiments j, and should have subscripted it as 028] (see the appendix for

— 2 2
errata and further discussion of priors). Then my Equation 7, written as 74 ~ \/ 2 (‘Td;”’ov)’

is correct. As a realization variance, 0251- represents the divergence of different populations
of subjects, measurements, or operations, and approaches zero only for identical
replications.

PRIOR IGNORANCE

Macdonald argues that the distribution of replicate effect sizes may be derived either from
Fisher’s fiducial arguments or from Bayesian analyses, but that the former are invalid and
the latter incoherent. Viable interpretations of Fisher’s arguments reduce to a Bayesian
model, such Doros and Geier’s, with uniform priors on the location parameter §;. Seidenfeld
(1979, p. 131) blamed Fisher’s failure on the difficulty in formulating uninformative priors
that were invariant over arbitrary transformations of the variables. But such invariance is a
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useless luxury for scientists. Most of the inferential statistics we use depend on the additivity
of random variables, and those remain additive only under linear transformations. If simple
reaction times are normally distributed on log(t), then log(t), not t, is the scale on which to
express priors. Such measurement constraints,? long dismissed by statisticians (Hand, 2004),
de-mark the boundaries within which Fisher’s fiducial probabilities and Bayesian inferences
are both valid and coherent.3 Statistics lose their authority to the extent that the variables
and their transformations depart from linear comparability; their justification then must be
found in their less principled, but often considerable, pragmatic utility.

Statistics can address three different types of questions (Royall, 1997):
*  What should | believe?
*  What should | do?
»  How should I evaluate this evidence?

The first question requires Bayesian updating of priors to incorporate new data. If the priors
are subjective, Bayesian analysis is “a code of consistency for the person applying it, not a
system of predictions about the world around him” (Savage, 1972, p. 59, who nonetheless
took personal probability as “the only probability concept essential to science,” p. 56). If the
priors are objective, Bayesian updating is the tool of choice for secondary meta-analysis, and
provides the machinery for a cumulative science. Had the astrophysicists cited by Youden
(1972) incorporated priors in their final parameter estimates, there would have been less
humor and more truth in the title of his article. Scientists wanting to know what to believe
about claims—their own or others’—should respect prior information (Field, 2003). After
Bayesian updating, prep provides an excellent prognostic.

Neyman and Pearson avoided the Bayesian implications of the first question by skipping to
the second, asserting that a counsel to action carries no implications for belief (Neyman,
1960, p. 290). But an answer to the second question requires both efficient use of the data—
not possible in their schema—and a payoff matrix. By providing the first, prep lays the
groundwork of a decision theory for scientific inference.

The standard answer to the third question is that results should be evaluated by classifying
them as either significant or nonsignificant. But this approach “is an impoverished,
potentially misleading way to describe evidence” (Dixon, 2003, p. 200; J.E. Hunter, 1997).
Given the typical case of a composite alternative hypothesis (e.g., “not the null”), prep
predicts the probability that replications will provide evidence supporting the original effect.
Given well-defined alternative hypotheses, likelihood analysis (Royall, 1997), corrected for
bias (Forster & Sober, 2004), estimates the strength of evidence favoring the alternatives. If
additional statistical evaluation is wanted, randomization of the constituent log likelihoods
will provide empirical sampling distributions from which prep may be inferred. In either
case, priors “can obfuscate formal tests by including information not specifically contained
within the experiment itself” (Maurer, 2004, p. 17); they flavor the evidence with the
idiosyncratic taste of the evaluator. Flat (uninformative) priors provide the level playing
field necessary for unbiased evaluation. After evidence passes a filter such as prep, it may be

2geidenfeld’s (1979) “smoothly invertible canonical pivotal variables” concisely embody the necessary constraints, but he considered
those too restricting. The issues are subtle; consult Macdonald’s references in this issue of Psychological Science and Seidenfeld’s
(1979) book. Note, however, that Seidenfeld’s paragon estimation of the volume of a cube from weights of capacity and side does not
survive dimensional analysis; the weight of his ruler is a volumetric measure and should be added, not cubed.

Transformation techniques permit nonlinear transforms by appropriately warping one of the scales; for statistical utility, the scale on
which the central-limit theorem holds should be treated as privileged.
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weighted and added to the canon. Belief is best constructed from independently established
facts, composed with an eye to their cumulating effect.

Supernatural Paradoxes

If we knew that 6 = 0, as in Macdonald’s example, then the probability of a positive effect in
replication would be .50, no matter what pyep predicts. But Macdonald assumes supernatural
knowledge; prep does not. Individual experiments do not establish parameters; meta-analyses
converge on parameters. To know what to believe, enter all relevant information into that
inferential engine. To know what research to advise students to undertake, attend to priors.
To evaluate experimental results, however, use prep, unflavored. It comes with the proviso of
ceteris paribus, and its doubled variance allows for sampling error in the original and the
replicate.

Doros and Geier conclude that, because prep can be calculated? from p, it inherits the
shortcomings of null-hypothesis significance testing. Wrong. These statistics, although
informationally equivalent, are distinguished by the inferences they warrant; prep is a valid
posterior predictive probability, p is not. That is precisely why Fisher pursued the fiducial
argument, which, absent measurements on interval scales, is unattainable. With linearity,
“selection of an ‘ignorance’ prior can be made without fear of violating the probability
calculus” (Seidenfeld, 1979, p. 133).

THE REFERENCE SET FOR pygp

Much of my discussion thus far is, in the end, irrelevant to most readers of this article.
Virtually all psychological data are observational or are drawn from convenience samples,
subsets of which are randomly assigned to control or experimental conditions. These
standard empirical procedures are incompatible with the normal statistical models, which
assume random sampling from a reference set or population (Lunneborg, 2000).
Randomization tests emulate our experimental operations (Byrne, 1993), do not depend on
priors, do not depend on the form of the populations sampled, and permit fiducial inference
(Pitman, 1937). Their logic is straightforward; M.A. Hunter and May (2003) have provided
a clear overview and useful references. The p value from such a test gives the proportion of
occasions on which the data would have segregated into such disparate groups (or have been
so correlated with a predictor) by chance.® The corresponding Prep estimates the probability
of replication in samples from the same data set (cf. Pitman’s w statistic). It also predicts
replicability in general, with its accuracy depending on the similarity of the subjects and
procedures in the original and replicate. Permutation tests and pyep respect what we do and
tell us what we need to know. They are the right analytic tools for most of our primary
research questions.
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APPENDIX

Errata
S. Sirois (personal communication, May 10, 2005) noticed that the standard error of
replication on p. 347 in my original article should have been 0, = V204. The second
variance under the radical in Equation 7 should have been 0251-. An unembellished d, as used
by Cumming, simplifies notation.

Flat Priors

Bayesians recommend either Jeffrey’s priors (Lee & Wagenmakers, 2005, have provided an
excellent Bayesian tutorial) or reference priors (Bernardo, in press). The Jeffrey’s prior for
the mean of normally distributed data is uniform. Alas, over an infinite range, that leaves
any particular prior equaling an unproductive zero. But this is not a problem if the range is
merely huge (e.g., spread with o2 ~ 1010), as the prior’s influence will then fall below the
measurement error of rational data. “If prior information is genuinely weak relative to the
data, the posterior distribution should be robust to any reasonable choice of prior
distribution [including improper priors]” (O’Hagan & Forster, 2004, p. 107).

Priors that are flat for d cannot also be flat for r2 (Macdonald, this issue). Ignorance has
structure. Reference priors cash out that structure against the models tested. The reference

-1
prior 7(d, 0)=(c V1+d*/2) s relatively flat for the effect sizes and variances involved
whenever statistical analysis is deemed necessary. For the range of effect sizes that concern
psychologists, whether they use Jeffrey’s priors or reference priors, d or r2, it is all pretty
much Kansas.
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