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ABSTRACT Focal adhesions are micrometer-sized protein aggregates that connect actin stress fibers to the extracellular
matrix, a network of macromolecules surrounding tissue cells. The actin fibers are under tension due to actin-myosin
contractility. Recent measurements have shown that as the actin force is increased, these adhesions grow in size and in the
direction of the force. This is in contrast to the growth of condensed domains of surface-adsorbed molecules in which
the dynamics are isotropic. We predict these force-sensitive, anisotropic dynamics of focal adhesions from a model for the
adsorption of proteins from the cytoplasm to the adhesion site. Our theory couples the mechanical forces and elasticity to the
adsorption dynamics via force-induced conformational changes of molecular-sized mechanosensors located in the focal
adhesion. We predict the velocity of both the front and back of the adhesion as a function of the applied force. In addition, our
results show that the relative motion of the front and back of the adhesion is asymmetric and in different ranges of forces, the
adhesion can either shrink or grow in the direction of the force.

INTRODUCTION

Biological cells of various types establish diverse types

of specialized contacts to their environment. These highly

organized adhesions play an important role in cell-cell com-

munication and signaling, cell development, or cell move-

ment. In this article, we focus on the properties of focal

adhesions (FA), relatively stable and large cell cytoskeleton-

matrix connections, that play an important role in cell

differentiation, motility, and wound healing, as well as

apoptosis (1–4). When shear stress is applied to the contact

area, the adhesion is observed to grow in size (5–7). In

contrast to the symmetric domain growth generally observed

in the adsorption of nonbiological molecules onto substrates,

FA show highly anisotropic growth dynamics in which the

additional proteins are mostly accumulated in the direction

of the force exerted by the cytoskeleton on the FA. When

intracellular actin-myosin contractility is disrupted, FAs do

not develop (8,9). However, myosin II-dependent cell

contractility is not needed when artificially induced, external

forces are applied to the cell, leading to the formation of focal

adhesions (5,10). These experiments show that exerted force

(either intracellular or external) activates signaling cascades

that are essential for the formation and growth of FA. The

theoretical treatment of the origin of the mechanosensitivity

of FA and the dynamics of their anisotropic growth as

discussed in this article results in predictions for the growth

velocities of both the front and back of the FA as a function

of force. Comparison of theory and experiment in various

biological contexts can then be used to refine the model and

differentiate between various microscopic mechanisms.

The elastic response of FA to force was discussed by

Nicolas et al. (11,12), who analyzed the elastic deformation

of a focal adhesion that is subject to a spatially localized

stress. The proteins comprising the FA are modeled as a thin

elastic layer; the fact that force is localized means that the

layer shows compression at the front edge and dilation at the

back edge of the force region. This symmetry breaking was

suggested to be the origin of the anisotropic adsorption of

additional FA proteins and hence the asymmetric growth of

the focal adhesion. Using these ideas for the elastic response

of the FA, we present in this article a theory for the dynamics

of growth of the FA. The link between the elasticity and the

dynamics is the assumption that aggregation of cytoplasmic

proteins to the plaque is favored when the plaque proteins in

the FA are either stretched or exposed to in-plane compres-

sion. The role of force in stretching integrin molecules and

thus activating their association with other plaque proteins

has recently been discussed by Bruinsma (13) in the context

of focal complexes, which are the precursors of FAs,

discussed here. Our dynamical model predicts the growth

velocity of both the front and the back of the adhesion site as

a function of the force exerted on the FA. We find that the

force must exceed a critical value for the FA to grow, but

when growth occurs it occurs preferentially in the direction

of the force. Isotropic growth (or shrinking) can be initiated

by direct stretching of the proteins by the actin-myosin force;

anisotropic growth is caused by the elastically induced in-

plane compression of the plaque proteins. These two

mechanisms compete with each other, leading to four force

regimes in which the adhesion site shows different growth

behavior. Three of these growth regimes have indeed been

observed qualitatively in experiments. More biologically

oriented readers may omit the calculations and proceed to the

final sections, namely, Variety of Growth Behavior in
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Different Force Regimes and Discussion, where we depict

the qualitative results of the model in a simple way.

In addition, we focus on the differences between our

model and one recently presented by Shemesh et al. (14),

which assumes a particular geometry of FA that also leads to

growth in the direction of the force. In contrast, our model

considers a symmetric domain and predicts that the aniso-

tropic growth of FA is the result of spontaneous symmetry

breaking caused by the intrinsic elastic response of the FA to

spatially confined stress. In this last section we also suggest

specific experiments that can be used to test and refine the

various theoretical models.

BIOLOGY OF FOCAL ADHESION FORMATION

Cultured cells show integrin-mediated contacts that undergo

several stages of morphology and composition during their

development. The nascent association of a cell and the ex-

tracellular matrix (ECM) is called an initial adhesion or IA.

The IA is generally located at the edge of a lamellipodia. It

contains the transmembrane glycoprotein integrin, which

binds on the one hand to proteins located in the ECM, and on

the other, to additional linker proteins such as talin that

connect the integrin molecules to actin stress fibers of the

cytoskeleton in the cell (the contractile and force-generating

myosin II apparatus). This initial connection to the actin is

generally weak and small in extent; therefore the IA can slip

under applied forces in the pico-Newton (pN) range (15).

The initial contacts can be transformed by force to so-called

focal complexes. In focal complexes, the link to the actin is

reinforced and new proteins such as vinculin are recruited

from the cytoplasm. These larger and more robust assemblies

of proteins are able to transmit forces of the nano-Newton

(nN) range (16) to the substrate. As shown by Choquet et al.

(17) and Pelham and Young (18), nascent adhesion sites

regulate the force they exert on the substrate in a manner that

depends on the substrate rigidity. Bruinsma (13) developed a

two-state model for the energetics of dynamically fluctuat-

ing, isolated, adhesion sites to explain the force-induced

transition from initial contacts to focal complexes as a

function of the substrate rigidity. The central idea relates

the binding and unbinding processes to the force that the

contractile apparatus exerts over a certain time: the force-

loading rate. On a stiff substrate it is easier for the cell to

build up a certain force; hence the force loading rate in-

creases with the substrate rigidity (19,20).

In this article, we focus on the later stage of the growth

process after the initial focal complexes have developed into

stable and growing focal adhesions (FA). The dynamics of

the anisotropic growth of mature focal adhesion are driven

by cytoskeletal forces and the availability of additional pro-

teins from the cytoplasm. The FAs appear as elongated,

3–10-mm large, streaklike structures. They contain, in addi-

tion to the transmembrane protein integrin, many connective

plaque proteins, e.g., talin, vinculin, paxilin, and others (21).

When shear stress is applied to the contact area, the focal

adhesion grows in size and in the direction of the force. This

was demonstrated in experiments by Riveline et al. (5), in

which the shear stress was produced by a microneedle

that was first brought to the periphery of the cell and then

moved to the cell-center without affecting the cell mem-

brane. In doing so, the microneedle exerted forces on the

actin filaments of the cytoskeleton that are connected to focal

adhesions in the cell periphery. Thus, the microneedle

exerted a certain shear force also on the FA. On a timescale

of minutes, the FA was observed to grow on a micrometer

scale in the direction of the force. This coupling of the

growth to the applied shear stress and the force direction is

the focus of our model and its predictions. The growth-

inducing forces can originate from either the cell’s own

contractile apparatus (22) or from external devices such as a

micropipette (5). But the presence of force is indispensable

for FA growth since experiments show that disruption of the

actin-myosin contractility disrupts the growth of FA (5,8,9,

22). These experiments indicate that FA can be regarded as

micron-sized mechanosensors that show anisotropic growth

under the application of forces.

A quantitative analysis revealed that the growth itself must

be understood in the context of the adsorption of additional

proteins from the cytoplasm to the adhesion site (5). In this

vein, we emphasize that for other types of adsorption pro-

cesses (e.g., surfactant molecules at an interface or proteins

on a substrate), in which the molecules interact with each

other in an isotropic manner to form a condensed phase, the

domain growth is expected to be isotropic. In contrast,

the growth of FA is highly anisotropic and controlled by the

shear stress.

Since the force initiates the growth, one must understand

how the force is able to modify the properties of the contact

region and make it favorable for the adsorption of additional

cytoplasmic proteins. As proposed by Nicolas et al. (11,12),

the adhesion site can be regarded as an elastic layer that

deforms mechanically under shear stress in an anisotropic

manner depending on whether one looks at the front or back

of the region over which the force is applied. We build on

this elastic model to predict the dynamics of adsorption and

hence the domain growth. Our model extends the results of

Nicolas et al. (11) and its considerations of the free energy

of mechanosensitive molecules situated in the elastic layer of

the focal adhesion site, to predict the dynamics of FA.

PHYSICAL MODEL OF FOCAL ADHESIONS

Focal adhesions contain many different types of interacting

proteins. The microscopic interaction potentials are not

known in detail. To study the physics, one must abstract

from the known biological structure the most important prop-

erties that govern the phenomenon of force-induced growth.

In this section, we present a simplified physical picture of FA
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and discuss how this model interprets and simplifies the

complex biological situation.

We begin with the extracellular matrix (ECM) outside the

cell. The major proteins of the ECM are collagen fibers to

which various proteins are associated. Some of these, such as

the ECM protein fibronectin, are able to bind to the trans-

membrane protein integrin located in the cell membrane. This

protein offers the R-G-D sequence which is recognized as a

binding site by several members of the integrin family. In

reality, the ECM itself must be treated as an elastic medium.

To simplify matters, we begin with a model that is relevant

for experiments with cells that are cultured on stiff substrates

like silicon or glass and treat the ECM as an infinitely stiff

medium. The effects of a soft ECM on FAs have been

elucidated by Nicolas and Safran (23). In principle, one can

extend our model in a similar way.

A very important component in the development of FA is

the transmembrane protein integrin that connects the inside to

the outside of the cell and the supporting surface. Integrin is a

major candidate for the mechanosensor that transmits and

translates applied or actin forces to the growth of focal

adhesions. Admittedly, integrin may not be the only force-

sensitive protein that affects the release or adsorption of

plaque proteins from FA. Our model focuses on relatively

large length scales at which the detailed molecular nature is

not resolved. Since the molecular interaction potentials are not

known, we cannot identify any one protein as the mechano-

sensor. We thus focus on integrin and its association with at

least one other mechanosensitive protein. At the micron-

length scales of interest for the prediction of the growth of FA,

we model this mechanosensitive assembly of proteins as one

entity and refer to the integrin-protein unit as the sensor.

Integrin itself is connected to the actin stress fibers by

additional linker proteins. Biologists have identified dozens

of different plaque proteins that are involved in this con-

nection, such as talin, paxilin, vinculin, and others. Although

some parts of this biochemical topology are known (21),

little is known about the protein-protein interaction poten-

tials in the plaque and how these interactions are influenced

by force. There is evidence that zyxin, for example, can only

be located in the adhesion plaque if force is exerted on that

region. This would show that not only the growth but also the

composition of the adhesion plaque is force-dependent to

some extent. Due to the complexity of the protein plaque and

the unknown interdependencies of the different proteins,

constructing a model that tracks every single protein type is

not only impossible but is also not very useful from the

physical point of view. After all, we want to predict growth

on the micron-length scale at which all the microscopic

details cannot be crucial. We therefore use a coarse-grained

model in which several microscopic components are lumped

into one. In this model we treat the adsorption or desorption

properties of all passive (non-force-sensitive) proteins in the

same manner. This is in contrast to the mechanosensitive pro-

teins we mentioned above, that associate with or dissociate

from the other plaque proteins depending on their configu-

rational state, as determined by the force.

The picture used in our model is thus the following

(compare Fig. 1):

1. For simplicity, we first focus on infinitely stiff substrates

and therefore do not treat the substrate elasticity in detail

(it is known that stiff substrates favor FA growth, so our

treatment of an infinitely stiff substrate is a reasonable

limiting case).

2. The FA itself is divided into two layers: The lower

layer—close to the substrate—contains the mechanosen-

sitive protein that changes their configuration and asso-

ciation energies when shear stress is applied. We lump in

this manner all mechanosensitive proteins that are in-

volved in focal adhesion. These proteins are grafted to the

substrate via the integrin molecules. These units are later

modeled as discrete objects that we consider in the elastic

description of the focal adhesion.

3. The second, upper layer is closer to the actin stress fibers

than the lower layer and is composed of the proteins that

are insensitive to external forces but that do associate with

the protein assemblies in the lower layer. These proteins

are passive with respect to force but their association with

the proteins in the lower layer depends on the force-

induced configurational state of the proteins in this lower

layer. In addition, these proteins of the upper layer are

directly connected to the actin and transmit the force to

the lower layer.

ELASTICITY OF FOCAL ADHESIONS

In order to account for the observed, anisotropic association of

proteins and the subsequent anisotropic domain growth in the

direction of the force, one must identify how the applied force

breaks the symmetry of the problem. We follow the sugges-

tion by Nicolas et al. (11) that the anisotropic growth of focal

adhesions can be explained by coupling the elasticity to the

configurational states of the molecules in the FA; these states

determine the energetics of association of cytoplasmic

FIGURE 1 A schematic picture of a focal adhesion (FA) site with the

actin stress fibers on top, which are connected to the plaque proteins, the so-

called upper layer. The FA is grafted to the substrate by the integrin proteins.

The integrin proteins together with force-sensitive plaque proteins build up

the so-called lower layer.
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proteins with the molecules of the FA. We therefore assume

that in addition to direct stretching, in-plane compression also

activates the FA molecules to associate with the cytoplasmic

proteins. The symmetry can then be broken by the exerted

force if it is applied in a finite region of the FA (11,12).

We now review the energetic, elastic treatment by Nicolas

et al. (11,12) and generalize the theory in a subtle manner

that accounts for the coupling of the FA molecules to the

actin. To simplify the elastic treatment, we model the

interactions between these units via springs of stiffness k that

connect the sensors to each other and result in a linear, elastic

chain. The grafting of the chain by the integrins to the

substrate is accounted for by springs of stiffness kb (compare

Fig. 2). The resulting continuum equation obtained by

balancing the spring forces and the applied force due to the

actin is given by Nicolas et al. (11):

a
2
k
d

2
u

dx2 � kbu1 faðxÞ ¼ 0: (1)

Here, a is the average distance between two integrin-

protein units and u(x) is their displacement. The first term

originates from the spring force in the chain whereas the

second term accounts for the grafting of the chain to the

substrate by springs of stiffness kb. This anchorage gives rise

to the local restoring force, �kbu. The last term, fa(x), is the

actin force exerted on the FA, transmitted to the lower layer

at position x.

Note that the derivation of Eq. 1 requires an infinitely

extended, preformed layer of integrin-clusters. However, this

is a rather weak assumption for the following reasons: The

range of the elastic deformations close to the edges of the FA

is mainly determined by the detailed boundary conditions.

This can be seen from the model by Nicolas et al. (11) that

regards the FA as a thin elastic layer on a relatively rigid

substrate. In this case, the decay length of the elastic

deformation is mainly determined by the thickness of the

elastic thin film (;100 nm). Therefore, the region of the FA

that is not acted upon by the actin force need only be several

film-thicknesses in size (that is, a few integrin spacings

;20–70 nm (24)) for the elastic model to be valid. It is in this

region that the stress is transmitted by the elasticity even

though there is (not yet) any direct coupling to the actin.

These arguments have been given earlier in Nicolas et al.

(11).

The transmitted actin force, fa(x) is coupled to the plaque

protein concentration for the following reason: The integrin-

protein units in the lower layer are only connected to the

actin via their association with the plaque proteins in the

upper layer. A given integrin-protein unit at position x is

acted upon by the actin-myosin force only if a plaque protein

is associated with this unit and transmits the force. In the

opposite case, if the integrin-protein unit is not associated

with a plaque protein and thus not connected to actin, the

actin force is not transmitted to the units in the lower layer

and the integrin-protein units feel no force. In the following

we assume that the force that acts on an integrin-protein unit

is linearly dependent on the plaque protein concentration,

and thus write

faðxÞ ¼ rfðxÞ; (2)

where r is a constant that represents the average force an

integrin-protein unit in the lower layer feels when it is com-

pletely connected (via its association with the plaque proteins

of the upper layer) to the actin fibers. In this equation, f is the

local volume fraction of the plaque proteins in the upper layer

and is thus a dimensionless quantity. If the upper layer is fully

occupied by the plaque proteins, f is equal to unity. We will

refer to f as the plaque protein concentration. This consid-

eration yields the elastic equation:

a
2
k
d

2
u

dx2 � kbu1 rfðxÞ ¼ 0: (3)

This equation determines the displacement of the integrin-

protein units as a function of the plaque protein concentra-

tion, including any spatial dependence of the distribution

of plaque proteins. This allows us to calculate the elastic

deformations of the integrin-protein units; these deforma-

tions in turn determine the molecular configurations of these

units that affect the energetics of their association with the

plaque proteins. Thus, the elasticity determines the proba-

bility of adsorption of additional cytoplasmic plaque proteins

to the FA. In some cases, the deformations may make

adsorption more probable and in others, the plaque proteins

may in fact desorb from the integrin-protein units to the cyto-

plasm, thus shrinking the FA. In this manner, the elasticity is

coupled to the adsorption kinetics. Because the concentration

of the plaque protein adsorbed to the adhesion is not homog-

FIGURE 2 The lower layer of integrin-protein units is modeled as a one-

dimensional linear elastic chain that is anchored to the substrate. Each

integrin-protein unit is represented by a particle that is connected via springs

of stiffness k to its neighbors. The grafting to the surface is accounted for by

a spring of stiffness kb that connects the integrin-protein unit to the substrate.

The average spacing between two integrin-protein units is given by a and un

is the displacement of the nth particle from its equilibrium position in the

absence of force. The anchoring to the substrate by the springs of stiffness kb

gives rise to a local restoring force fa,n ¼ �kbun. Eq. 1 is a continuum

representation of this discretized illustration. A derivation is given in Nicolas

et al. (14).
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enous on the scale of the FA, this will induce an anisotropic

deformation and hence also an anisotropic growth of the FA

due to plaque protein adsorption.

The elastic force balance equation, Eq. 3, is a second-order

ordinary differential equation, whose Green’s function has

an exponential form. This allows us to solve this equation

for u(x) for any spatial distribution of the plaque protein

concentration f(x), and we find

uðxÞ ¼ f

2k

Z N

�N

e
�kjx�x9j

fðx9Þdx9; (4)

where we have introduced k2 ¼ ðkb=a2kÞ and f ¼ ðk2=kbÞr.

We assume that the spring constant kb, which is related to

the vertical tilting/stretching of the grafted integrin-protein

unit in the lower layer, is stiffer than the lateral spring

constant k that couples these units with each other. This is a

reasonable approximation, since the deformation of a single

molecular unit should be of higher energy than a change in

the spacing between two such units. We therefore assume

that k � 1. We note that the largest contribution to the in-

tegral is in the vicinity of the point x9 ¼ x where the expo-

nential is close to unity. Outside this region, the exponential

factor causes the integrand to be small. If f(x9) is varying

slowly in this region we can expand the concentration about

the point x and find the general solution for u(x) for any

spatially dependent concentration, f(x):

uðxÞ ¼ f

k
2 fðxÞ1 1

k
2 f$ðxÞ1 . . .

� �
: (5)

ADSORPTION KINETICS

We will use an analogy to surfactant adsorption, which we

will then generalize to treat the adsorption of plaque proteins

from the cytoplasm, and its association with the mechano-

sensitive integrin-protein units in the lower layer. The

adsorption process can be split into two steps: In the first

step, free plaque proteins dissolved in the cytoplasm must

diffuse to the adhesion site. Once a plaque protein is in the

proximity of the lower layer, it can associate with an

integrin-protein unit that has been activated—either by direct

stretching or by in-plane compression; both these processes

are related to the forces exerted by the cytoskeleton on the

adhesion site. In general, the adsorption kinetics of mole-

cules in solution (e.g., surfactants) to a surface can be treated

in two limiting cases: the diffusion-limited or kinetically

limited adsorption (DLA- or KLA-limit, (25)). A scaling

analysis of the adsorption kinetics indicates that the associ-

ation of the plaque proteins with the integrin-protein units in

the lower layer is the rate limiting step for the growth of focal

adhesions, thus the KLA-limit is applicable (A. Besser and

S. A. Safran, 2005, unpublished). We found the timescale for

the slow process, the association of plaque proteins with the

integrin-protein units, to be of order O(1 s); whereas the fast

process of the bulk diffusion of the proteins occurs on much

shorter timescales, , O(10 ms). This separation of time-

scales allows us to simplify the mathematical treatment

without losing any physical significance: the integrin-protein

units are assumed to adjust instantaneously to the local

plaque protein concentration and are thus treated as being in

equilibrium, with a time- and space-dependent plaque pro-

tein concentration whose kinetics are written in the KLA-

limit (25):

@f

@t
¼ fbD

a
2
T
ðmb � maðxÞÞ: (6)

This equation describes the adsorption kinetics of the cyto-

plasmic proteins to the integrin-protein lower layer where a
is the average distance between two units in this layer and T
is the temperature. D is the diffusion constant of the plaque

proteins and fb and mb are concentration and the chemical

potential of the plaque proteins in the bulk. In the KLA limit,

appropriate to our situation, the bulk concentration and

chemical potential, fb and mb, respectively, can be consid-

ered as constants in both space and time. In contrast, the

concentration of plaque proteins near the lower layer, f(x, t),
is both space- and time-dependent; it is only large in the

vicinity of those integrin-protein units that have been

activated by the force; the activation implies a conforma-

tional change that makes the association of the plaque pro-

teins with the integrin-protein units energetically favorable.

The space and time evolution of f(x, t) is determined by Eq.

6, where ma(x) is the chemical potential of plaque proteins on

the integrin surface. Because the mechanosensitive units in

the lower layer change their conformations in response to the

elastic deformation induced by the actin-myosin force, and

because these conformational changes modify the energies

of association of these units with the plaque proteins, the

chemical potential of the plaque proteins in the vicinity of the

lower layer, ma, is spatially dependent. Only those mech-

anosensitive units that are coupled to the cytoskeleton force

can be activated to associate with the plaque proteins. This

depends on the region over which the force acts as well as the

spatial extent of the coupling of the mechanosensitive units

of the lower layer to the force.

A more precise treatment of the spatial dependence of the

chemical potential would lead to an additional in-plane dif-

fusion term in the kinetic equation that would be proportional

to the in-plane Laplacian of the concentration. However, once

associated with the integrin-protein units and thus bound to

the lower layer, the in-plane mobility of the proteins is

expected to be small and we ignore this in-plane term

compared with the KLA equation written above. By defining

the coefficients

C1 ¼
fbD

a
2
T
; (7)

we arrive at the following kinetic equation that focuses on

the association kinetics of the plaque proteins in the vicinity

of the lower layer:
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@fðx; tÞ
@t

¼ C1ðmb � maðx; tÞÞ: (8)

The kinetic equation for the plaque protein concentration

depends on the chemical potential ma of the plaque proteins

near the lower layer. This is a function of the binding energy

of these proteins to the lower layer, which is, in turn, a

function of the conformational state of the integrin-protein

units in the lower layer. The state of these units—activated or

nonactivated for association with the plaque proteins—de-

pends on the stretching or in-plane compression of these

units, both of which are related to the cytoskeletal force. This

then results in a coupling of the adsorption dynamics to the

force and the compression, which is determined by the

elastic equations. We thus have a closed set of equations for

both the mechanical displacement and the protein concen-

tration at the integrin layer. The goal that remains is the

determination of the chemical potential, ma(x), and its de-

pendence on the force.

ACTIVATION STATISTICS
OF THE MECHANOSENSORS

Although the detailed microscopics of the activation of the

mechanosensors is not yet known, we now present a simple

but concrete model to treat the statistics of this process; this

general model can be applied to a wide variety of micro-

scopic situations. To make the statistical model more specific

we imagine that the conformation of the nonactivated state of

the mechanosensitive, integrin-protein unit has a spherical

shape, whereas the conformation of the activated state is more

elongated (prolate ellipsoid) (compare Fig. 3). The energetics

of association with plaque proteins of the activated state of the

integrin-protein units is favorable, while those of the nonac-

tivated state involve an energy cost. To deform the inactive

spherical conformation to the ellipsoidal, active state, it is

sufficient to either stretch or to compress the integrin-protein

unit. More generally, one can model the statistics of activation

by assuming that the mechanosensitive, integrin-protein units

can be in only two states: an activated state, si ¼ 1, or a

nonactivated state, si ¼ 0, where si is a variable that denotes

the conformation of the integrin-protein unit at a given site, i,
in the lower layer. To change conformation from the

nonactivated to the activated state, the mechanosensor must

overcome an energy barrier, DG. This energy can be provided

by the external force that can either compress or stretch the

mechanosensor units; we assume that either in-plane com-

pression or stretching can lead to the same conformational

change in the force-sensitive proteins, but with different

energetics. The cytoskeletal force thus modulates the activa-

tion of the sensor units and hence governs the association

energy of these mechanosensitive integrin-protein units with

the plaque proteins. The statistics of this process are derived

from the energetics of the activation and we write a Hamil-

tonian that accounts for the conformational changes of the

integrin-protein units:

Hint ¼ Si½DGsi 1 tui9si � dfa;isi�: (9)

If there is no force applied to the adhesion site, the

displacement, ui, of the integrin-protein units at a given site,

i, and the actin force transmitted to these units, fa,i, is zero;

the energetic cost for a conformational change (where si goes

from zero to unity) is DG, which we take to be positive and

much greater than the thermal energy. In this case of no

force, the Boltzmann factor for the probability of a confor-

mational change will be exponentially small. In our model,

in-plane compression or stretching lowers the energy of the

activated state. Thus, in Eq. 9, the second term represents

the energy gain if the sensor is both compressed and in the

activated state. The statistical probability for conformational

change associated with this term depends on the amplitude of

the compression, whose absolute value is expected to be

highest at the edges of the focal adhesion site. To relate the

discrete site variable, ui, to our previous discussion of the

continuum elasticity, we write u9i to denote the local change of

integrin-protein deformation at site i; this is a measure of the

relative change of the integrin density, which in the continuum

model we write as ð@u=@xÞ. Therefore u9i , 0 represents an

in-plane compression of the local integrin-protein density in

the lower layer, and u9i . 0 an expansion. The value t is a

proportionality factor that relates the compression u9 to the

conformational energy and is dependent on the initial density

of the uncompressed layer as well as on the elastic properties

FIGURE 3 A possible, concrete but schematic picture of the activation

process of mechanosensors: Assume that the conformation of the nonac-

tivated state of the force-sensitive proteins has a spherical shape (A), whereas

the conformation of the activated state has an elongated shape (B,C). The

difference in energy between the activated and nonactivated states is DG. 0.

This energy can be provided by the external force either by compressing

(B) or by stretching the sensor (C), so that the activated state is favored

energetically. In-plane compression originates from elastic interaction be-

tween neighboring sensors in the lower layer, whereas stretching is due to

the direct coupling of the sensor to the actin stress fibers.
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of the sensors. At the front edge of the region over which the

actin force acts, the layer is compressed and the integrin-

protein units are activated; at the back edge, they are expanded

and do not change conformation (11,12). Thus, association of

the integrin-protein mechanosensitive units with new plaque

proteins in their vicinity is energetically favorable near the

front edge of the force and unfavorable at the back. This effect

is at the origin of the symmetry breaking and the anisotropic

growth of FA in our model.

In addition to in-plane compression, we also include the

effect of the direct stretching of the mechanosensitive units

by the cytoskeletal forces that makes the activated state

energetically favorable, as suggested by Bruinsma for focal

complexes (13). This is a purely local effect and cannot

transmit information in the plane of the lower layer, in

contrast to the compression effect discussed above. This

additional energy gain is represented by the third term in

Eq. 9, where fa,i is the local actin force which is transmitted

to an integrin-protein unit at site i and d is a length scale of

the order of the molecular deformation of the sensors during

the conformational change. If the sensor is both stretched

and in the activated conformation, si ¼ 1, its energy is

lowered and the probability for conformation change (and

hence association with the plaque proteins) is enhanced.

This effect ensures that the association of the integrin-

protein units with the plaque proteins remains stable (is

energetically favorable) under the application of force. This

term does not differentiate between the different regions in

the plane and causes only isotropic force-induced growth of

the FA.

The local actin force, fa,i, which is transmitted to an

integrin-protein unit at site i, is dependent on the plaque

protein concentration since those molecules couple the

integrin-protein units to the actin stress fibers. Similar to the

discussion of the continuum elastic model, we write in our

discrete representation for the local actin force, fa,i ¼ rti,
where ti ¼ 1 (ti ¼ 0) signifies the presence (absence) of a

plaque protein adjacent to site i in the lower layer. We rewrite

the Hamiltonian of Eq. 9 as

Hint ¼ +
i

½DGsi 1 tu9i si � d rtisi�: (10)

From this we derive the statistical probability of integrin

activation at site i by considering the balance between the

energetics of activation and the entropy,

Æsiæ ¼
1

2
1 � tanh

b

2
ðDG1 tui9� d rtiÞ

� �� �
; (11)

where b ¼ 1/T (we set the Boltzmann constant to unity). For

simplicity, and because the physically relevant case only in-

volves small density changes, we treat u9i as a small quantity

and expand Æsi(ti)æ, disregarding terms of order O[u92]. In this

approximation we find that the probability of conformational

change is given by

ÆsiðtiÞæ ¼
1

2
1 � ðtanh

b

2
DG� b

2
drti

� ��

1 sech
2 b

2
DG� b

2
drti

� �
b

2
tui9

� ��
: (12)

INTERACTIONS AMONG THE ADSORBED
PLAQUE PROTEINS

The main goal that still remains is the derivation of the

chemical potential ma of the plaque proteins in the vicinity of

the lower layer where the integrin-protein mechanosensitive

units have been activated to associate with the plaque

proteins by the actin force in some limited region. Before

embarking on the detailed calculation, we outline the main

points: First, we discuss the Hamiltonian that governs the

energetics of the plaque proteins adsorbed to the lower

layer. In doing so, we include the integrin-protein activation

statistics described in the previous section. From this Hamil-

tonian and from entropic considerations we derive an ex-

pression for the free energy of the plaque proteins. Finally,

we calculate the chemical potential of the plaque proteins

from the derivative of the free energy.

The Hamiltonian that governs the energetics of the plaque

proteins near the integrin-protein lower layer is given by

Hp ¼ �+
i

ebÆsiðtiÞæti 1
1

2
+
i;j

Ji;jtið1 � tjÞ; (13)

where ti 2 {0, 1} is the site-variable for plaque proteins: ti ¼ 1

means that a plaque protein is located at site i (i is the

in-plane coordinate) near the lower layer. The first term

accounts for the energy that a plaque protein gains if it binds

to an activated integrin-protein unit. If there is a plaque pro-

tein at site i, (ti ¼ 1), it gains the binding energy eb, but this

energetic gain must be multiplied by the probability Æsiæ that

the integrin-protein unit at site i is activated so that com-

plexation with the plaque protein is energetically and sta-

tistically favorable.

In addition, in accord with the experimental observations

of a condensed protein plaque, we consider an effective

attraction between neighboring plaque proteins. This attrac-

tion is given phenomenologically in our theory. It can arise

from van der Waals interactions, or from more specific

microscopic, molecular attractions due to specific functional

groups. The microscopic origin does not change the theory; it

influences only the numerical value of the parameter denoted

by J, which is the net energy gain when two plaque proteins

come into close contact with each other. The attraction

causes condensation of the plaque proteins and hence of the

FA. This assumption is motivated by the experimental ob-

servation of condensed plaque proteins in FA—at least once

the actin force is in the appropriate regime. In the language of

liquid-gas type phase separation, the FA would correspond

to the high density phase, and the remaining region near the

lower layer, which is not yet densely occupied by plaque

proteins, can be regarded as the low density phase.
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Using the final result of the previous section for the in-

tegrin activation probability, Æsiæ, Eq. 12, we derive from this

Hamiltonian the free energy of the plaque proteins. In a

mean-field approximation, the free energy is the sum of the

internal energy (average value of the Hamiltonian) and the

entropy of the plaque proteins, which can be evaluated in a

lattice-gas approximation (28). For convenience, we replace

the discrete quantities in Eq. 13 by their continuum coun-

terparts:

ti
Ji;j

ui9

ÆsiðtiÞæ
Si

0
BBBB@

1
CCCCA/

fðxÞ
J

u9ðxÞ
ÆsðfðxÞ; xÞæ

1

a

R
dx

0
BBBB@

1
CCCCA: (14)

For simplicity, and because the microscopic nature of the

interactions is not known, we consider only nearest-neighbor

interactions among plaque proteins; hence, the interaction

matrix Ji,j is written as an interaction constant J. Further-

more, to enable an analytic solution, we use the Ginsburg-

Landau expansion (see (28)) of the free energy about the

concentration at the interface between the dense region

where f � 1 and the dilute region where f � 0 and define

c ¼ f – 1/2. Since we focus on the motion of the interface,

the region where f � 1/2 or c � 0 is the most important

regime. (A detailed derivation of the free energy including a

discussion of the continuum limit is given in the Appendix

A.) The free energy, F, of the plaque proteins adjacent to the

lower layer is

F¼ 1

a

Z
dx �ebÆsðf¼ 1;xÞæc� 1

2
ec

2
1

1

4
cc

4
1

1

2
B

@c

@x

� �2
" #

:

(15)

The first term is the total binding energy of the plaque

proteins to the integrin-protein units in the FA. The second

and the third term come from the Ginsburg-Landau expan-

sion of the free energy and are related to the interactions

among the plaque proteins and to their translational entropy.

The fourth term represents the continuum representation (28)

of the line energy of the interface that separates the high-

density domain of plaque proteins that is the FA, from the

low-density region where very few plaque proteins have

adsorbed to the lower layer. Using this approximation for the

free energy, we derive the chemical potential, which is pro-

portional to the change of the free energy with the concen-

tration. In the continuum picture, one uses a functional

derivative and we write the chemical potential of the plaque

proteins adsorbed to the lower layer as

ma ¼
dF

dc
¼ @f

@c
� @

@x

@f

@c9

� �
; (16)

where f is the integrand of Eq. 15. Thus we obtain an

equation for the chemical potential of the plaque proteins,

ma ¼m0ðrÞ1sðrÞu9ðxÞ� ec1cc3 �B
@

2
c

@x2 ; (17)

with

m0 ¼
eb

2
tanh

b

2
DG�b

2
dr

� �
�1

� �
; (18)

sðrÞ ¼ bt
eb

4
sech

2 b

2
DG�b

2
dr

� �
; (19)

and

e¼ ðJ�4TÞ; c¼ 16

3
T; B¼ 1

2
Ja

2
: (20)

The first term, m0(r), on the right-hand side of Eq. 17, is

the force-dependent contribution to the chemical potential

that comes from the stretching of individual proteins by the

cytoskeletal force, whereas the second term, s(r) u9(x), which

is also force-dependent, comes from the activation induced

by lateral interactions between proteins. The three remaining

terms are not force-dependent and appear in the usual theory

of domain growth of condensed phases. They would result in

isotropic domain growth, provided the chemical potential is

appropriate.

SOLUTION OF THE MODEL

In a previous section (Elasticity of Focal Adhesions), we

derived the local, elastic equilibrium of the focal adhesion.

The integrin-protein unit deformation, u(x), depends on the

actin force exerted by the stress fibers. Since the plaque

proteins are crucial in order to mediate the force from the

actin to the mechanosensitive integrin-protein lower layer,

the transmitted actin force, rf(x), and thus the integrin

deformation, is coupled to the plaque protein concentration,

a2k
d

2
u

dx
2 � kbu1rfðxÞ ¼ 0; (21)

which has the solution

uðxÞ ¼ f

k
2 fðxÞ1 1

k
2 f$ðxÞ1 . . .

� �
: (22)

We then described the process of protein adsorption to the

FA and showed that the change of the plaque protein

concentration in time is proportional to the difference of the

chemical potential of plaque proteins in the bulk solution mb

and that of the plaque proteins adsorbed to the lower layer,

ma(x, t):

@fðx; tÞ
@t

¼C1ðmb �maðx; tÞÞ: (23)

The chemical potential, ma(x, t), of the plaque proteins

adjacent to the lower layer depends on the elastic deforma-

tion of the mechanosensors. Hence, this chemical potential is

dependent on the actin force and the sensor compression,
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u9(x) (this dependence is discussed in the two preceding

sections):

ma ¼m0ðrÞ1sðrÞu9ðxÞ� ec1cc
3 �B

@
2
c

@x
2 : (24)

We now have a closed set of equations for both the local

mechanical equilibrium of the lower layer and the plaque

protein concentration adsorbed to this layer. We will next

combine these two equations into one dynamic equation for

the plaque proteins adsorption kinetics that allow us to pre-

dict the growth of the FA.

By substituting the elastic equation, Eq. 21, and the

equation for the chemical potential, Eq. 24, into the kinetic

equation, Eq. 23, we find

@cðx; tÞ
@t

¼C1 Dm0ðrÞ�sðrÞr
kb

@c

@x
1ec� cc3

1B
@

2
c

@x
2

� �
;

(25)

where

Dm0ðrÞ ¼mb �m0ðrÞ: (26)

This is a single, partial differential equation that describes

the change in the plaque protein concentration adsorbed to

the lower layer and its relation to the actin force. The solution

of this equation for the plaque protein concentration, c(x, t),
as a function of both space and time, will define the plaque

protein concentration profile in the upper layer and hence the

shape of the FA. The elastic deformations induced by the

actin force result in asymmetric changes in the plaque protein

profile and by following the dynamics of both the front and

the back of the FA we are able to predict the growth and the

overall motion of the FA.

To get a quick feeling for the plaque protein concentration

profile dynamics, we solved this equation numerically. As an

initial condition, we assumed a steplike but smooth concen-

tration profile of the plaque proteins, c(x, t ¼ 0), and assume

that the control parameter r, the force per sensor, is constant.

Our results show (compare Figs. 4 and 5) that the concen-

tration profile changes its initial shape over a short, initial

time; afterwards the front begins to move in a self-similar

manner that preserves the shape of the domain, and in the

direction of the force. After the initial equilibration process,

the concentration profile reaches a steady-state which then

moves with a constant velocity in the direction of the force.

These numerical results motivate us to make an ansatz for the

analytical solution for the concentration profile that provides

predictive insight into the problem. We consider a steady-

state profile of the plaque protein concentration, f¼ c1 1/2,

that moves with a constant velocity v:

cðx; tÞ ¼ cðx� ytÞ ¼cðjÞ: (27)

The velocity y is the velocity of the front edge (the edge

which is moving in the direction of the force, see Fig. 4)

which we will later refer to as: yfront. The value y is a free

parameter in this ansatz and has not yet been determined. We

next evaluate Eq. 25 with this ansatz,

B
@

2
c

@j
2 1n

@c

@j
� cc

3
1ec1Dm0 ¼ 0; (28)

with

n¼ y

C1

�sðrÞr
kb

: (29)

We will later show (see Eq. 37) that the coefficient n is pro-

portional to the overall growth velocity ytot of the FA (that is,

the time-rate of change of the size of the FA). The solution of

Eq. 28 has the form (26)

cðjÞ ¼a tanhðgjÞ1d: (30)

Here, ð1=gÞ is the width of the interface of concentration

profile that separates the high density, condensed region

from the low density, dilute region. The parameters a and g

are related to the asymptotic concentrations in the condensed

(c(�N)) and the dilute (c(1N)) domains. For j/6N, the

function cðjÞ/d7a if g is negative. Thus d is proportional

to the sum of the concentrations in the condensed and

the dilute domains, d ¼ ð1=2Þðcð�NÞ1cð1NÞÞ, whereas

a is proportional to their difference, a ¼ ð1=2Þðcð�NÞ
�cð1NÞÞ.

We determine the set of parameters (a, g, d, n) by

inserting Eq. 30 in Eq. 28. Since n determines the growth

velocity of the FA, this is the main parameter of interest. As a

result, n can be simply written in terms of the parameter d:

n¼ 3
ffiffiffiffiffiffiffiffi
2Bc

p
dðDm0Þ: (31)

The parameter d is still a complicated function of Dm0 (Eq.

26 and Eq. 18). (At this point we remind the reader that Dm0

is force-dependent.) For convenience, we expand the

function d(Dm0) for small values Dm0:

FIGURE 4 The direction of the force exerted on the FA determines its

front and its back edge. In the absence of artificially applied forces, the force

direction is given by the actin stress fibers and generally points to the cell

body. We will refer to the edge of the FA that points toward the force center

(and in the ordinary case to the center of the cell) as the front edge; and the

opposite boundary (generally furthest away from the center of the cell) is

called the back edge. The region of FA is tracked by the plaque protein

concentration profile (obtained by a cross section through the FA along the

force). By calculating the change in time of plaque protein concentration

at the front edge and at the back edge, experiments can separately measure

the dynamics of the front and the back edges of the FA.
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Dm
2

0 �
e

3

c
: (32)

We will see that Dm0 ¼ 0 when the force is at the critical

value at which the condensed domain changes from one that

shrinks in time to one that grows. This is obviously the most

interesting and relevant regime, since FAs in cells are highly

dynamic structures whose growth can be rapidly changed

from shrinking to growing by the cell’s own contractile ap-

paratus. Thus, the region of small values of Dm0 is of interest.

It thus appears that cells sustain a value of the actin stress so

that the FAs operate near this critical level.

A Taylor series expansion for n in this critical regime

yields

n¼ 3
ffiffiffiffiffiffi
Bc

pffiffiffi
2

p
e
Dm01

3
ffiffiffiffiffiffiffi
Bc

3
p
ffiffiffi
2

p
e

4 Dm
3

01 . . . (33)

Dm0 is given by Eqs. 26 and 18 and depends on the actin

force proportional to r. This relationship together with Eq.

29 allows us to calculate the growth velocity of the FA at

both the front and back edges (see Fig. 4). For the velocity of

the front edge we find

yfront ¼C1nðDm0Þ1sðrÞC1

r

kb

: (34)

For the velocity of the back edge of the FA, we obtain

yback ¼�C1nðDm0Þ1sðrÞC1

r

kb

: (35)

The second term in the expressions for both the front and

the back velocity originates from the elastic compression

term. For the usual case of domain growth (e.g., of sur-

factants adsorbed to a surface), this symmetry breaking term

is absent and both the back and the front edges of the con-

densed domain grow symmetrically into the dilute domain

for appropriate values of the chemical potential difference. In

our model, the vector of growth velocity points away from

the center of the condensed domain. Thus the minus sign in

Eq. 35 accounts for the direction of the growth at the back

edge of the FA.

The second term in the expressions for the velocities of

both the front and back edges has a plus sign. The reason for

this is that at the front edge, this term induces additional

growth stimulated by compression, so the front edge tends to

grow into the dilute domain—to the right (see Fig. 4). Since

the region near the back edge of the FA is dilated by the actin

force, the integrin-protein units are deactivated. This causes

any plaque proteins adsorbed to this region to desorb, thus

inducing a shrinking of the back edge of the FA. This

depletion and shrinking effect, that is totally dependent on

the actin force and its effect on the elasticity of the lower

layer, tends to move the back edge of the FA to the right.

The growth velocity of both the front and back of the FA is

plotted in Fig. 6, in which we scale the velocities by the

factor

y0 ¼
3

e

ffiffiffiffiffiffiffiffi
2Bc

p
C1jmbj; (36)

and the force by the factor rc, which is the critical force level

where Dm0(r) ¼ 0 (see below). For small forces, the

mechanosensors in the adhesion plaque are not sufficiently

activated and protein aggregation occurs neither at the back

edge or the front edge. If a condensed domain of plaque

proteins were nucleated by some occurrence it would desorb

plaque proteins at both edges and shrink; therefore the

velocity at the front is negative and at the back positive

(compare Fig. 6). When the force is increased, the activation

of the mechanosensors is enhanced and the overall loss of

proteins is reduced. Because the elastic compression term

induces activation of the mechanosensors at the front of the

FA, but deactivation (due to dilation) at the back, it is the

front edge that first reaches the state of no motion (i.e., at

which there is a balance between the shrinking due to the

deactivation by the insufficiently large direct force, and the

growth due to the activation by the compressive effect). We

will refer to this force level for the front as LI and for the

back as LIII (see Fig. 6). For very high forces both the front

and back edges of the FA are strongly activated and the

aggregation of proteins is favored.

The overall growth velocity of the domain that determines

the time-rate of change of its size is given by

ytot ¼ yfront � yback ¼ 2C1nðDm0Þ: (37)

This formula together with Eq. 33 indicates that for Dm0 ¼ 0,

the FA is in a critical state that neither grows nor shrinks (see

Fig. 7, level (LII)). The total size of the FA remains constant

FIGURE 5 Numerical solution of Eq. 25 for the plaque protein concen-

tration as a function of space and time for a constant force in the regime of a

growing domain. The initial concentration profile at t ¼ t0 is a smooth,

steplike function. At early times, the front undergoes an equilibration

process and the shape of the plaque protein concentration profile varies.

However, after a certain time, the front begins to move in the direction of the

force, in a self-similar manner that preserves the shape of the domain.
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but if the force is slightly increased, Dm0 will become

positive because more integrin-protein units will become

activated and additional adsorption of the plaque proteins

from the solution will be favored. Hence the FA switches

into a state of overall growth. However, if the force is

decreased from the value at which Dm0 ¼ 0, the FA will react

in the opposite direction and will begin to shrink.

VARIETY OF GROWTH BEHAVIOR IN DIFFERENT
FORCE REGIMES

The different types of growth behavior predicted by our

model arise from the competition between two terms. One

term, related to the local chemical potential difference, Dm0,

is force-dependent,

Dm0 ¼mb �
eb

2
tanh

b

2
DG�b

2
dr

� �
�1

� �
; (38)

and induces a symmetric growth or shrinking of the FA as

a result of the activation of the sensor due to the direct

stretching of the integrin-protein units by the actin force. We

call this the symmetric term. For small values of the force

(when Dm0 , 0) it induces shrinking of the condensed

domain; when the force is such that Dm0 . 0, the domain

grows. The second term, related to the elastic deformation

u9(x, t), originates from the activation of the integrin-protein

units by in-plane compression (at the front edge) and their

deactivation by dilation (at the back edge); it is this effect

that breaks the symmetry of the problem and induces the

anisotropic growth of the FA in our model. At the front edge,

both terms enhance the adsorption of additional plaque

proteins from solution as the force is increased. However, at

the back edge of the FA, these two terms operate in opposite

directions. The term related to Dm0 also induces growth at

the back edge of the FA, whereas the elastic term favors the

desorption of plaque proteins to the bulk.

For weak forces, the compression term becomes negligi-

ble and the stretching term dominates the growth process.

Since for small forces the mechanosensors in the lower layer

are rarely activated, the previously adsorbed plaque proteins

tend to desorb into the cytosol. As a result, in the regime of

small forces, the symmetric term induces shrinking at both

ends (see Fig. 8, range R0).

With increasing actin force, the mechanosensors in the

lower layer are increasingly activated to associate with addi-

tional plaque proteins from solution. The shrinking induced

by the symmetric term is reduced while the compression

term becomes more significant. At the front edge of the

FA, the compression term induces growth while at the back

edge it induces an additional dissociation of plaque proteins

from the lower layer and into the cytoplasm. When the actin

force reaches high-enough values, the compression term

precisely compensates the loss at the front edge due to the

symmetric term, while the back is still shrinking due to the

desorption of the plaque proteins. As a result, the front

edge stays fixed while the back edge is shrinking (see Fig. 8,

level LI).
If the actin force is increased above this value, the

activation of the integrin-protein units at the front edge is

enhanced by both the compression and the stretching terms

to such an extent that the FA begins to grow at the front.

Since at the back edge the elastic effect reduces the activation

caused by the stretching term, the back—for a given range of

force—may still show desorption of the plaque proteins and

consequentially shrinks. For a specific range of forces, the

loss at the back is higher than the gain at the front; hence one

FIGURE 6 Velocity of the front and the back end of the FA as a function

of the force. To obtain dimensionless units, the velocities are scaled by the

factor y0 (Eq. 36) and the force is scaled by the factor rc, which is the critical

force level at which the FA neither shrinks nor grows and Dm0 ¼ 0.

FIGURE 7 The overall growth velocity ytot of the FA as a function of

the force. This represents the time rate of change of the overall size of the

FA. The velocity is again scaled by the factor y0 and the force by rc.
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observes an overall shrinking of the FA—that is, its overall

size decreases in time (see Fig. 8, range RI).
For a critical value of the force rc, the loss of plaque

proteins at the back is precisely compensated by the gain of

plaque proteins at the front; at this critical value, the FA

changes from overall shrinking to growing. As discussed

above, this occurs at values of the force at which Dm0 ¼ 0.

However, at this critical force value, the shape and the size of

the adhesion remains fixed while the center of mass of the do-

main does move as directed by the force (see Fig. 8, level LII).
For even higher values of the force the overall size of

the FA begins to increase with time; this means the growth at

the front is faster than the loss of plaque proteins at the back

(see Fig. 8, range RII).
When the force reaches an even higher value, the acti-

vation of the integrin-protein units at the back edge of the

FA caused by stretching is large enough to compensate the

elastic-term-inducing deactivation of these units. For this

value of the force, the back of the FA does not move while

the front grows quickly (see Fig. 8 level LIII).
For even larger values of the force, our model predicts that

in addition to growth of the front edge of the FA due to the

adsorption and association of new plaque proteins from the

cytoplasm with the lower layer, even the back edge begins

to adsorb more plaque proteins and grow. This can happen

because the activation of the integrin-protein units at the

back edge by stretching overcompensates the desorption of

plaque proteins from the deactivated integrin-protein units of

the lower layer induced by the dilation of this layer due to the

elastic effect (see Fig. 8, range RIII).

DISCUSSION

In this section, we explain the differences between our model

and that of Shemesh et al. (14). Since the two models make

different assumptions, we suggest here crucial experiments

that can test these assumptions and elucidate the dominant

mechanisms responsible for the anisotropic growth of FA.

Shemesh et al. (14) regard the FA site as a bundle of plaque

proteins that is stretched (over a scale comparable with the size

of the FA) by the actin stress fibers. They propose that the

driving force for plaque protein aggregation is the thermody-

namic response of this self-assembly under tension: an

aggregate that is stretched counteracts this change in density

by attracting additional molecules from solution. This restores

the equilibrium density of molecules and the stress in the

aggregate is relieved. To obtain an effective stretching of the

plaque protein bundle in response to the actin force, Shemesh

et al. (14) assume a particular geometry of the focal adhesion:

For the case of a growing adhesion there must be an imbalance

between the number of points of force application and of

points of anchoring (via the integrin). This is the case, e.g., if

the density of anchor points differs from the density of bonds

to the actin fibers. Furthermore, the front edge of the adhesion

site must be connected to the stress fibers but must not be

grafted to the substrate. On the other hand, they require that

the back is grafted to the substrate but not attached to the actin.

As a result, the adhesion site is effectively stretched caused by

the local imbalance of the restoring force of the anchor points

and the applied actin force. If the FA was considered to be

symmetrical, namely the density of anchor points equals the

density of bonds to the actin fibers, the FA would not be

stretched and would not grow according to the model by

Shemesh.

In our model, growth still occurs due to the coupling of the

actin force and the density gradients at the front and the back

that have differing signs and different effects on the activa-

tion of the mechanosensor. This points out the importance of

the mechanosensor in our model; Shemesh et al. (14) do not

require any mechanosensitivity in their thermodynamic

treatment. In contrast to the stretching model of Shemesh,

our theory makes no assumptions about the geometry of the

FA. Despite this static symmetry of the adhesion in our

model, the growth process is asymmetric because the elas-

ticity of the lower layer spontaneously breaks the symmetry

of the system. This is due to the compression term, which is

an intrinsic, elastic response to the spatially constrained

stress arising from the force exerted by the actin. The front

and back of the FA only differ by the sign of their density

FIGURE 8 Our model predicts different growth behavior in the different

regimes of applied or actin-myosin-induced force: For small values of the

force, the direct stretching of the integrin-protein units is not large enough to

overcome the energy required for conformational change and the FA shrinks

(R0). As the force is increased, the mechanosensors in the FA are activated;

they then associate with plaque proteins from the cytosol and the loss of

proteins is reduced. Because the compression term induces activation at the

front edge, but deactivation by dilation at the back edge of the FA, it is the

front edge that first changes (LI) its growth behavior from shrinking to a net

gain of proteins (RI). For a certain force level, corresponding to a critical

value of the plaque proteins’ chemical potential, Dm0 ¼ 0, the loss at the

back is exactly compensated by the aggregation of new proteins at the front

(LII) and the focal adhesion neither shrinks nor grows in size. When the

force is increased from this critical value, the adhesion begins to grow in size

(RII). Since cells are highly dynamic structures whose growth can be rapidly

changed from shrinking to growing by their contractile apparatus, cells may

regulate the actin stress so that FA operates near this critical force level (LII).
In the regime of very high forces the model predicts that even the back of the

adhesion tends to grow (in the opposite direction of the force) due to the

direct stretching effect that dominates the dilation effect (RIII). A detailed

description of each force regime is given in the text.
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gradients in a relatively narrow interfacial region in which

the density of the plaque proteins changes from high to low

values.

Another important difference between the two models is

the driving force for protein aggregation. In our model, the

reduction of chemical potential is driven by the activation

of single integrin-protein units, which then prefer to either

associate or dissociate with plaque proteins that have dif-

fused from the cytoplasm. The elastic response of the FA to

the actin force results in a net loss of proteins at the back and

in enhanced adsorption of proteins at the front. This is in

contrast to the prediction of the model by Shemesh, which

predicts that the additional proteins are adsorbed in a gradual

manner over the whole adhesion site once the stress exceeds

a critical value. (If the stress is too small, there is no adsorp-

tion and growth of the FA.)

The differences between the two models for the dynamics

of plaque protein aggregation allow us to suggest fluores-

cence-recovery-after-photobleaching experiments that can

test the models and their predictions. Assume that one of the

plaque proteins involved in FA assembly (e.g., paxilin or

vinculin) is stained with a fluorescent dye (29) and the

fluorescent light is tracked under a microscope. Next, a laser

beam is placed in the vicinity of the front edge of the

elongated adhesion plaque; this bleaches the proteins at the

front (compare Fig. 9, A and B). Afterwards, the force

exerted on the focal adhesion is increased (5), which induces

protein aggregation and growth of the FA. Both models

predict that additional plaque proteins from the cytoplasm

associate with the FA as the force is increased, but the pre-

dictions for the pattern of the recovered fluorescence differ

from each other:

The model of Shemesh et al. (14) predicts that the con-

centration of additional, cytoplasmic plaque proteins

that associate with stressed FA is proportional to their

distance from the back edge. Therefore the bleached

region will be filled with a smoothly varying concen-

tration of plaque proteins from the cytosol, higher at

the front than at the back. After a while, these

additional proteins would establish a gradient of the

fluorescence intensity in the once-bleached region. As

additional proteins aggregate to relieve the stress, the

once-bleached region also begins to grow in size and

will be shifted in the direction of the force, since the

additional proteins also elongate the plaque protein

bundle behind the bleached region (see Fig. 9 C).

The model presented here predicts a different distribution

of the fluorescent intensity once new plaque proteins

associate with the bleached FA. In our model, the

cytoplasmic plaque proteins associate with the FA only

near the very front where fluorescent intensity is thus

recovered; near the back, proteins dissociate from the

FA due to the dilation effect (for small values of the

force). The main body of the FA is unchanged in our

picture and we would predict that the bleached region

maintains its size and position relative to the substrate.

Since our model does allow thermal exchange of

proteins over the whole adhesion site the fluorescence

intensity may increase in time to some degree in the

bleached region, but the model predicts no gradient in

the reestablishment of the fluorescence intensity,

except near the very front of the FA (see Fig. 9 D).

However, both models allow that proteins are constantly

exchanged between the FA and the cytoplasm due to thermal

fluctuations. This exchange of proteins (resulting in recovery

of the fluorescence) over the whole length of the adhesion

site may smear the patterns described above. Fluorescence-

recovery-after-photobleaching experiments with b3-GFP-

integrins by Ballestrem et al. (27) showed that the fluorescence

signal is recovered after 10 min due to thermal fluctuations,

whereas the growth of FA stimulated by external force

elapses in ;3 min (5). Nevertheless, the gap between the two

timescales may be sufficient to elucidate the nature of the

stressed region of FAs and distinguish between the two

models. This is indicated by an experiment, very similar to

the one we propose, performed by Wehrle-Haller et al. (30).

They show that totally bleached, sliding FAs recover their

fluorescence intensity strongly at the very front of the

bleached region (see Fig. 4 b in (30)). These results suggest

that the activation mechanism proposed in this article may

indeed be responsible for the growth of FAs. However, more

detailed and more quantitative data is needed for a clear

distinction between the two models.

FIGURE 9 (A) The light-colored rectangle schematically represents an

FA stained with a fluorescent dye. (B) The front of the FA is bleached with a

laser beam. Predicted development of the bleached region after the

stimulation of the intracellular contractile apparatus or application of an

external force: (C) by the model of Shemesh et al. (14); (D) by the model

presented in this article.
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In summary, our model suggests that the anisotropic growth

response of FA is stimulated by conformational changes of

mechanosensitive proteins located in the adhesion plaque. The

transition from a nonactivated to an activated state is induced

by external forces. Activation can occur by either stretching or

in-plane compression and the latter process enables us to relate

protein adsorption to the elastic deformations of the FAs

and thus to the actin force. By solving the coupled elastic and

dynamic equations we predict how FAs grow or shrink in

different force regimes. In particular, we calculated the

velocity of both the front and the back edges of the adhesion

site as a function of the force. We predict a critical value of the

force at which the FA changes from shrinking to growing

and that the force-dependent chemical potential, Dm0, is the

appropriate control parameter that determines the growth

behavior. When the force is such that Dm0 ¼ 0, the FA neither

grows nor shrinks. When the force is slightly increased above

this critical value, the condensed domain of plaque proteins

begins to grow in size. This is obviously the most physically

interesting and biologically relevant regime, since FAs in cells

are highly dynamic structures whose growth can be rapidly

changed from shrinking to growing by the contractile ap-

paratus of the cell. This suggests that cells may regulate the

actin stress so that the FA operates near this critical force level.

An additional feature of our model is its ability to predict

different growth behaviors in various force regimes. Al-

though it is difficult to predict absolute numbers for the

growth velocities and critical forces, the trends and their

implications for experiment are well established by our cal-

culations. Measurements of these force regimes in future

experiments may provide an important test of the theory.

Such an experiment could be performed by exposing cells to

a drug that inhibits the contractility of the actin-myosin

apparatus. By varying the concentration of the administered

drug one can thus control the intracellular forces in an quan-

titative manner. Comparison of theory and experiment can

then be used to refine the model and differentiate between

various microscopic mechanisms.

APPENDIX A: FREE ENERGY

In this Appendix we present a detailed derivation of the free energy given in

Eq. 15. In Eq. 12, we wrote the activation probability for the sensor at site i.

Here, we rename it for convenience as

�T

eb

aiðtiÞ :¼ ÆsiðtiÞæ¼
1

2
1� tanh

b

2
DG�b

2
drti

� ���

1sech
2 b

2
DG�b

2
drti

� �
b

2
tui9

� ��
: (A1)

As described in Interactions Among the Absorbed Plaque Proteins, we make

the following ansatz for the Hamiltonian of the plaque proteins (now in

terms of ai(ti)):

Hp ¼ T+
i

aiðtiÞti1
1

2
+
i;j

Ji;jtið1� tjÞ: (A2)

The partition function for this Hamiltonian is difficult to evaluate because of

the coupling between the sites in the last term. Following the derivation

in Safran (28), we use the variational method and consider a model

Hamiltonian, Hp0, that contains terms that only involve single sites:

Hp0
¼+

i

TðaiðtiÞ�giÞti: (A3)

The parameters gi are determined by the minimization implied by the

variational method (28). The partition function of the model system is

Zp0
¼ +

t1¼0;1

+
t2¼0;1

� � � +
tN¼0;1

e�Hp0
=T
; (A4)

Zp0
¼ +

t1¼0;1

+
t2¼0;1

� � � +
tN¼0;1

e
�SiðaiðtiÞ�giÞti : (A5)

Since Hp0 does not involve coupling between the sites, we find an expression

for the partition function that is a simple product,

Zp0
¼ +

t1¼0;1

e
�ða1ðt1Þ�g1Þt1

 !
+

t2¼0;1

e
�ða2ðt2Þ�g2Þt2

 !
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+
tN¼0;1

e
�ðaNðtNÞ�gNÞtN

 !
; (A6)

Zp0
¼
Y

i

+
ti¼0;1

e
�ðaiðtiÞ�giÞti : (A7)

Evaluation yields

Zp0
¼
Y

i

ð11e
�ðaið1Þ�giÞÞ ¼

Y
i

1

1�fi

; (A8)

where fi ¼ ð11eaið1Þ�gi Þ�1 ¼ Ætiæ0 is the equilibrium average value of the

local concentration variable ti in the ensemble described by Hp0. This is

obtained by considering

Ætiæ0 ¼
+

ti¼1;0
tie

�ðaiðtiÞ�giÞti

+
ti¼0;1

e
�ðaiðtiÞ�giÞti

; (A9)

Ætiæ0 ¼
e
�ðaið1Þ�giÞ

11e
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11e
aið1Þ�gi

¼fi: (A10)

One can do the same for

ÆHp �Hp0
æ0 ¼

�
T+

i

aiðtiÞti1
1

2
+

j

Ji;jð1� tjÞti
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ðaiðtiÞ�giÞti
�
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ÆHp �Hp0
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�
1

2
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j
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giti

�
0

: (A12)

Since ti and tj are not correlated,

ÆHp �Hp0
æ0 ¼

1

2
+

j

Ji;jð1� Ætjæ0ÞÆtiæ01T+
i

giÆtiæ0; (A13)

so

ÆHp �Hp0
æ0 ¼

1

2
+

j

Ji;jð1�fjÞfi1T+
i

gifi: (A14)

3482 Besser and Safran

Biophysical Journal 90(10) 3469–3484



The free energy, F, is given by the variational principle (28):

F̃,F¼F0tal
1 ÆHp �Hp0

æ0: (A15)

Using our results from Eq. A14,

F¼�T ln Zp0
1

1

2
+

j

Ji;jð1�fjÞfi1T+
i

gifi: (A16)

The value gi is known from Eq. A10,

gi ¼ lnfi � lnð1�fiÞ1aið1Þ; (A17)

and Zp0 is known from Eq. A8. This yields for the free energy F:

F¼ T+
i

ðð1�fiÞlnð1�fiÞ1fi lnfiÞ1T+
i

aið1Þfi

1
1

2
+

j
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The last term of Eq. A18 can be rewritten as

Ji;jfið1�fjÞ ¼
1

2
Ji;jððfi �fjÞ

2 �f
2

i �f
2

j 12fiÞ: (A19)

We now perform the continuum limit, which allows us to convert the

differences (fj–fi) to a gradient. The precise form of this gradient depends

on the coupling matrix Ji, j. For the case of short-range interaction, we can

consider only nearest-neighbor interactions, and we write

ðfi �fjÞ/a
@f

@x
; (A20)

where a is the distance between nearest-neighbors, which leads to
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and the other functions are transformed like

ti
Ji;j

ui9

ÆaiðtiÞæ
Si

0
BBBB@

1
CCCCA/

fðxÞ
J

u9ðxÞ
ÆaðfðxÞ;xÞæ

1

a

R
dx

0
BBBB@

1
CCCCA: (A22)

This yields the expression for the free energy of

F¼ 1
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with B ¼ ðJa2=2Þ and

f0ðfÞ ¼ Tðð1�fÞlnð1�fÞ1flnfÞ1J

2
fð1�fÞ: (A24)

In our model, most of the protein dynamics such as adsorption or desorption

take place at the edges of the FA site. In this region, the plaque protein

concentration drops from a value of ;1 (condensed domain of plaque

proteins, the FA) to a low value �0 (the low density domain). Thus the

interface between the two phases can be considered to be at f ¼ ð1=2Þ. For

convenience we introduce c ¼ f� ð1=2Þ and expand about c ¼ 0, the

region of interest, and arrive at
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The total free energy is then written as (eliminating a by its definition in

Eq. A1)
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Because we are only interested in the chemical potential (which is a

functional derivative of the free energy) we drop the constant terms and

define the coefficients as

e¼ ðJ� 4TÞ; c¼ 16

3
T; B¼ 1

2
Ja

2
: (A27)
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