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Abstract
The authors evaluated 4 sequential sampling models for 2-choice decisions—the Wiener diffusion,
Ornstein–Uhlenbeck (OU) diffusion, accumulator, and Poisson counter models—by fitting them to
the response time (RT) distributions and accuracy data from 3 experiments. Each of the models was
augmented with assumptions of variability across trials in the rate of accumulation of evidence from
stimuli, the values of response criteria, and the value of base RT across trials. Although there was
substantial model mimicry, empirical conditions were identified under which the models make
discriminably different predictions. The best accounts of the data were provided by the Wiener
diffusion model, the OU model with small-to-moderate decay, and the accumulator model with long-
tailed (exponential) distributions of criteria, although the last was unable to produce error RTs shorter
than correct RTs. The relationship between these models and 3 recent, neurally inspired models was
also examined.

A common feature of many tasks studied by experimental psychologists is that they involve a
simple decision about some feature of a stimulus that is expressed as a choice between two
alternative responses. Because decisions of this type are so fundamental to theory development
and evaluation, their study has been an important part of cognitive psychology for many years.

Among the models that have been proposed to account for simple two-choice decisions,
sequential sampling models are unique in providing a way to understand both the speed and
accuracy of performance within a common theoretical framework. These models are based on
the premise that the representation of stimuli in the central nervous system is inherently variable
or noisy and to make a decision about a stimulus, one must accumulate successive samples of
this noisy stimulus representation until a criterion quantity of evidence is obtained. The
particular criterion that is attained determines which of the two responses is made; the time
taken to attain it determines the response time (RT).

In the sequential sampling framework, performance in an experimental task depends on two
main factors: the quality of the information derived from processing the stimulus and the
quantity of information required before a response is made. The quality of the information from
the stimulus depends jointly on the objective properties of the stimulus and on the inherent
variability of the stimulus processing mechanisms in the central nervous system. The quantity
of information required for a response can be controlled by the subject, who can adjust the
decision criteria. The interaction of the quality of the information and decision criteria allows
sequential sampling models to account for the main relationship between accuracy and RT in
two-choice decisions: RTs are longer and accuracy is lower in response to more difficult stimuli
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than in response to less difficult stimuli (Luce, 1986; Pachella, 1974). In contrast, there are
many models that provide an account of either RT or accuracy, but not of the relationship
between them. For example, stage theory models (Townsend & Ashby, 1983; Sternberg,
1969) provide an account only of RT; signal detection theory models (Green & Swets, 1966)
provide an account only of accuracy.

Sequential sampling models provide a straightforward account of the speed–accuracy trade-
off phenomena that are often observed in cognitive tasks (Luce, 1986; Wickelgren, 1977).
Although such effects are widespread, neither stage theories nor signal detection theories
provide a way of explaining why they occur or a way of predicting their magnitude. Sequential
sampling models attribute speed–accuracy trade-off effects to changes in the amount of
evidence needed for a response, represented in the models by changes in the values of the
decision criteria.

Sequential sampling models also provide precise quantitative predictions of the relationships
between mean RTs and the probabilities of correct responses and errors and of the shapes of
the associated RT distributions. Because different sequential sampling mechanisms predict
different relationships among these features of performance, it should be possible to determine
which models can account for experimental data reasonably well and which models can be
ruled out.

In this article, we begin by evaluating the four most developed of the sequential sampling
models for two-choice decisions. We carry out a detailed qualitative investigation of the RT
and accuracy properties of the models and perform comparative fits of the models to three sets
of experimental data, examining whether, and under what circumstances, the models mimic
each other. We then compare the best-fitting models to a recent model by Usher and McClelland
(2001) and two new models closely related to Usher and McClelland’s model. These newer
models combine features of the various sequential sampling models, and they have been argued
to be more compatible with neurally inspired theoretical frameworks.

Sequential Sampling Models
Within the sequential sampling framework, models may differ on whether evidence is sampled
and accumulated at discrete equally spaced time intervals, discrete randomly spaced time
intervals, or continuously through time; whether it is accrued in fixed-sized chunks or chunks
of varying sizes; and whether the decision is based on an absolute stopping rule, such that the
amount of evidence must reach a particular criterion value for one or the other of the response
alternatives, or a relative stopping rule, such that the evidence for one of the alternatives must
exceed the other by a criterion amount. Variations on these dimensions produce the range of
models shown in Figure 1, which exhibits relationships among the main models that have been
historically influential in the sequential sampling literature. We examine the four models in
bold first in this article.

The division between a relative stopping rule and an absolute stopping rule appeared early in
the evolution of sequential sampling models. The general class of models with a relative
stopping rule is labeled random walk models. In these models, developed by Stone (1960),
Laming (1968), and Link and Heath (1975; Link, 1975), evidence from the stimulus in favor
of one response alternative is evidence against the other alternative. The amount of evidence
accumulated at each interval is sampled from a continuous distribution at equally spaced,
discrete time steps. More recent investigations have focused on diffusion process models, in
which evidence accumulates continuously in time. In the Wiener diffusion model, the rate of
accumulation of evidence is constant, and in the Ornstein–Uhlenbeck model, the rate of
accumulation decreases as the amount of accumulated evidence increases.
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The most influential of the early models with an absolute stopping rule was LaBerge’s
(1962) recruitment model. In this model, evidence in favor of one alternative is accumulated
in one response counter, and evidence in favor of the other alternative is accumulated in another
response counter. The counter that first reaches its criterion amount of evidence determines
the response. The stopping rule is termed absolute because an increase in the amount of
evidence for one response does not change the amount of evidence for the other. This model
has the serious problem that it cannot correctly predict the shapes of RT distributions. Two
successors to this model have been proposed: the accumulator model and the Poisson counter
model.1 In the accumulator model, evidence arrives at discrete, equally spaced time steps, and
the amount that arrives at each step is sampled from a continuous distribution (like the diffusion
models; Smith & Vickers, 1988; Vickers, 1970, 1978, 1979; Vickers, Caudrey, & Willson,
1971). In the Poisson counter model, the same amount of evidence is accumulated at each step,
and it arrives at times sampled from a continuous distribution (LaBerge, 1994; Pike, 1966,
1973; Townsend & Ashby, 1983).

Despite the large amount of research on sequential sampling models (see Luce, 1986;
Townsend & Ashby, 1983; and Vickers, 1979, for reviews), there has been a lack of systematic
comparative evaluations of the classes of models shown in Figure 1. The earliest comparison
was by Vickers et al. (1971), who compared the behavior of correct and error RTs and accuracy
across several models, including random walk, recruitment, and accumulator models. Apart
from this study, most published articles have evaluated either a single model (see Luce,
1986) or, occasionally, have compared a pair of competing models (e.g., Smith & Vickers,
1989; Van Zandt, Colonius, & Proctor, 2000). Moreover, many of the evaluations have focused
on a restricted range of properties such as the relationship between mean RTs for correct
responses and errors or the relationship between mean RT and response probability. The early
investigations yielded many useful insights, but their main results were to reject the simplest
versions of the sequential sampling models. As discussed in detail later, the simplest sequential
sampling models predict overly restrictive relationships between mean RTs for correct
responses and errors, which are inconsistent with experimental data. Van Zandt et al.’s results
were somewhat different, and we discuss these in the penultimate section.

We have restricted our evaluation to models in which the rate of accumulation of the evidence
derived from the stimulus and the amount of information required for a decision are both
stationary, that is, they do not change over the time course of an experimental trial. We have
imposed these restrictions because the class of nonstationary models is potentially very large
and because nonstationarity gives a considerable amount of model freedom. Also,
nonstationary assumptions can be best tested with experimental manipulations in which either
the amount or the kind of stimulus information entering the decision process is varied over the
time course of evidence accumulation, a type of data outside the scope of this article (e.g.,
Diederich, 1995, 1997; Heath, 1992; Ratcliff, 1980; Ratcliff & McKoon, 1982; Ratcliff &
Rouder, 2000; Smith, 1995, 1998, 2000; Smith & Van Zandt, 2000). We have also restricted
our evaluation to two-choice tasks that are rapid, one-process decisions (e.g., less than 1,000–
1,500-ms mean RT at a maximum). Slower decisions can induce multiple or repeated decision
processes, which are currently outside the domain of application of the models examined here.

1Historically, there has been some ambiguity in terminology in relation to models of this class. The name accumulator model was
introduced by Audley and Pike (1965) to refer to the discrete-time, unit-increment model that LaBerge (1962) had previously called the
recruitment model. In Vickers’s (1970) original presentation of his model, he referred to it as “an accumulator model” to indicate the
model was one member of a general class. However, subsequent usage has tended to follow LaBerge and call the unit-increment model
a recruitment model, leaving the title the accumulator model (with definite article) for Vickers’s model. The general class of models in
which evidence for the two responses accrues in parallel, of which these models are both members, is usually referred to as counter
models. This is the terminology we have used, although it is not an accurate description of the accumulator model because the underlying
stochastic process is not a counting process.
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The Data To Be Explained
An attractive feature of sequential sampling models is their ability to deal with RT and accuracy
data simultaneously. The main data in two-choice tasks are the proportions of correct and error
responses, their mean RTs, and the shapes of their RT distributions. In themselves, these are
difficult for a model to fit, but the real challenge comes in explaining how they jointly vary as
a function of experimental independent variables. There are two major types of experimental
manipulations that are used to test the models.

The first type is any within-block manipulation that affects task difficulty but does not allow
a change in decision criteria. For example, in lexical decision tasks, low-frequency words are
more difficult than high-frequency words. If both kinds of words are mixed together within a
block of trials, subjects cannot know at the beginning of a trial whether the test item is a high-
or low-frequency word (or a nonword); so, they cannot set their criteria on the basis of
frequency.

Within-block manipulations of difficulty are especially constraining for the models when they
lead to large changes in accuracy across conditions. The models have to fit the changes in
accuracy and concomitant changes in mean RTs for correct and error responses and also fit the
shapes of the RT distributions over the whole range of accuracy values. Moreover, they must
do this with only a single parameter, the rate of accumulation of evidence, varying. Generally,
as the difficulty of the stimuli increases, accuracy decreases and RTs for correct responses
increase. The shapes of the RT distributions are positively skewed, with most of the increase
in mean RT for correct responses coming from an increase in the skew of the RT distribution
coupled with a much smaller increase in the leading edge of the distribution. Depending on the
experimental manipulation, RTs for errors are sometimes shorter than RTs for correct
responses, sometimes longer, and sometimes there is a crossover in which errors are slower
than correct responses when accuracy is low and faster than correct responses when accuracy
is high. The models must be capable of capturing all these aspects of a data set.

The second type of manipulation is a between-blocks manipulation, that is, a manipulation that
allows changes in decision criteria between blocks of trials. For example, in speed–accuracy
manipulations, when the instructions for a block of trials emphasize speed, RTs are shorter,
often by several hundred milliseconds, and responses are less accurate, often by a few
percentage points, compared with blocks for which accuracy is emphasized. According to the
sequential sampling models, subjects adapt to this manipulation by adjusting their decision
criteria such that they require less evidence in conditions for which speed is stressed than in
conditions for which accuracy is stressed. Another example of a between-blocks manipulation
is one in which the proportion of stimuli for which a particular response is correct is varied;
for example, the proportion of words and nonwords in a lexical decision experiment is varied.
This manipulation favors one response over the other, and in the models, the decision criterion
for the favored alternative is set lower than the other criterion. Between-blocks manipulations
are less constraining for the models than within-block manipulations because the decision
criteria, and other criteria to be discussed later, can be changed between conditions.

Overall, there are four main aspects of data against which the models are tested: the positively
skewed shapes of the RT distributions, the effects of experimental variables on the leading
edges and degrees of skewness of the distributions, the accuracy rates, and the relative speeds
of correct and error responses. All of these aspects of data must be accommodated
simultaneously by the models, for both within-block and between-blocks manipulations.
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Variability in Processing and Criteria Across Trials
The earliest sequential sampling models, such as the simple random walk model and the
recruitment model, had serious limitations. For example, the random walk model with two
stimuli with equal and opposite accumulation rates made the prediction that the mean RT for
a given response made correctly was the same as the mean RT for that response made in error,
whereas data usually show unequal RTs. The recruitment model predicted negatively skewed
RT distributions in some cases, and it predicted that RT distributions should become more
symmetrical as criteria increase, whereas empirical RT distributions are positively skewed and
become more skewed as criteria increase. The solution to problems like these came with the
incorporation into the models of variability in cognitive processing across trials and the
realization that the inclusion of variability has strong, unexpected consequences for the
behaviors of the models.

The assumption of trial-to-trial variability in processing is a cornerstone of a number of models
in psychology. In signal detection theory, signal and noise strengths are assumed to vary across
trials. In some applications, across-trial variability in the criterion setting has also been
considered. However, in signal detection theory, the differences between stimulus variability
and criterion variability have typically not been emphasized because their effects on
performance are mathematically equivalent, that is, they are not separately identifiable. If the
signal, noise, and criterion distributions are all normally distributed, then the combined effects
of the criterion and a stimulus can be represented by a single normal distribution whose variance
is equal to the sum of the variances of the stimulus distribution and the criterion distribution;
so, the components cannot be separated. Between-trials variability in the representations of
study items is also fundamental for the global memory models (Gillund & Shiffrin, 1984;
Hintzman, 1986; Murdock, 1982).

In signal detection theory and in the global memory models, adding new sources of variability
would change the models only in minor ways. In contrast, in sequential sampling models,
different sources of variability and different combinations of sources of variability have
qualitatively different effects on predictions compared with the models without such
variability. One source of across-trial variability in the sequential sampling models is the same
as for signal detection theory and the global memory models, namely, across-trial variability
in the information extracted from nominally equivalent stimuli. In sequential sampling models,
this is represented by variation in the rate at which evidence accumulates toward one or the
other of the response criteria. For some of the models, across-trial variability is also found in
the values of the response criteria, and for other models, there is an equivalent source of
variability in the position of the starting point of accumulation of evidence. For all the sources
of across-trial variability, the primary motivation is the belief that subjects cannot set
components of cognitive processing at exactly the same values from trial to trial.

The assumption that starting points or decision criteria and accumulation rates vary across trials
is consistent with a view that comes from the literature on sequential effects (Falmagne,
1965, 1968; Ollman, 1966; Ratcliff, 1985; Ratcliff, Van Zandt, & McKoon, 1999; Remington,
1969; see also Luce, 1986, and Kirby, 1980, for reviews) and from the related literature on
error monitoring (Rabbitt, 1979). These literatures suggest that trial-by-trial variation in RT is
partly determined by the prior stimulus and the prior response. Adaptive regulatory
mechanisms to account for trial-by-trial effects have been proposed by a number of
investigators, including Laming (1969), Rabbitt and Rogers (1977), and Vickers (1978).

Without multiple sources of across-trial variability, it is clear that the sequential sampling
models cannot fit experimental data. For an early random walk model, Laming (1968) showed
that variability in the starting point was necessary to predict shorter error RTs than correct RTs,
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which is a frequent finding in choice RT paradigms. For the Wiener diffusion model, Ratcliff
(1978) showed that variability in the accumulation rate enabled it to predict longer error RTs
than correct RTs, as is typical in recognition memory paradigms (Ratcliff, 1978). Smith and
Vickers (1988) used variability in both criteria and accumulation rate for the accumulator
model, and Ratcliff et al. (1999; Ratcliff & Rouder, 1998) used variability in accumulation rate
and starting point to fit crossover patterns in which errors are sometimes faster than correct
responses and sometimes slower, in the same experiment. More generally, Van Zandt and
Ratcliff (1995) have argued that some methods developed to discriminate between model
architectures fail when variability in processing is allowed across trials; in fact, sometimes
models that failed tests passed them when variability in processing across trials was added to
the models. For each of the models we evaluate, we provide the same qualitative sources of
between-trials variability. For some of the models, some of the sources of between-trials
variability have not previously been explored or evaluated against empirical data.

Overview
Our aim in this article is to carry out a systematic evaluation of the most recent forms of
traditional sequential sampling models and an evaluation of three new neurally inspired
models. In the sections below, we present the four traditional models: Ratcliff’s Wiener
diffusion model (Ratcliff, 1978, 1980, 1981, 1985, 1988; Ratcliff & Rouder, 1998, 2000;
Ratcliff et al., 1999), the Ornstein–Uhlenbeck (OU) model (Busemeyer & Townsend, 1992,
1993; Roe, Busemeyer, & Townsend, 2001; Smith, 1995), the accumulator model (Smith &
Vickers, 1988; Vickers, 1970; Vickers et al., 1971), and the Poisson counter model (Pike,
1966, 1973; Townsend & Ashby, 1983). Following presentation of the models, we apply them
to three sets of experimental data, investigating which of the models provide adequate accounts
of the data sets and whether and under what circumstances the models are empirically
distinguishable from one another. The first issue has two parts: Which models provide the
correct qualitative patterns of performance, and which of these provide adequate and
approximately equivalent quantitative fits to the data? On the basis of these evaluations, we
arrive at conclusions about which of the four traditional models provide the best current account
of two-choice RT data. We then present the neurally inspired models and evaluate whether
they also provide adequate quantitative fits to the data.

Random Walk Models
As mentioned above, the early random walk models had the problem that errors and correct
responses were predicted to have equal RTs. Early solutions to this problem were aimed at
producing errors faster than correct responses, a pattern frequently observed in the choice RT
tasks that were a major focus of research at that time. Laming (1968) introduced variability in
starting point to allow predictions of errors faster than correct responses, which he motivated
by supposing that on some trials subjects begin the decision process before the stimulus is
presented, which results in variability around the starting point when the stimulus finally
becomes available for processing.

To enable predictions of either errors faster than correct responses or errors slower than correct
responses, Link and Heath (1975; Link, 1975) proposed that the distribution of increments to
the random walk could vary with changes in the experimental task. Although this provided a
formal solution to the problem of ordering mean error RTs and correct RTs, it did not address
the shapes of RT distributions. Also, Link and Heath (1975) did not develop an explanation of
how the properties of the increment distribution depended on the particular task being modeled.

Early random walk models also had the problem that they predicted that accuracy grows
without bound as response boundaries are moved away from the starting point. In other words,
by moving the boundaries far from the starting point, a subject can approach close to perfect
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accuracy. Ratcliff (1978) avoided this problem in the Wiener diffusion model with the
introduction of variability in the rate of accumulation of evidence across trials. This was
introduced because, it was argued, it is implausible that the information content of a studied
item in a recognition memory experiment from, for example, Study Position 10, would be
identical on every trial of an experiment. Across-trial variability in the rate of accumulation of
evidence also has the effect of limiting the growth of accuracy as a function of time in response
signal and deadline experiments (Ratcliff, 1978, but see 1988), and it allows the model to
predict longer error RTs than correct RTs.

The methods that are used to derive predictions for the early discrete random walk models
yield results that are only approximate. As the time steps are made small, the approximation
becomes better, and it becomes exact when evidence is accumulated continuously in time.
Smith (1990a) showed that in the case for which the amount of evidence at each step is sampled
from a normal distribution, the use of such methods is formally equivalent to approximating a
discrete-time random walk model with a continuous-time diffusion process. Because the
similarities between the two classes of model are sufficiently great, we do not believe it to be
possible to distinguish between them on the basis of experimental data (see Smith, 1990a), and
we prefer to work with the continuous-time diffusion models.

Wiener Diffusion Model
The Wiener diffusion model is depicted in the top panel of Figure 2. Noisy information is
accumulated continuously over time from a starting point z to decision criteria (response
boundaries) at 0 and a. As shown in Figure 2, the path of the amount of accumulated evidence
varies over time during the course of a trial; its mean (illustrated with the arrow in the top panel
of the figure) is called drift rate, ξ, and its variance is s2 (termed the diffusion coefficient). The
path is a highly irregular function, illustrated by the three sample paths in Figure 2, that results
from the cumulative effect of a large number of small, independent statistical perturbations. If
the response boundaries are removed, the population of sample paths is normally distributed
with mean (ξt) and variance (s2t) that increase linearly with time. The parameter s is a scaling
parameter for the model; that is, if the parameter were doubled, other parameters of the model
could be doubled to produce exactly the same predictions. In applications of this model reported
by Ratcliff (e.g., Ratcliff, 1978,1988,2002;Ratcliff & Rouder, 1998,2000;Ratcliff, Thapar, &
McKoon, 2001;Ratcliff et al., 1999) and in the applications presented later in this article, s is
set to a fixed value, 0.1.

Because of the variability (s) in the path of evidence accumulation, decision processes with
the same drift rate ξ hit the boundaries at different times, and a decision process that drifts
toward one boundary can hit the wrong boundary by mistake, producing an error. If the response
boundaries are moved farther away from the starting point, the probability that a process that
is drifting toward the correct response boundary will hit the other boundary by chance is
reduced, thus increasing accuracy (and RT).

The drift rate for stimuli in difficult conditions is smaller than the drift rate for stimuli in easier
conditions, and a smaller drift rate results in longer RTs and a decrease in accuracy because
processes are more likely to hit the wrong boundary. RT distributions are predicted to be right
skewed by the geometry of the decision process. If drift rate decreases, RTs increase with a
relatively small change in the leading edge of the RT distribution and a larger change in the
tail of the distribution.

Not shown in Figure 2 is the drift criterion, which serves the same function as the criterion in
signal detection theory: It separates stimuli into those with positive drift rates and those with
negative drift rates, just as the signal detection criterion separates stimuli into signal and noise.
Like the criterion in signal detection theory, the value of the drift criterion may vary with
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experimental manipulations such as payoffs or the proportions of the two stimuli (Ashby,
1983;Link, 1975;Link & Heath, 1975;Ratcliff, 1978,1985,2002;Ratcliff et al., 1999). Changing
the drift criterion from one block of trials to another is equivalent to adding or subtracting a
constant to the drift rates for all stimuli in one block relative to another (Ratcliff, 2002).

Variability in processing across trials is implemented in several components of the diffusion
model. First, the starting point z varies across trials with a rectangular distribution with mean
z and range sz. This allows the model to predict errors faster than correct responses because
when the process starts near the incorrect boundary, correct responses will be slower and occur
with lower probability, and error responses will be faster and occur with higher probability
than if the process started near the correct boundary. The mixture of a larger proportion of fast
errors when the process starts near the incorrect boundary and a smaller proportion of slow
errors when the process starts near the correct boundary averages overall to a pattern of error
responses faster than correct responses (see Ratcliff & Rouder, 1998).

Second, the drift rate for nominally equivalent stimuli, that is, stimuli that are all in the same
experimental condition, is not fixed across trials but instead varies with a normal distribution
with mean υ and standard deviation η. Because of this across-trial variability, the actual drift
rates for some stimuli in a given experimental condition can be quite different from the mean
drift rate (υ) for the stimuli in that condition and can even have the opposite sign. With the
opposite sign, the decision process will terminate with probability greater than .5 at the incorrect
response boundary, regardless of how far the boundaries are placed from the starting point;
this ensures that accuracy asymptotes as a function of time. The proportion of processes with
drift of the opposite sign is usually relatively small, and their mean drift is closer to zero than
the majority of the processes; so, their RTs will tend to be longer than those for correct
responses.

With both variability in drift rate and starting point across trials, Ratcliff and Rouder (1998)
and Ratcliff et al. (1999; see also Ratcliff, 1981; Smith, 1994; Van Zandt & Ratcliff, 1995)
showed that the Wiener diffusion model can predict all of the patterns of relative speeds of
correct and error responses that have been observed empirically. Error responses are sometimes
faster than correct responses (this usually occurs when accuracy is high), sometimes they are
slower (usually when accuracy is low), and sometimes there is a crossover pattern, within an
experiment, such that errors are faster than correct responses in high-accuracy conditions and
slower in low-accuracy conditions (Ratcliff & Rouder, 2000; Ratcliff et al., 1999; Smith &
Vickers, 1988). Which pattern is observed in an experiment depends on the magnitudes of the
two sources of variability. The model cannot predict a crossover pattern such that errors are
slower than correct responses in high-accuracy conditions and faster in low-accuracy
conditions with only drift rate varying, a pattern which has not been obtained experimentally
to our knowledge.

Besides the decision process, which is shown in Figure 2, there are other nondecisional
components of processing, such as stimulus encoding and response execution, which are
represented in the model by a single random variable. The nondecision time varies across trials,
with values coming from a rectangular distribution with mean Ter and range st. The predicted
mean RT is therefore the mean time for the decision process to terminate plus Ter. In practice,
the standard deviation of the distribution of decision times is much larger than that of the
distribution of nondecision times; so, the shape of the RT distribution is determined almost
completely by the shape of the distribution of decision times (Ratcliff & Tuerlinckx, 2002).
Such variability is included in all of the models considered here. However, variability in the
nondecision components does have two effects on model predictions: The leading edge of the
RT distribution has greater variability across conditions than would otherwise be the case, and
the rise in the leading edge of the RT distribution is more gradual than it would otherwise be.
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This latter effect was crucial to a Wiener diffusion model account of lexical decision data in
Ratcliff, Gómez, and McKoon (2004).

OU Model
The OU model is identical to the Wiener diffusion model except that the drift of the process
depends on two opposing quantities: ξ, the rate of accumulation of evidence from the stimulus,
and β, a decay force that moves the process back toward its starting point (see the bottom panel
of Figure 2). The value of ξ is constant over the course of evidence accumulation, whereas
decay increases as a function of the amount of evidence already accumulated. Drift rate is equal
to ξ − βx, where x is the distance from the starting point.2 At some distance from the starting
point, ξ and βx become equal, and so the mean drift rate becomes zero, although individual
paths still vary randomly around the mean with drift rate ξ − βx. For the two average paths in
Figure 2, β is 8 and ξ is either 0.3 or 0.1. The average paths of the process asymptote at the
value of x at which ξ − βx = 0. Both of these paths have a time constant of 125 ms; that is, after
125 ms they are about two thirds of the way to asymptote, which is well within the usual range
of RTs.

The OU model accounts for right-skewed RT distributions and errors in the same ways as does
the Wiener diffusion model. Also, in our applications, variability in processing across trials is
implemented in drift rate, starting point, and the nondecision components of RT just as in the
Wiener model, and the implications for the relative speeds of correct and error responses are
the same as for the Wiener model.

The decay mechanism in the OU model has been promoted as an alternative to variability in
drift across trials as a way of limiting asymptotic accuracy in diffusion models for data from
response signal procedures (e.g., Usher & McClelland, 2001). In response signal procedures,
in which subjects are asked to respond at experimenter-determined times (e.g., Dosher, 1976,
1984; Ratcliff, 1978, 1980; Ratcliff & McKoon, 1982; Reed, 1973; Wickelgren, 1977), the
growth of accuracy as a function of time reaches an asymptote. The Wiener diffusion model’s
account of this depends on variability in drift across trials (as mentioned above), whereas the
OU model produces this behavior even without variability in drift across trials (Smith, 2000;
Usher & McClelland, 2001). However, later we show that if boundaries are increased without
limit, the OU model without across-trial variability in drift predicts no asymptote on accuracy.

As we show later in the results, when decay is large in the OU model, it does not fit the
experimental data well. With moderate decay it does, but not as well as the Wiener diffusion
model. When the decay parameter is free to vary, the best fits are obtained when the parameter
approaches zero, making the model identical to the Wiener diffusion model.

The Accumulator and Poisson Counter Models
The accumulator model (Smith & Vickers, 1988, 1989; Vickers, 1970, 1978, 1979; Vickers et
al., 1971) and the Poisson counter model (LaBerge, 1994; Pike, 1966, 1973; Smith & Van
Zandt, 2000; Townsend & Ashby, 1983) have absolute stopping rules. Just as for their
predecessor, LaBerge’s (1962) recruitment model, evidence in favor of one response is
accumulated in one counter, evidence for the other response is accumulated in a second counter,

2In our version of the OU model, we assumed that the decay parameter represents a restoring force attracting the process back to a starting
point that may vary randomly between trials. An alternative interpretation of decay is that it attracts the process back toward zero,
irrespective of starting point. We preferred the former interpretation because when the process decays toward zero, the effects of starting
point decay exponentially and have only a transient effect on the subsequent dynamics. This property conflicts with the evidence that
starting point variability is needed in diffusion process models to predict fast errors. This allows the model to parallel the Wiener diffusion
model, which allowed us to evaluate the effects of decay without variation in any of the model’s other assumptions.
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and the decision is determined by the first counter to reach its criterion. However, in the
recruitment model, evidence is accumulated at discrete time steps in unit increments, resulting
in incorrect RT distribution predictions. In the accumulator model, the assumption of sampling
at discrete time steps is retained, but the amount of evidence accumulated on each step is drawn
from a continuous distribution. In the Poisson counter model, the evidence is accumulated in
unit increments but is sampled at random, continuously distributed times. These assumptions
allow the models to avoid problems with distribution shape that occurred in the recruitment
model.

The Accumulator Model
In the accumulator model (see the top panel of Figure 3), a value is sampled from a normal
distribution of amounts of evidence at each of a sequence of equally spaced time steps. As in
signal detection theory, the distribution has a standard deviation of 1.0 and a mean, μ, that
depends on the quality of the information from the stimulus. The mean would be larger for
easy stimulus conditions and smaller for difficult conditions. A criterion, termed the sensory
referent, is set on the underlying evidence dimension. Like the drift criterion in the diffusion
models, this criterion represents a point of zero stimulus information. If the amount of evidence
sampled falls above the criterion, an amount equal to the difference between that amount and
the criterion is added to one counter. If the amount falls below the criterion, the difference is
added to the other counter. Because evidence is accumulated at discrete time steps, a parameter,
λ, is required to convert time steps to continuous time.

In this article, we assume variability across trials in three components of the model (cf. Smith
& Vickers, 1988). First, equivalent to variability in mean drift rates across trials in the diffusion
models, the means of the evidence distributions are normally distributed with standard
deviation σμ. Second, the nondecision component of RT varies across trials with a rectangular
distribution with mean Ter and range st, exactly as in the diffusion models.

Third, the values of the response criteria vary across trials. Without this source of variability,
the accumulator model, as described so far, has the problem that as the response criteria (KA
and KB) increase, that is, as RTs become longer and accuracy increases, the RT distribution
becomes more symmetric. For fitting the model to the data described later, we tried several
possible distributions for variability in the criteria, namely, rectangular, normal, and Weibull
distributions—the last to allow a range of criterion distribution shapes (see also Smith, 1989,
and Smith & Vickers, 1989, for other proposals). The best fitting was the Weibull with an
exponential form (i.e., Weibull shape parameter equal to 1). The values of the criteria on each
trial (see Figure 3) are calculated by adding a value obtained from an exponential with mean
κ to two base values, kA and kB (the same value added to each), to obtain the values of KA and
KB (i.e., the mean values of the criteria are kA + κ and kB + κ). Using two independent values
from the exponential for the two criteria did not alter the qualitative fits of the model to data.
We also found it necessary for the mean of the exponential to become larger in experimental
conditions with accuracy instructions compared with conditions with speed instructions to
produce RT distributions as skewed as data. This adds an additional parameter to the model
for each additional speed–accuracy condition tested. The reason why the exponential works
well is that empirical RT distributions are approximately exponential in the extreme tail
(Burbeck & Luce, 1982; Luce, 1986; Ratcliff et al., 1999; Van Zandt & Ratcliff, 1995).

The Poisson Counter Model
The top panel of Figure 4 shows the arrival times of counts at the two counters in the Poisson
counter model, and the bottom panel shows how they are accumulated. The times between
counts are exponentially distributed with rate α for Counter A and rate β for Counter B. With
exponentially distributed times between counts, the evidence streams are Poisson processes
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with means 1/α and 1/β for Counters A and B, respectively. The quality of the information in
the stimulus is represented by the relative accumulation rates for the two counters. Increasing
the quality of the stimulus information causes an increase in the accumulation rate for one
counter and a decrease for the other, such that the sum of the two rates, α + β, is constant. This
constraint means that the overall rate of evidence accumulation is constant, paralleling the
assumption in the accumulator model that evidence is accumulated at a constant rate (λ ms per
count), regardless of its magnitude, and also paralleling the assumption in the diffusion models
that s2, which determines the rate at which a process moves toward its boundaries, is constant
while drift rate varies with stimulus difficulty. As each count arrives, it is accumulated in the
appropriate counter. A response is initiated when one or the other counter reaches its criterion
value, KA or KB.

As with the diffusion models and the accumulator model, there are three sources of across-trial
variability. First, the nondecision component of RT has a rectangular distribution with mean
Ter and range st. Second, we introduce variation in the accumulation rates across trials by
allowing the relative probability of increments to the two counters to vary. The probability that
a given count is added to Counter A, for example, is the ratio of its rate parameter to the sum
of the rate parameters, π = α/(α + β), and π varies from trial to trial. Because π is constrained
to lie in the range zero to one, a normal distribution would not be appropriate because its values
are unbounded. Instead, the value of π is drawn from a beta distribution (see the Appendix).
The beta distribution is a distribution with zero–one bounds that includes symmetric, positively
and negatively skewed, uniform, and U-shaped forms as special cases (Johnson & Kotz,
1970, pp. 42–43). It provides the most general possible model for accrual rates. Third, the
criterion values are geometrically distributed with a different value of the mean for each speed–
accuracy condition tested. The geometric is the discrete analog of the exponential and so gives
the Poisson counter model the same properties as the accumulator model, allowing it to predict
more positively skewed RT distributions than it otherwise would produce.

Neither the accumulator model nor the Poisson counter model has previously been examined
with all the sources of across-trial variability that we have added to them. These sources of
variability give the models the same potential flexibility as the diffusion models. However, as
we show later, although this flexibility helps each model, it still does not allow the Poisson
counter model to fit the patterns of empirical data that we present in the experiments.

Mimicking Between Models
One problem that occurs as models become more complex, as they have in the sequential
sampling domain, is the possibility of model mimicry. Although none of the models we
evaluate mimics another exactly, we show that some can mimic each other sufficiently to render
them, for all practical purposes, empirically indistinguishable. In this article, we evaluate
mimicry in two ways.

First, the models are fit to three comprehensive sets of data chosen to be representative of data
for two-choice decision tasks in which detailed RT data have been collected and also to exhibit
all of the main qualitative features that have been considered important theoretically in the RT
modeling literature (cf. Luce, 1986). For each of the data sets, there was a within-block
manipulation of stimulus difficulty, such that accuracy varied from near floor to near ceiling,
and a between-blocks manipulation intended to affect the values of response criteria. If
competing models fit the data equally well under these circumstances, then from an empirical
standpoint, they can be said to mimic each other.

The second way we examine mimicking between pairs of models is to use the parameters
obtained from fitting one model to a data set to generate exact predictions from that model and
then attempt to fit those predictions with the other member of the pair. The second model of
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the pair should fit well if the two models truly mimic each other, but in cases in which one of
the models does not fit the data, the other model may or may not fit the predictions.

Before applying the models to the data from the three experiments, we explain the methods
we use to display the data and the methods by which the models are fit to the data. Then, details
of the procedures for the experiments and their data are presented.

Quantile Probability Functions
In fits of any model to RT data, there are two dependent variables to consider, accuracy and
RT. The proportion of correct and error responses and the relationship between their RTs, as
well as the distributions of the RTs, must all be considered when assessing the fit of the model.
Traditionally, accuracy, mean RTs, and RT distributions have all been plotted separately as a
function of experimental condition. Here, instead, we display them all together in quantile
probability functions. This method of displaying data has the advantage that the joint behaviors
of the dependent variables can be more easily examined. The quantile probability function
(QPF; Ratcliff, 2001) is a development of the latency probability function, which was used to
display the joint behavior of mean RT and accuracy in early work on sequential sampling
models by Audley and Mercer (1968), Audley and Pike (1965), LaBerge (1962), Pike
(1973), Pike and Ryder (1973), and others.

A QPF is constructed by plotting the quantiles of the distribution of RTs for positive responses
and the quantiles of the distribution of RTs for negative responses for each experimental
condition on the y-axis and the probability of the response on the x-axis. For the data presented
in this article, we use five quantiles, with the plotted quantile points representing the RTs below
which fall .1, .3, .5, .7, and .9 of the total probability mass in the distribution.

In Figure 5, RT quantiles are plotted as they are in QPFs. The left panel shows three plots of
the same distribution, one with 5 quantiles, one with 10, and one with 25. The right panel shows
the associated RT density functions, along with pseudohistograms constructed from the
quantiles. To obtain an approximation to the density function, we constructed equal-area
rectangles corresponding to equal amounts of probability mass between the quantiles between
each of the quantile RTs (as for the left most plot in the left panel) so that closely spaced
quantiles are spanned by taller rectangles. For the 5-quantile plot, the distance between the .5
and .7 quantiles is identified as “Y” and the distance between the .7 and .9 quantiles is identified
as “X,” and these distances are shown in the top right panel as the distances between the
quantiles plotted on the x-axis. As the plots suggest, the set of rectangles derived from the
quantiles approaches the continuous density function as the number of quantiles increases.

For each condition in an experiment, information about the shape of the RT distribution is
carried by the vertical separations of the quantile points for that condition. The fastest responses
in the distribution map onto the lower quantile points, and the slow responses in the tail of the
distribution map onto the higher quantile points. Because RT distributions are usually right
skewed, the separation of the higher quantile points is greater than that of the lower points.

A full representation of the data from an experiment requires two QPFs, one for each response.
However, if the data are symmetric for the two responses (i.e., RTs and accuracy values for
the two choices are about the same), they can be averaged across responses to give a single
QPF. Experiment 1 below yielded symmetric data of this kind.

Within-Block Variables
When stimulus difficulty is varied in a within-block design, there are two important constraints
on the models. First, the effects of difficulty on the QPF are determined by only one parameter,
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the rate of accumulation of evidence, namely, drift rate in the diffusion models and accrual rate
in the accumulator and Poisson counter models. With only drift or accrual rate varying,
accuracy rates plus mean RTs and RT distributions for both correct and error responses must
be fit. Predictions from a model can be plotted with isoquantile lines connecting equivalent
quantiles across the range of predicted probability values.

Shape of QPFs
The second constraint on the form of the QPFs is that their shape is determined by only a few
parameters of the models. As an example, in Ratcliff’s Wiener diffusion model with starting
point equidistant from the two boundaries, the form of the QPF is determined by the three
parameters a (boundary separation), η (across-trial variability in drift rate), and sz (across-trial
variability in starting point). Assuming symmetric RTs and accuracy values for the two
responses, then when η and sz are zero, RTs for correct and error responses are equal and the
QPF is symmetric with an inverted U shape. When η is high and sz is low, error responses are
slower than correct responses, and the QPF has a peak to the left of the .5 probability point.
When η is low and sz is high, error responses are faster than correct responses, and the QPF
has a peak to the right of the .5 probability point. Thus, the shape of the QPF allows the relative
speeds of correct and error responses to be determined by visual inspection. The vertical
location of the QPF is determined by the nondecision component of reaction time, Ter.

Fitting Methods
There are three ways predicted values of RT and accuracy can be generated from the models.
First, if there are exact solutions for a model (i.e., formulas for the RT distribution and
accuracy), then exact predictions can be produced. Second, numerical approximations can be
used to produce predictions. Within the limits of generating predictions in some reasonable
amount of time, the predictions can be as accurate as those from the first method. Third, the
model can be simulated on a trial-by-trial basis. For simulations, within-trial and across-trial
variability give rise to variable correct and error responses and RTs, and average accuracy and
RT are determined from running many trials.

For the accumulator, Poisson counter, and two diffusion models, either exact solutions or
numerical approximations, or both, are available and were used in fitting the models. Although
the simulation method does not produce predicted values with the same degree of accuracy as
the first two methods, it is easier to implement for the models considered here, and we used it
to provide checks on the other methods. Also, simulation is the only method available for some
of the neurally inspired models discussed later.

To fit each model to data, we used one of the methods just described to generate predicted data
from the parameter values. Specifically, for each condition in an experiment, we generated
predictions for accuracy and five RT quantiles for both correct and error responses. We also
selected either a chi-square or sum-of-squares measure of how well the predictions match the
data (see below). We then used the SIMPLEX minimization routine (Nelder & Mead, 1965)
to adjust the parameter values until a minimum value of the chi-square or sum-of-squares
measure was obtained.

We evaluated the models using data from three experimental tasks that are representative of
the kinds of tasks for which sequential sampling models have previously been proposed. The
first task was a perceptual judgment task, in which probabilistic feedback was used to vary
difficulty. The second task was a lexical decision task that required judgments about word
identity. The third task was a recognition memory task that required judgments about whether
items had occurred on a previously studied list. For all three tasks, the data were typical of
those reported for similar tasks in the literature.
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We chose to evaluate the models against group data, obtained by averaging quantiles of the
RT distributions and response probabilities across subjects (Ratcliff, 1979; Thomas & Ross,
1980). This had the advantage of reducing variability among subjects, thereby bringing out the
qualitative effects of the experimental manipulations as clearly as possible. It also allowed us
to keep the evaluation task to manageable proportions. It has been our experience that fits to
individual subjects and fits to quantile-averaged group data exhibit very similar features and
that parameter values for group fits are in good agreement with the average parameter values
for fits to individual subjects (see Ratcliff, Thapar, & McKoon, 2003, and Thapar, Ratcliff, &
McKoon, 2003, for concrete examples with four groups of about 40 subjects per group).

We used two different criteria to assess how well a model fit experimental data: a minimum
chi-square statistic and a penalized maximum likelihood statistic called the Bayesian
information criterion (BIC; Schwarz, 1978). We discuss how well the models fit data in terms
of the chi-square statistic, and we additionally report the BIC statistic in tables. For all three
data sets, the conclusions are the same whether the models are evaluated with the minimum
chi-square or the BIC. We used a third statistic, a weighted least squares (WLS), to fit one
model to the predictions of another model.

The minimum chi-square statistic we used is the Pearson statistic. For N observations grouped
into bins, this statistic has the form

χ2 = ∑
i

N (pi − πi)
2

πi
,

where pi is the proportion of the observations in the ith bin and πi is the proportion in the bin
predicted by the model. In our fits, the empirical quantiles were used to form the boundaries
of the bins, giving 12 bins per pair of distributions (6 each for correct response and error
distributions). The probability masses pi and πi in the formula are joint probabilities that sum
to unity across each pair of correct and error distributions. For each of our data sets, there were
12 proportions in each experimental condition, and the total probability mass in each condition
summed to 1.0, reducing the number of degrees of freedom to 11. For a total of k experimental
conditions and a model with M parameters, the number of degrees of freedom in the fit was
therefore df = k(12 − 1) − M.

The BIC statistic, for binned data, is

BIC = − 2(∑i N piln(πi)) + M ln(N ),

where pi and πi are the same as in the previous equation and m is the number of free parameters
in the model. The term Mln(N) on the right of the equation is a penalty term that penalizes
models in proportion to their number of free parameters and the logarithm of the size of the
sample.

Besides providing a penalty for the number of parameters in a model, the BIC also penalizes
models for the complexity of their functional form. This occurs because when the sample size
is large, the BIC is asymptotically equivalent to a Bayesian model selection (BMS) method
that weights the assessment of model fit according to the prior probabilities of the parameters
(Pitt, Myung, & Zhang, 2002; Wasserman, 2000). The BMS method is in turn asymptotically
equivalent to the minimum description length method recently advocated by Pitt et al.
(2002). This latter method penalizes models both for their number of free parameters and the
complexity of their functional form.
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The BIC is also closely related to the likelihood ratio chi-square statistic, G2. For any given
set of data, G2 and the BIC differ by a constant, so the parameters that minimize one also
minimize the other. The G2 statistic can be written

G2 = 2∑
i

N piln( pi
πi

).
This statistic is equal to twice the difference between the maximum possible log likelihood and
the log likelihood predicted by the model. The χ2 and G2 statistics approach one another as
sample sizes become large (Jeffreys, 1961, p. 197); both are distributed as a chi-square random
variable with degrees of freedom presented above.

Because our fits were carried out on group data, obtained by averaging quantiles across
subjects, it was not appropriate to weight the observed and predicted proportions in the χ2

statistic by the total sample size N as is done in the usual Pearson chi-square test. Instead, we
calculated the statistic from the observed and predicted proportions instead of frequencies and
multiplied the values by 100 for readability. We have used this statistic as a relative rather than
absolute measure of fit and denote it by the symbol X2 to emphasize that it is not a proper chi-
square because it has been calculated from quantile-averaged data. Here, we use it to provide
a numerical measure of fit that serves as an adjunct to the qualitative comparisons that are the
main focus of this article. We also present an example of the sampling distribution of this X2

statistic for Experiment 1. Because the penalty term in the BIC depends on sample size, the
BIC and G2 statistics were calculated with N set equal to the average number of observations
per subject in each condition in the data set.

For fitting models to exact predictions from other models, we used the WLS statistic because
this does not depend on the number of observations as do the other statistics and because it is
robust to systematic deviations, for example, in the lower quantile RTs (Ratcliff & Tuerlinckx,
2002). The WLS statistic minimizes the sum of squared differences between the observed and
predicted accuracy values plus the sum of the squared differences between the observed and
predicted quantile RTs for correct responses and errors. For one experimental condition, the
fit statistic, sum of squared errors (SSE), is given by the expression

SSE = 4(Pth − Pex)2 + Σiwi Qth(i) − Qex(i) 2.

where P is probability, Q(i) is the quantile RT in seconds, “th” stands for predicted, “ex” stands
for experimental, and the wi are quantile weights. The value of SSE is summed over
experimental conditions. The quantile weights, wi, were set equal to 2 for the .1 and .3 quantiles,
1 for the .5 and .7 quantiles, and 0.5 for the .9 quantile. This weighting scheme reflects,
approximately, the relative variability of the accuracy measures and the RT quantiles.

In the computation of SSE, accuracy is explicitly represented, but in the chi-square and BIC
statistics, accuracy is not explicitly represented. However, because the proportions of the
probability mass in the correct and error distributions may differ for the predicted and observed
distributions, the fitting method will attempt to make the probability mass for predicted and
observed values as similar as possible so that these statistics take into account discrepancies
in fit for both accuracy and RT.

Variability in the Nondecision Component of Processing
A critical difference between the WLS and minimum chi-square statistics in application to our
RT and accuracy data is the following: The minimum chi-square method attempts to minimize
the discrepancies between observed and predicted proportions between adjacent pairs of
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quantiles and outside the two extreme quantiles. In the X2 statistic, the square of each
discrepancy is weighted by the reciprocal of the predicted proportion in the bin. For this statistic
to be well-defined, the predicted proportion below the .1 quantile must be nonzero for all
distributions that contribute to the fit. This means that if Ter has no variability, then it is required
to be smaller than the smallest .1 quantile. If the true variability in the .1 quantile across
conditions is greater than that predicted by the model, this requirement can produce severe
distortions in fit because the requirement results in systematic underestimates of the larger of
the .1 quantiles, which in turn produces large distortions in the tails of the fitted distributions.
In some of the fits we carried out, this resulted in discrepancies of several hundred milliseconds
between the predicted and observed .9 quantile RTs.

If there is a rectangular distribution of values of the nondecision component of processing with
mean Ter and range st, as we assume above, then Ter − st/2 has to be smaller than the smallest .
1 quantile, and the distortions are reduced or eliminated (see Ratcliff & Tuerlinckx, 2002). The
improvement in the fit occurred because variability in the nondecision component of processing
stretches out the leading edge of the distribution, allowing for greater variability in the location
of the .1 quantile. For the WLS statistic, the estimate of Ter does not have to be less than the
smallest .1 quantile, and it is robust to variability in the .1 quantile, although the recovered
parameter values will often be biased (Ratcliff & Tuerlinckx, 2002).

The assumption of variability in the nondecisional components of RT is not new to our
application. In domains like simple RT, such variability often forms an integral part of
quantitative models (see Luce, 1986; Smith, 1990b) and is justified on physiological grounds.
It has rarely been included in modeling two-choice RTs, although Smith (1989) used
distributions of simple RTs to estimate the nondecisional components of RT in a two-choice
task in which subjects made judgments about the orientation of an array of randomly oriented
line segments.

All of the fits to data in this article were carried out using both WLS without variability in
Ter and minimum chi-square with variability in Ter (note that we use “variability in Ter” as
shorthand for “variability in the nondecision component of processing”). Although we report
only the chi-square fits, the conclusions drawn from both fits were the same. In general, the
Wiener and OU diffusion models benefited more from the introduction of variability in Ter
than did the accumulator and Poisson counter models because the diffusion models without
variability in Ter predict RT distributions that have sharper leading edges than are usually seen
in data.

Method for Experiments 1–3
As discussed earlier, three experiments were chosen to represent reasonably common two-
choice tasks with a long history in the RT domain. In the first, a signal detection-like experiment
(Ratcliff et al., 2001), two vertically aligned dots were displayed on each trial, and subjects
were asked to decide whether the separation between them was “large” or “small.” Stimulus
difficulty was varied within block via dot separation: There were 32 possible separations,
labeled 1 through 32 with 1 being the smallest separation, ranging from 1.75 cm to 3.33 cm in
equal intervals. After each trial, subjects were given feedback such that the response was
designated as “correct” or “error.” The feedback was probabilistic, and was chosen from a
probability associated with each stimulus: For Stimuli 1 through 6, the “small” response was
designated correct with probability .999. For Stimuli 7, 8, 9, 10, 11, 12, 13, 14, and 15, “small”
was designated correct with probabilities .913, .888, .856, .819, .774, .722, .664, .601, and .
534, respectively. For large separations, for Stimuli 25 through 32, the “large” response was
designated correct with probability .999, and for Stimuli 24 through 16, “large” was designated
correct with the same probabilities as for “small” for Stimuli 7 through 15. Subjects understood
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that they could not be completely accurate, that for separations in the middle of the range either
response might be designated as correct, and that their task was to give their best judgment.
There were 12 lists in each session, with three presentations of each of the 32 stimuli in each
list. In 6 of the lists, subjects were given accuracy instructions, and in the other 6, they were
given speed instructions. Speed versus accuracy instructions alternated between blocks:
Subjects were asked either to respond as quickly as possible or to make as few errors as possible.
In the speed blocks, responses longer than 700 ms were followed by a “TOO SLOW” message.
In the accuracy blocks, “large” responses to Stimuli 1 through 6 or “small” responses to Stimuli
26 through 32 were followed by a “BAD ERROR” message. The subjects were 17
Northwestern undergraduates who each participated in two 45-min sessions.

In the second experiment, a lexical decision experiment (Wagenmakers, Ratcliff, Gómez, &
McKoon, 2004), a letter string was presented on each trial, and subjects were asked to judge
whether it was a word or a nonword. Trials were blocked into sets of 96, with each of 15 subjects
(Northwestern undergraduates) completing 20 blocks in one session. Word frequency was
varied within blocks, with equal proportions in each block of high-, low-, and very low-
frequency words (mean frequency values of 325.0, 4.4, and 0.37; Kučera & Francis, 1967).
Speed versus accuracy instructions alternated between blocks. On speed trials, a “TOO SLOW”
message was presented if RT was greater than 750 ms. On accuracy trials, an “ERROR”
message was given for error responses. There were equal proportions of words and nonwords
in each block, with nonwords constructed from words in which all the vowels were randomly
replaced with other vowels (see Ratcliff et al., 2004, for other details).

In the third experiment, a study–test recognition memory experiment, subjects were presented
with lists of pairs of words to study (1,500 ms per pair) and then, for each list, were asked to
judge for each of a series of single test words whether it had been in the list (an “old” test item)
or not (a “new” test item). There were 28 pairs per study list and 56 test items per test list, and
each subject was tested with a total of 30 study–test lists per session. There were 3 subjects
(Northwestern undergraduates), each tested for nine sessions. Within a list, difficulty of the
decision was manipulated by varying the number of times a pair was presented in the study list
(one or four) and by using high-, low-, or very low-frequency words (the same pools of words
as in the lexical decision experiment). Incorrect responses were followed by an “ERROR”
message. The proportion of old versus new test items was varied between lists: The proportion
of old to new test items was 3.5:1, 2:1, 1:1, 1:2, or 1:3.5.

For all three experiments, the constraints the data impose on the models are as follows: First,
in all cases the RT distributions are positively skewed. Second, stimulus difficulty (a within-
block variable in all three experiments) affects RT (mean and standard deviation) mostly by
increasing the skew of the RT distributions. The between-blocks variables (speed–accuracy
instructions and proportion of old–new test items) affect RT with changes in both the leading
edge and the skew of the RT distributions. Third, errors are slower than correct responses in
all conditions of the first and third experiments (signal detection and recognition memory),
whereas in the second experiment (lexical decision), errors are slower than correct responses
with accuracy instructions and faster than correct responses with speed instructions. This latter
pattern of data is an especially difficult one for models to accommodate. Fourth, in moving
from speed to accuracy instructions, there are large changes in RT (several hundred
milliseconds), accompanied by modest changes in accuracy (about .05). This contrasts with
the effect of proportion of old–new test items: large changes in RT (up to about 200 ms),
accompanied by large changes in accuracy (up to about .40).

In fitting the models to the data from these experiments, we simultaneously fit accuracy rates,
RTs for correct responses and errors, and their associated distributions—that is, all the data
shown by a QPF. In fitting the models, we focus on which of them can capture the qualitative
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trends in the data. As we show later, the Wiener model and the OU model with relatively small
decay mimic each other to a large degree, and both fit the experimental data reasonably well.
The accumulator model fits the data from the experiments as well as the Wiener and OU models
except for cases in which error responses are faster than correct responses; the accumulator
model can predict only errors slower than correct responses. The Poisson counter model fits
worse than the other models overall, and it too can predict only errors slower than correct
responses.

Experiment 1: Signal Detection
Figure 6 displays the fits for all except the worst-fitting model, with the triangles representing
the data and the lines representing the best fits of the best versions of the models. We collapsed
the 32 conditions into 4 by grouping conditions with similar values of accuracy and similar
values of RT. Also, because the data were symmetric for the two responses (“large” and
“small”), they were collapsed both for display in the figures and for fitting the models.

The manipulation of difficulty (dot separation) produced a change in mean RT of 80 ms over
the four conditions with speed instructions and 250 ms with accuracy instructions, with these
changes appearing mainly in the skew of the RT distributions and only a minimal change in
the .1 quantiles (leading edges) of the distributions (about 15 ms with speed instructions and
30 ms with accuracy instructions). Difficulty produced a change in accuracy from .95 to .55,
about the same size for both speed and accuracy instructions, with correct RTs decreasing as
accuracy increased. Error responses were always slower than correct responses, and error RTs
first increased then decreased as accuracy increased, showing a nonmonotonic pattern. Over
all the difficulty conditions, the speed–accuracy manipulation produced differences in accuracy
of about 4%– 8% and differences in mean RTs of about 100–250 ms. The RT distributions in
the accuracy conditions were more skewed, and the .1 quantiles were 50–70 ms longer than in
the speed conditions, but the RT distribution shape was quite similar across conditions.

Because the data were largely symmetric for the two responses, the response criteria were
equated for the Poisson counter and for the accumulator models, and the starting points for the
diffusion models were set halfway between their boundaries. The values of the response criteria
and boundaries were free to vary between the speed and accuracy conditions.

Wiener Diffusion Model
Qualitatively, the fit is reasonable (cf. Ratcliff et al., 2001; see Figure 6 and Tables 1 and 2).
With only the drift rate varying with difficulty and only the boundary positions varying with
instructions, the model captures the shapes of the RT distributions and the changes in them as
a function of difficulty and instructions. Errors are slower than correct responses because
variability in starting point across trials has a smaller effect than variability in drift across trials.
The main systematic discrepancy in the fit occurs with the .9 quantiles in the accuracy
conditions; the model systematically overestimates the location of this quantile. For this model,
X2 = 15.42.

OU Model
The OU model was fit to the data with β = 4 and β = 8; the fit for β = 8 is shown in Figure 6
(see also Tables 1 and 2). As an indication of parameter size, the average sample path of an
OU process with β = 8 is shown in Figure 2. We chose β = 8 as the extreme value of β to
examine because with this value much of the effect of decay would occur within typical
decision times and between the boundaries. We fit the model with only the drift rates varying
with difficulty and only the boundary positions varying with instructions. Errors are slower
than correct responses for the same reason as in the Wiener diffusion model. With β = 8, the
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goodness of fit is relatively poor (X2 = 37.03), and the qualitative discrepancies between the
model and data are easily observable (see Figure 6): The model is unable to capture the
differences between the speed and accuracy conditions, and the drift values that best predict
the range of response probabilities in the accuracy conditions produce systematically depressed
response probabilities in the speed conditions; this appears as a restricted range of x values for
the fitted QPF compared with the data. Also, the shapes of the predicted RT distributions are
systematically distorted because the increased boundary position values needed to produce
higher correct response probabilities and longer mean RTs in the accuracy conditions are
accompanied by a sharp increase in the skewness of the predicted RT distributions.

With β = 4, the fit is better; it is qualitatively similar to that of the Wiener model, although
numerically somewhat poorer (X2 = 23.18). Allowing β to vary as a free parameter in fitting
produces the best fits when β = 0, that is, when the OU model becomes identical to the Wiener
model. The qualitative similarity between the fits for the OU model with β = 4 and the Wiener
diffusion model came as a surprise to us; we had expected the two models to produce different
predictions on the basis of our notions of the effects of decay.

Accumulator Model
Initially, we examined fits of the accumulator with normal and rectangular distributions of
variability for the response criteria. The results are similar; so, we report only the rectangular
case here. The model was fit with only accrual rate varying with difficulty and only the response
criteria varying with instructions. Because the “large” and “small” data are symmetric, kA was
set equal to kB. The range of the rectangular distributions of criterion values were different for
the speed and accuracy conditions. Quantitatively, the fit is poor (X2 = 42.92), and the
qualitative pattern of predictions is incorrect. One problem is that the RT distributions are too
symmetric. Also, unlike the data, which exhibit bowed QPFs, the predicted QPFs decrease
monotonically with accuracy, except for a sharp increase for errors in the highest accuracy
condition (most apparent in the tail quantiles). Furthermore, the range of accuracy values is
substantially underpredicted.

It was the finding that fits of the accumulator model with normal and rectangular distributions
of criteria variability produce RT distributions that are too symmetric that led us to explore
modeling the criteria with a distribution that has a long tail, the Weibull distribution. The best
fits were obtained with the shape parameter of the Weibull equal to 1.0, which represents an
exponential distribution. The criterion parameters kA and kB were set equal to each other, with
different values for the speed and accuracy conditions. There were also different values of the
exponential mean κ for the speed and accuracy conditions. With these parameters, the model
fit the data well (X2 = 14.86; see Figure 6, bottom left panel, and Tables 1 and 3). In terms of
the X2 goodness-of-fit measure, this version of the accumulator model fit the data better both
qualitatively and numerically than either of the diffusion models. In terms of BIC, which
penalizes models for their number of free parameters, the Wiener diffusion model, with two
fewer parameters, is the better model.

Poisson Counter Model
With rectangularly distributed response criterion values and beta distributed accrual rates, the
fit of the model is poor (X2 = 65.62). The model was fit with only accrual rate varying with
difficulty, kA equal to kB, and different values of kA, kB, and the range of the distribution of
criteria for the speed and accuracy conditions. The QPFs are almost monotonic (see Figure 6),
the RT distributions are too symmetric, and the .9 quantiles for errors when accuracy is in the .
8 to .9 range underestimate the empirical values by about 200 ms.
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With geometric distributions for the response criteria (different values of κ for speed and
accuracy conditions), the fit of the model is appreciably better (see Figure 6 and Tables 1 and
4; X2 = 26.58) and numerically comparable to that of the diffusion models. However, the QPFs
show monotonically increasing error RTs, and the RT distributions are still more symmetric
than the data—some of the .9 quantiles for errors underestimate the data by around 100 ms.

Sampling Distribution for the Chi-Square Statistic for the Wiener Diffusion Model
We examined the sampling distribution of the chi-square statistic for the Wiener diffusion
model using Monte Carlo simulations using the method presented in Ratcliff and Tuerlinckx
(2002). We generated simulated data from 22 experiments with the same number of subjects
per experiment (17) and the same number of observations per condition as in Experiment 1.
The parameter values were randomly selected from normal distributions with means and
standard deviations obtained from fits to individual subjects from Experiment 1 here (presented
in Tables 2 and 3 from Ratcliff et al., 2001). The data from the simulated individual subjects
were averaged as for the real data, that is, each accuracy value and each quantile RT was
averaged. We then fit the Wiener diffusion model to the 22 data sets and obtained chi-square
values. The mean chi-square value was 12.8 and the standard deviation was 3.9, with the upper .
05 confidence limit 17.5.

The best-fitting models have chi-square values near the .05 confidence limit, which suggests
that the models fit the data quite well. However, the chi-square statistic has some limitations.
It is well-known that small systematic deviations between the model and data can lead to highly
significant values of chi-square as the number of observations increases. Along with
differences among subjects, other factors can inflate chi-square values: For example,
systematic changes in performance within sessions or across sessions, if multiple sessions are
tested, such as practice effects, fatigue, or adoption of different criteria can all inflate chi-
square. In fact, the latter may be responsible for the well-known long-range sequential effects
in sequences of RTs (see Gilden, 2001; Wagenmakers, Farrell, & Ratcliff, in press).

Discussion of the Models’ Fits for Experiment 1
Three of the models, the Wiener diffusion model, the OU diffusion model with moderate decay
(β = 4), and the accumulator model, give good accounts of the data. Both the overall shapes of
the predicted RT distributions and the ways the shapes are predicted to change with stimulus
difficulty and speed versus accuracy instructions agree with the data, as do the associated values
of accuracy. Although the chi-square for the Poisson counter model with geometric criteria is
similar to that for the OU model with moderate decay, the Poisson counter model’s fit is
qualitatively inferior, especially in its inability to produce nonmonotonic QPFs, that is, QPFs
in which RTs for errors increase and then decrease as accuracy increases.

There were moderate misses in the .9 quantile RTs for the accuracy condition for some of the
models. Better fits can be obtained if the nondecision component of RT is allowed to be
different for the two conditions; for example, the fit of the Wiener diffusion model improves
with chi-square being reduced to under 10 with two values of Ter differing by 25 ms (see
Rinkenauer, Osman, Ulrich, Müller-Gethmann, & Mattes, in press, for data that may speak to
this). Before such assumptions can be made, systematic studies need to be conducted.

From a modeling perspective, there are two salient features of Experiment 1: The data provide
RT distributions for correct responses and errors over a range of accuracy values from near
chance to near perfect, and for all conditions of the experiment, correct responses are faster
than error responses. The latter finding contrasts with the results obtained in many other
experimental paradigms, in which errors are typically faster than correct responses. It was for
this reason that the second experiment to which we applied the models was a lexical decision
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experiment. In this experiment, errors were faster than correct responses with speed instructions
and slower than correct responses with accuracy instructions. As noted previously, this
crossover is a particularly difficult pattern for a model to produce, and so, it offers a stringent
test.

Experiment 2: Lexical Decision
The main result of interest is that the relationship between correct and error RTs is altered by
instructions. In the speed conditions, mean error RTs were shorter than mean RTs for correct
responses, whereas in the accuracy conditions, mean error RTs were longer than mean correct
RTs. This crossover pattern is not unusual (e.g., Luce, 1986; Ratcliff & Rouder, 2000; Ratcliff
et al., 1999; Smith & Vickers, 1988; Swensson, 1972), and it can also be obtained by a post
hoc classification of subjects according to their overall speed, fast or slow (Ratcliff et al.,
2004).

The experimental data are not symmetric across the two responses as they were for Experiment
1. For one reason, there were three word conditions (corresponding to different frequency
values) and only one nonword condition, and also the data for word and nonword RTs and
accuracy values were different. For the Wiener and OU diffusion models, this means that the
starting point is not equidistant between the two boundaries (i.e., z is not equal to a/2) and that
the starting point, like boundary separation, varies between the speed and accuracy conditions.
For the accumulator and Poisson counter models, the criterion value for word responses was
different from the criterion value for nonword responses. Both the criterion values and the
parameter representing the spread in the distribution of criteria had different values for the
speed and accuracy conditions. For all the models, drift or accrual rate varied across the types
of stimuli.

Wiener Diffusion and OU Models
The Wiener diffusion model, which was the best fitting of the models (X2 = 28.96), captures
the main qualitative features of the data (see Figure 7). Errors for words are faster than correct
responses in the speed condition and slower in the accuracy condition. The OU model’s fit
with β = 4 was poorer (X2 = 44.87). When β was allowed to vary freely, it converged to a value
of zero. That is, the best-fitting OU model was identical to the Wiener diffusion model.

For both models, the pattern of error RTs relative to correct response RTs is accommodated
by the amount of across-trial variability in drift rates, the amount of across-trial variability in
starting points, and the boundary positions. Starting point variability is responsible for fast
errors: When boundary separation is small, the range of starting points is a greater proportion
of the total amount of boundary separation, which leads to fast errors. When boundary
separation is large, the range of starting points is a smaller proportion of the total amount of
boundary separation, allowing variability in drift across trials to dominate, and errors slower
than correct responses result.

Accumulator and Poisson Counter Models
The accumulator model’s fit is intermediate between the Wiener and OU diffusion models’
fits (X2 = 36.77; see Tables 2, 3, 4, and 5), but it is unable to predict RTs accurately for errors
on words in the speed conditions. The predicted error RTs are shorter than the RTs for correct
responses, but only by 2–3 ms, considerably underestimating the 20–30 ms effects in the data.
The accumulator model’s inability to produce fast errors, which are often found empirically,
limits its applicability as a general model of two-choice RT tasks. The Poisson counter model
is also unable to produce fast errors (X2 = 67.02); it was the poorest fitting of the four models.
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Summary
The Wiener diffusion model and the OU model with moderate decay give good accounts of
the data. Both the overall shapes of the predicted RT distributions and the ways the shapes
change with stimulus difficulty and speed versus accuracy instructions agree with the data, as
do the associated values of accuracy. In particular, the models are capable of producing fast
errors relative to correct responses in the speed condition and slow errors in the accuracy
condition. They do this with only the values of the boundary positions and the starting point
varying between the speed and accuracy conditions. The accumulator and Poisson counter
models cannot produce errors faster than correct responses in the speed condition, and so, they
fail on qualitative grounds.

Experiment 3: Recognition Memory
In Experiment 3 (Ratcliff, 2004; see also Murdock & Anderson, 1975; Ratcliff & Murdock,
1976), subjects studied lists of pairs of words and then were tested for recognition. Test-word
difficulty was varied within lists via the number of times a word was presented in the study
list (one or four) and Kučera-Francis frequency. Between blocks, the proportion of old to new
test words in the test lists was varied across five levels. Subjects biased theirresponses toward
the most likely response, manifested as a shift and skewing of the whole RT distribution
including the leading edge. The .1 quantiles for the favored response decreased by about 100
ms, and the .9 quantiles decreased by about 250 ms. The leading edges of the RT distributions
did not shift across experimental conditions in Experiments 1 and 2; so, this experiment
provides a different test of the models. Also, the between-blocks manipulation was
accompanied not only by large changes in RT but also by large changes in accuracy: Responses
to the favored alternative were highly accurate (95% correct for the most accurate condition),
but responses to the disfavored alternate were not (70% correct for the most accurate condition).

For the within-list variables, the only parameter that could vary in the models was the rate of
accumulation of evidence, drift rate in the diffusion models and accrual rate in the accumulator
and Poisson counter models. There were six within-block conditions for old test words; they
were studied either once or four times, and there were three values of word frequency. For new
test words, there were only the three values of word frequency. For the between-lists variable,
proportion of old to new test words, two parameters varied in the Wiener and OU models,
starting point and drift criterion (Ratcliff, 1985; Ratcliff et al., 1999). Varying the starting point
toward the more favored alternative is equivalent to moving the favored response boundary
nearer the starting point while moving the other boundary farther away by the same amount.

As mentioned when the diffusion models were introduced, the drift criterion operates in the
same way as the criterion in signal detection theory. To illustrate its application to recognition
memory, suppose one of the types of old items has drift rate .2 and one of the types of new
items has drift rate −.2. Then, when old items are favored, the drift criterion can be adjusted
so that the type of old item that previously had drift .2 now has drift rate .3 and the new item
previously with drift −.2 now has drift −.1. The difference between the two types of items is
constant; the drift criterion adjustment has simply added a value of .1 to both (see Ratcliff et
al., 1999, Figure 32).

Changes in starting point and drift criterion have different effects. Changes in starting point
produce changes in both the leading edge and skew of the RT distribution, whereas changes
in drift criterion affect mainly the skew of the RT distribution with only small changes in
leading edge.

In the accumulator and Poisson counter models, the same types of criteria were allowed to vary
as for the diffusion models. The criterion for the favored response was set lower than the
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criterion for the other response, but the sum of the two was kept constant. Variability in the
criterion values, the value of κ, was assumed to be constant across all conditions. For the
accumulator model, the equivalent of varying the drift criterion in the diffusion models was to
vary the zero point in the distributions of amounts of evidence. This was done by adding a
constant to the means of all the word frequency and repetition conditions for both responses.
For the Poisson counter model, the relative accrual rate parameter, ρ, was biased by a constant
amount, while the sum of the rates in the two counters was held constant (see the Appendix).

Wiener and OU Models
The Wiener diffusion model fits the data well with only starting point varying and the drift
criterion fixed at zero (X2 = 241.77). When the drift criterion varied across proportion
conditions, the fit is only slightly better (X2 = 240.44). The OU model with moderate decay
(β = 4) fits worse than the Wiener diffusion model when only starting point was free to vary
(X2 = 277.53), but almost as well when drift criterion was free to vary (X2 = 247.62). The
adjustment in drift criterion was small, no larger than 8% of the average drift rate. The fit of
the Wiener diffusion model with a fixed drift criterion is slightly superior numerically to the
OU model, even when drift criterion is free to vary for the OU model. For the OU model, when
only one value of drift criterion was allowed and the decay parameter was allowed to vary
freely, the best-fitting value of decay approaches β = 0; that is, the OU model approaches
identity with the Wiener model. When drift criterion was also free to vary, the estimate of β
shows little tendency to vary from its starting value of 4.

The main features of the data from Experiment 3 that differentiate it from the first two
experiments are the shift in the leading edge of the RT distribution to faster responses for the
favored response alternative and the large decrease in accuracy for the disfavored response
alternative. In the diffusion models, the movement of the starting point nearer to the favored
response boundary is responsible for the change in the leading edge of the RT distribution and
the change in accuracy.

Figure 8 shows an example of fitted values for the Wiener model with drift criterion and starting
position free to vary. The model captures the major trends: Error responses are generally slower
than correct responses and tend to become faster at the extremes. The RT distributions shift as
a function of probability condition, with decreases in the .1 quantile for the more probable
response. Also, when the probability of old items is high, the QPF for “old” responses is shifted
to the right, indicating a bias toward these responses. When the probability of old items is low,
the QPF for “old” responses is shifted to the left, indicating a bias away from these responses.
Qualitatively, the OU model with β = 4 produces fits of about the same quality as shown in
Figure 8.

Accumulator and Poisson Counter Models
Neither model fit the data as well as the diffusion models (see Tables 2, 3, 4, 6, and 7). For the
accumulator model, the goodness of fit without the zero point in the evidence distributions
varying was X2 = 284.62; this improved a little with the zero point varying to X2 = 280.91. The
Poisson counter model chi-square value was X2 = 384.92, without the accrual rate bias
parameter varying, and X2 = 365.34, with it varying. As for Experiments 1 and 2, the
accumulator was better than the Poisson counter model at describing the shapes of the RT
distributions because its predicted distributions are somewhat more skewed, consistent with
the empirical data.
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Model Freedom and Model Selection
The BIC provides a basis for model selection that depends on parsimony, goodness of fit, and
model complexity. Models with more free parameters are penalized more heavily, and the
penalty increases with the size of the sample. When modeling data from speed and accuracy
conditions, the accumulator and Poisson counter models need two more parameters than the
diffusion models. They therefore incur larger penalties than do the diffusion models. As a
result, the Wiener diffusion model is selected by the BIC statistic as the best model for
Experiment 1 by a small margin, although the accumulator with exponential criteria had the
smallest chi-square. Similarly, for Experiment 2, the OU model with β = 4 is deemed to be a
better model by BIC than the accumulator model, despite the latter’s smaller chi-square. Apart
from these cases, the use of statistics that take into account model freedom compared with a
more traditional chi-square statistic appears to have had little influence on the relative
quantitative goodness of fit of the models in these experiments.

The four models all have approximately similar numbers of free parameters for Experiments
1 and 2, which each have 88 degrees of freedom in the data. For the signal detection data in
Experiment 1, the Wiener diffusion model fit the data well with 10 parameters: 4 drift rate
parameters, 1 for each of the dot separation conditions; a pair of boundary separation
parameters (1 for speed conditions and 1 for accuracy conditions); and 1 parameter each for
Ter, variability in Ter (st), variability in drift across trials (η), variability in starting point across
trials (sz). The OU model adds a decay term, β, to these parameters, making its total number
of parameters M = 11. It also fit the data well so long as the value of β was small. For the lexical
decision in Experiment 2, the Wiener diffusion model gave a good fit for the data with M =
12:4 drift rate parameters (1 for each of the word frequency conditions plus 1 for nonwords)
plus a pair of starting point parameters, z, necessary because the data were not symmetric for
the two responses, plus the same other parameters as for Experiment 1. The OU model also fit
well with the same parameters as the Wiener diffusion model plus β = 0.

The accumulator model accounts accurately for the data from Experiment 1 with M = 12. It
has two more parameters than the Wiener diffusion model because it requires the parameter
λ, which maps discrete to continuous time, and it requires different values of criterion
variability (the mean of the exponential) for the speed and accuracy conditions. In contrast, the
diffusion models use the same value of starting point variability for both the speed and accuracy
conditions. The model has two additional free parameters for Experiment 2 because there are
different decision criteria for word and nonword responses for both the speed and accuracy
conditions, leading to M = 14 parameters. However, the model cannot fit the data because it
cannot produce error responses faster than correct responses.

The Poisson counter model also has two more free parameters than the Wiener diffusion model
for Experiments 1 and 2. One is the overall accumulation rate parameter, α + β, which
corresponds to the parameter λ, which maps counts onto time in the accumulator model. The
other is an additional criterion variability parameter that is required because, like the
accumulator model, the model requires two criterion variability parameters to represent speed
versus accuracy conditions. The Poisson counter model is not successful with the data from
either Experiment 1 or 2 because it does not produce distributions as skewed as the data and
it produces predictions for error RTs that are too long.

The ability of the diffusion models to capture data for both speed and accuracy conditions while
holding across-trial variability constant in all model components (starting point, drift rate, and
the nondecision components of processing) is an appreciable parsimony advantage. It means
that the relative speed of correct and error RTs (which can change from speed to accuracy
instructions) and the shapes of RT distributions for speed and accuracy instructions are all
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accounted for with no change in parameters other than changes in the decision criteria. In
contrast, with two levels of speed versus accuracy instructions, the accumulator and Poisson
models need two additional criterion variability parameters in addition to the different decision
criteria. Additional levels of speed versus accuracy instructions would each require still another
variability parameter.

For Experiment 3, there were also similar numbers of free parameters for the four models. The
Wiener diffusion model accounted well for the data with nine drift rate parameters (three levels
of word frequency for both old and new test words and old test words studied once or four
times): a single boundary separation parameter; five starting point parameters (one for each
level of the proportion of old to new test words); and the same set of drift variability, starting
point variability, mean Ter, and variability in Ter parameters as were used in Experiments 1
and 2. We let the drift criterion parameter vary freely, but good fits were obtained with only
one value of this parameter for all the levels of proportion of old–new test words; so, the total
number of free parameters is M = 9. The OU model also fit the data well with its additional
parameter β set to 4 but with four additional drift criteria parameters (M = 23).

The accumulator model produced fits a little worse than the Wiener diffusion model but with
M = 24 parameters. The fits were qualitatively comparable with those presented in Figure 8.
The Poisson counter model produced fits that were a little poorer than those shown in Figure
8, with the main discrepancy in the shape of the RT distributions: The Poisson counter model
produced predictions that were more symmetric than the data. This model too had M = 24
parameters.

Across the three experiments, when there was no variability in Ter, the two counter models
performed better than the diffusion models in capturing the changes in the leading edge of the
RT distribution, whereas the diffusion models were better at capturing distribution shape,
especially in the extreme tails. The diffusion models benefited more than the two counter
models by the introduction of variability in Ter, mainly through an improved ability to capture
changes in the leading edge of the distribution. As discussed previously, the initial rise of the
leading edge, which is typically steeper for diffusion models than for counter models, is reduced
by the introduction of variability in Ter For diffusion models, this reduction in the initial rise
usually brings the models into better alignment with the data. However, from a theoretical
perspective, some variability in Ter is necessary, and the diffusion models benefit more than
the counter models.

Model Mimicry
In the preceding sections, we evaluated the models in terms of their abilities to explain
experimental data. The converse of this is to examine how constrained the models are; that is,
can they fit any pattern of data at all? Of course, we cannot examine the models’ fits to an
infinite number of possible configurations of data. Instead, to provide a modest examination
of flexibility, we generated predictions from one model, using the best-fitting parameter values
from the fits to the data from the experiments, and then attempted to fit the predicted data with
a second model. For these fits, we set variability in Ter to zero and used the WLS fitting method
because it is robust to variability in the leading edge of the RT distribution.

As might be expected, we found that the OU with moderate decay and the Wiener diffusion
model mimicked each other, that the Wiener diffusion model was unable to mimic the Poisson
counter model or the accumulator model for some patterns of predictions, and that the
accumulator model was more flexible in mimicking the Poisson counter model than vice versa.
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Mimicking Between the OU and Wiener Diffusion Models
Advocates of the OU model have sometimes argued for its superiority over the Wiener model
on two grounds: first, that the OU model’s decay term imposes an upper bound on the
accumulation of evidence and second, that the decay term makes the OU model more neurally
plausible (e.g., Usher & McClelland, 2001). However, Ratcliff’s Wiener model also has an
upper bound on the accumulation of evidence because of across-trial variability in drift rate,
as described above. With respect to neural plausibility, single-cell recordings show that neural
firing rates saturate as a function of stimulus intensity and that the rates decrease when the
stimulus is removed. Both of these properties have been thought better represented by the
dynamics of the OU process.

Our results provide an alternative, empirical perspective on the decay issue. The issues with
which we were concerned are whether, and to what extent, decay has a measurable influence
in tasks requiring simple judgments about suprathreshold stimuli. The fits already presented
and those to follow show that it is difficult to distinguish between the Wiener and OU models
in typical data. When the decay term is large (β = 8 in our parameterization), so that the
asymptote of the average sample paths falls inside the response boundaries, the two models
are distinguishable, and the OU model’s predictions are qualitatively inconsistent with the data.
But when decay is moderate (β = 4), so that the asymptote of the average sample paths falls
outside the correct response boundary, the quantitative and qualitative properties of the models
are similar. When the decay term is allowed to vary freely in fitting the model to data, the best
fits are obtained when it is 0. These findings lead us to conclude that the effects of decay, to
the extent that it is present, are at most moderate. Further, small to moderate amounts of decay
are virtually indistinguishable empirically from the absence of decay.

To amplify this point, Figure 9 (top left panel) shows fits of the Wiener model to predictions
from the OU model with β = 4 for the data from Experiment 1. The two sets of QPFs coincide
almost exactly (SSE = 14.2). Overall, the two models exhibit the same qualitative features, and
small differences in chi-square values notwithstanding, a decisive conclusion that one model
fits a set of experimental data successfully and the other model fails is unlikely.

Mimicking Between the Wiener Diffusion and the Accumulator and Poisson Counter Models
The question addressed in this section is whether the Wiener diffusion model is so flexible that
it can fit predictions from other models, even when those predictions do not closely resemble
empirical data. Ratcliff (2002) showed that the Wiener diffusion model could not fit a number
of artificially constructed data sets, data with distributions that were more skewed or less
skewed than typical empirical distributions, and data for which the leading edges of the RT
distributions changed much more across conditions than is found in empirical data. He
concluded that the model is well constrained.

Figure 9 (top right panel) shows that the Wiener model fails to fit predictions generated from
the Poisson counter model with geometrically distributed criteria (SSE = 143.7) using the best-
fitting parameters for the data from Experiment 1. The discrepancies were large, including 30
ms in the .1 quantiles and 150 ms in the .9 quantiles, enough to discriminate between the two
models. Although not presented here, the discrepancies between the Wiener model and the
Poisson counter model with rectangularly distributed criteria were even greater because the
predicted distributions with rectangularly distributed criteria are much more symmetric than
with geometrically distributed criteria.

The Wiener model fit the predictions of the accumulator with exponential criteria well (SSE =
35.3). This is unsurprising because both models fit the data from Experiment 1 reasonably well.
There are discrepancies of up to 70 ms in the .9 quantile RTs in the accuracy condition, with
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the Wiener model predicting higher values. Apart from these few extremes, the two models
cannot be distinguished using the data from Experiment 1. The variability in the data is greater
than the differences between the predictions from the two models.

The more interesting case is the one in which the accumulator model with rectangularly
distributed criteria did not fit the data from Experiment 1 well. The fit of the Wiener model to
the accumulator was not as good as for the exponential case (SSE = 59.8 vs. 35.3). There were
discrepancies of up to 100 ms in the .9 quantiles and systematic discrepancies in the remaining
quantiles for error responses in the accuracy conditions. These differences are large enough to
allow discrimination on the basis of relative goodness of fit.

Generally, the Wiener model is unable to produce the flat QPFs that are characteristic of the
Poisson counter model or the somewhat less flat QPFs that are obtained for the accumulator
with normal or rectangular distributions of criteria. This lack of flexibility in the Wiener model
is consistent with the results of the simulations by Ratcliff (2002). It shows that the success of
diffusion models in fitting experimental data cannot be attributed simply to their flexibility.
Rather, their range of predictions, like that of counter models, has identifiable bounds, and only
data that fall within them can be fit successfully.

Mimicking Between the Accumulator and Poisson Counter Models
The fit of the accumulator with exponentially distributed criterion values to the predictions of
the Poisson counter model with geometrically distributed criterion values was better than was
the converse (SSE = 31.6 vs. 42.6; see Figure 9). In the latter case, there were discrepancies of
up to 70 ms in the .9 quantile for the accuracy condition and up to 20 ms in the .1 quantile for
the speed condition. With rectangular distributions of criteria, the accumulator also fit the
predictions of the Poisson counter model fairly well (SSE = 25.5). In contrast, the Poisson
counter model with rectangular criteria fit the predictions of the accumulator with rectangular
criteria poorly (SSE = 121.6), with discrepancies in the .1 quantile of up to 30 ms and in the .
9 quantile of up to 120 ms. The accumulator with exponential criteria fit the predictions of the
Poisson counter model with rectangular criteria well (SSE = 40.7).

The conclusion we draw from these comparisons is that the accumulator and Poisson counter
models mimic each other closely within the regions of the parameter spaces that are used to
account for data like those from Experiment 1. However, the accumulator appears to be more
flexible than the Poisson counter because it can accommodate a wider range of patterns of data.
The data from Experiment 1 are representative of data from a large number of paradigms, and
so, the conclusion about model mimicry has wide generality.

Neurally Inspired Accumulator Models
We use the term neurally inspired to refer to a class of recent models that combine the attributes
of counter models and diffusion models. They are neurally inspired in that they have features,
such as a limit on evidence or activation in the accumulators and inhibition between
accumulators, that have been argued to be aspects of neural processing. They potentially offer
the capability of relating behavioral data and neural data (Gold & Shadlen, 2001; Ratcliff,
Cherian, & Segraves, 2003; Roitman & Shadlen, 2002; Smith & Ratcliff, in press).

All three of the models we discuss are like counter models in that evidence is accumulated in
separate counters for the two responses, but the accumulation processes themselves are
modeled as diffusion processes. In the first of the models, developed by Usher and McClelland
(2001) and termed by them the leaky competing accumulator model (see Figure 10 and the
Appendix), evidence is continuously distributed and accumulates in continuous time, just as
in other diffusion process models. The rate at which evidence accumulates in each accumulator,
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that is, the equivalent of drift rate of the diffusion process, is a combination of the quality of
the information from the stimulus and two other components: One is decay in the amount of
accumulated evidence, with decay growing as the amount of evidence in the counter grows,
and the other is inhibition from the other counter, with the amount of inhibition growing as the
amount of evidence in the other counter grows. If inhibition is large, the model exhibits features
similar to the random walk and diffusion models because an increase in evidence for one
alternative produces a decrease in evidence for the other alternative. In its assumption of cross-
coupling between counters, the model also resembles an earlier, discrete-time model proposed
by Heuer (1987). Variability in the diffusion processes is represented by Gaussian noise as in
the diffusion models, and decay in the amounts of evidence in the counters corresponds to
decay in the OU model.

The second model, the leaky accumulator, is the same as the first except that there is no
inhibition between the counters (Smith, 2000). The third model also does not have inhibition,
and it has a different decision rule. Instead of a decision being made when one of the counters
attains a criterial amount of evidence, a decision is made when the evidence in one counter
exceeds that in the other by a criterial amount (i.e., a relative rather than absolute stopping
rule). For this reason, we termed it the leaky accumulator with relative criteria. For all three
models, if the amount of evidence in a counter would become negative because of negative
samples of noise or high inhibition from the other counter, it is instead set to zero (a form of
rectifying nonlinearity; cf. Smith, 2000).

We fit all three models to the data from Experiments 1 and 2. As we show later, all three fit
the data from Experiment 1 quite well. For the data from Experiment 2, two of the models fit
reasonably well, but the leaky accumulator model (the one with an absolute stopping rule and
no competition) did not produce error responses faster than correct responses.

In Usher and McClelland’s (2001) article, the initial presentation of the leaky competing
accumulator model had no across-trial variability in any of its components. Later in the article,
they added across-trial variability in the starting points of the counters to accommodate fast
errors, and we included this in all three models. In the standard accumulator model, variability
in the starting points of the counters would be equivalent to variability in the response criterion
values. However, in the leaky competing accumulator model, they are not the same because
an increased starting point in one counter produces inhibition in the other counter whereas a
reduced response criterion does not. Here, we present only data from models with across-trial
variability in starting points.

Another source of across-trial variability for the other models considered in this article is
variability in drift or accrual rate. Usher and McClelland (2001) showed that the leaky
competing accumulator model does not need this source of variability to produce error RTs
slower than correct RTs. They acknowledged that for some paradigms, variability in drift
should be included because it is implausible to assume that each stimulus in an experimental
condition provides exactly the same information to the decision process. For the leaky
competing accumulator model, we followed Usher and McClelland and simulated the model
without across-trial variability in drift.

For the other two models, the leaky accumulator and the leaky accumulator with relative
criteria, we did include variability in drift rate across trials. We modeled variability by selecting
a drift rate value from a normal distribution for which the standard deviation was a parameter
of the model; the value was truncated to 0 if the value selected was below 0 and to 1 if the
value selected was above 1. In addition to the components of the decision process, across-trial
variability in the nondecision components of processing was assumed. Just as for the other
models, the distribution was uniform with mean Ter and range st.

Ratcliff and Smith Page 28

Psychol Rev. Author manuscript; available in PMC 2006 April 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



The traditional models have been amenable to exact numerical solution as detailed in the
Appendix, but no exact solutions are available for the Usher and McClelland (2001) model or
the leaky accumulator with relative criteria, and they must be evaluated by simulation. We also
evaluated the leaky accumulator by simulation because it involved a change in the fitting
program of only two lines of code.

Usher and McClelland (2001) used a metropolis algorithm for fitting simulations of the model
to data. In essence, this method generates random sets of parameter values and evaluates the
function at each of the sets of parameter values. Parameters that yield the better values of the
fit statistic are retained; those that yield poor values are discarded. The range of the set of
randomly chosen candidate parameter values is reduced on each iteration of the algorithm until
a stable set of values is obtained. For all three accumulator models, we used the SIMPLEX
algorithm, which can be set up to operate similarly to metropolis. Both methods are known to
be robust with poorly behaved objective functions like those generated by simulations of a
model with components that randomly vary across trials. In fitting each of the models to data,
all the parameters were free to vary, but as for the traditional models evaluated above, only
drift rate can vary between experimental conditions and only the decision criteria can vary
between speed and accuracy instructions. However, the resulting fits, regardless of the method
used, should be viewed as approximations rather than exact fits because they are produced with
simulations and can get only as close to the values of the parameters that provide the best fits
as error in the simulated predictions allows.3

For Experiment 1, all three models fit the data about as well as did the Wiener diffusion model,
the OU model with decay β = 4, and the accumulator model with exponentially distributed
criteria (see Figure 10), with chi-square values of 15.68, 12.78, and 13.96 (and BIC values of
8,210, 8,190, and 8,210) for the leaky competing accumulator, the leaky accumulator, and the
leaky accumulator with relative criteria, respectively (M = 12). The RT distributions have the
appropriate right skew, and the QPFs show error responses slower than correct responses with
both speed and accuracy instructions just as the data do. The degree of asymmetry in the QPF
is controlled by the amount of inhibition in the leaky competing accumulator model and by the
amount of variability in drift across trials in the other two models, with larger values leading
to slower errors. The size of inhibition in the leaky competing accumulator was 3.49, which is
quite large and leads to a large amount of suppression (the counter that starts higher usually
wins). The effects of speed versus accuracy instructions are the result of changes in the values
of the response criteria.

For Experiment 2, the leaky competing accumulator and the leaky accumulator with a relative
criteria were able to produce errors faster than correct responses with speed instructions and
slower than correct responses with accuracy instructions. However, the models could produce
changes in the leading edges of the RT distributions (i.e., the .1 quantiles) for word responses
across the three word frequency conditions that were only about half those observed in the
data, making the models’ fit poorer than the fits of the Wiener diffusion model and the
accumulator model with exponentially distributed criterion values (X2 for the leaky competing
accumulator and the leaky accumulator with relative criteria were 36.11 and 38.49,
respectively, and the BIC values were 7,923 and 7,910, respectively). The leaky accumulator
did not produce errors faster than correct responses, although the chi-square value was in the
same range as for the other two models (X2 = 37.61 and BIC = 7,928).4

3In principle, a model with coupled processes may be approximated using a finite-state Markov chain model, using an approach similar
to that pioneered by Pike (1966) and used more recently by Busemeyer and Townsend (1993) and Diederich (1995, 1997). However, as
there have not yet been any studies published applying these methods to multivariate diffusion models of RT, we chose to follow Usher
and McClelland (2001) and investigate this model by simulation.
4We recently found that the leaky accumulator can produce errors faster than correct responses if starting point variability is large. We
obtained better fits by assuming starting point variability with negatively correlated starting points (X2 = 26.53).
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Summary
Although the leaky competing accumulator model fits the data from our experiments
reasonably well, there are several aspects of that model that deserve further consideration. One
is the use of inhibition between the counters as the mechanism by which error responses that
are slower than correct responses are produced. The problem with explaining slow errors with
inhibition between counters is that the inhibition would ordinarily be thought to be an
architectural feature of the cognitive system carrying out the task, rather than a feature that
depends on stimulus materials or instructional set. However, as the data presented here show,
the relative speeds of correct and error responses are not constant across experimental settings
but instead vary with stimuli and instructions. For a purely inhibition-based account to be
plausible, it must explain why inhibition is high for some stimuli and instruction sets but not
others and show how this explanation leads to the relative speeds of correct and error responses
that are obtained in experimental data. If the model is augmented by variability in drift rate
across trials (Usher & McClelland, 2001), inhibition and variability in drift rate across trials
will covary. Therefore, it will be difficult to identify what proportion of a slow down in error
RTs relative to correct response RTs is due to each factor.

A second issue for the leaky competing accumulator model also concerns inhibition. Inhibition
between the two counters serves to make the behavior of the Usher and McClelland (2001)
model sensitive to initial conditions, especially when inhibition is large, as it is in the fits to
the data from Experiments 1 and 2. Also, when inhibition is large, the distribution of the
difference in amount of evidence between the two counters becomes bimodal (e.g., Usher &
McClelland, 2001, Figure 5, bottom right panel). Underlying this bimodality in the difference
are bimodal distributions of evidence in each counter individually: If one counter has a lot of
evidence, the second counter has little evidence, and inhibition is large, the evidence in the
second counter is suppressed to zero. Thus, for some proportion of trials, one counter is active
and the other is not, and vice versa for the other trials.

For the parameter values we used to produce the fits for Experiment 1, inhibition was large,
and the behavior of the model was strongly dependent on its initial conditions. On the majority
of simulated trials, the counter that had the largest amount of evidence initially was the counter
that ultimately won. If one counter has moderately higher evidence than the other (because of
the initial few values of random noise, ξ1 and ξ2 in the equations in the Appendix), then the
inhibitory coupling between the counters suppresses evidence in the counter with the lower
amount of evidence, thus amplifying the effects of initial noise. This feature of the model’s
dynamics is somewhat at odds with the presumed biological function of sequential sampling,
which is to improve reliability of the decision process by averaging out the effects of processing
noise.

Growth of Accuracy
The leaky competing accumulator model, like the OU model without across-trial variability in
drift, is able to explain data from response signal experiments. Both models assume that there
are no response boundaries for the response signal task, that is, processing is time limited rather
than information limited, and they predict a roughly exponential growth of accuracy to an
asymptote that is typical of response signal data (see Busemeyer & Townsend, 1992; Usher &
McClelland, 2001, Figure 5). Usher and McClelland (2001) argued that the shape of the time–
accuracy function in response signal experiments supports an OU model as an approximation
to their leaky competing accumulator model, and they argued against the Wiener diffusion
model with variability in drift across trials (applied to response signal data with the assumption
of time- not information-limited processing; Ratcliff, 1988) because the OU model fits their
data better. However, the leaky competing accumulator model and the OU model without
across-trial variability in drift, unlike the Wiener diffusion model with across-trial variability
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in drift, have the problem that they allow accuracy to grow without bound in standard RT tasks
(see also Busemeyer & Townsend, 1993).

We illustrate the problem with an extremely simplified version of the OU model (without
across-trial variability in drift): The accumulation of evidence is assumed to take place at
discrete, very widely spaced, time steps. The model produces distributions of amounts of
accumulated evidence across trials that are normal at each step. The top panel of Figure 11
shows two distributions from the OU model at each of three time steps, one distribution for
processes for which the top response is correct and one for processes for which the bottom
response is correct. For illustrative purposes, the full normal distributions are shown as they
would be without response boundaries. We have drawn in boundaries, however, because they
are necessary to represent a standard RT paradigm. In reality, processes that hit boundaries
terminate, thus reducing the number of decision processes remaining in the distribution for the
next time step (see Ratcliff, 1988, Figures 2 and 3). In the figure (top panel), the curved lines
represent the means of the processes for which the top boundary is the correct response and
the processes for which the bottom boundary is the correct response. The processes reach
asymptote after the second time step and before the third.

To demonstrate how accuracy can grow without bound, suppose the first time step occurs after
the decision process has asymptoted, that is, at a point at which the two distributions are no
longer changing. The bottom three panels of Figure 11 show three cases, each with the same
normal distributions (with SD = 1) but with increasingly wider boundary positions. The
boundary positions are at −0.5 and 0.5 in the first case, −1.5 and 1.5 in the second, and − 2.5
and 2.5 in the third (these positions are arbitrarily chosen; the conclusion would be the same
with any increasing range of boundary positions).

Consider the first case with boundary positions −0.5 and 0.5. At the first time step, if the
accumulated amount of evidence is above the upper criterion or below the lower criterion, a
response is made; the proportions of hits and false alarms are .5 and .1586, respectively. The
total proportion of processes terminating is .6586, leaving .3413 of the processes to proceed
to the next time step. At the second time step, the proportions of hits and false alarms are .5
× .3413 and .1586 × .3413, and only .1164 of the processes proceed to the next step. The
sequence of time steps gives a geometric series, with the overall hit rate .5/(.5 + .1586) = .758
and the overall false alarm rate .242, resulting in d′ = 1.40. The mean number of steps to
termination is 1/(1 − .3413) = 1.5. For the next two panels, d′ is 2.30 and 3.18 with criteria at
−1.5 and 1.5 and −2.5 and 2.5, with number of steps to termination 5.5 and 43.7, respectively.

To show that the OU model behaves as shown in this illustration, we generated predictions
from an OU model with s = 1, β = 4, and υ = .5, with boundary separation increasing from 0.5
to 2.0 in steps of .5. Accuracy values were .643, .835, .943, and .980; that is, they grew in the
way illustrated above.

This illustration shows how accuracy increases without bound as subjects widen their response
criteria. This is accompanied by a dramatic increase in RT, as indicated by the increase in the
mean number of steps to response. The simplifying assumptions that were made for the
purposes of the illustration do not qualify the conclusion, for either the OU model without
variability in drift across trials or the Usher and McClelland (2001) model: For both models,
in a standard RT paradigm, subjects can be conservative enough in their criterion settings to
achieve arbitrarily high values of accuracy. For example, if accurate performance is strongly
stressed in instructions, subjects should be able to make their probability of an accurate
response approach 1 in any condition in any experiment.

In contrast, in the Wiener diffusion model, slow errors and an asymptotic limit on accuracy
come from across-trial variability in drift rate. The assumption of across-trial variability in drift
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rate arises naturally from the assumption that nominally identical members of a stimulus set
are not always processed identically. This is a widely accepted assumption, forming the
cornerstone of such classical methods as Thurstonian (Thurstone, 1927) scaling and signal
detection theory.

Mathematically, the Usher and McClelland (2001) model is a member of the class of diffusion
models, although because of its assumption of coupled processes (inhibition between
accumulators), it differs from existing models in important respects. The leaky accumulator
with a relative criterion is more consistent with standard models, but it does require
communication between the processes to determine whether evidence in one counter exceeds
evidence in the other by a criterial amount. We found that both these models can mimic the
Wiener and OU diffusion models, just as they mimic each other, but at this point, the Usher
and McClel-land model has not been applied widely enough for us to be able to determine
whether the models have the ability to fit all of the data that the Wiener diffusion model can
and at the same time fail to fit data that never appear empirically. In fact, preliminary
investigations have shown that the Usher and McClelland model can mimic predictions from
the Poisson counter model that are not obtained empirically, namely, symmetric RT
distributions and slow errors, but not the other patterns in Ratcliff (2002). However, further
systematic and comprehensive studies are needed to fully explore these new models.

Van Zandt et al. (2000) Comparison of the Poisson Counter and Wiener
Diffusion Models

Van Zandt et al. (2000) conducted three experiments in which subjects made same– different
judgments about pairs of letters. In two of the experiments, subjects were asked to respond
before one of three deadlines, and the deadline time was varied between blocks of trials. The
third experiment was a standard RT experiment, and the proportion of same versus different
pairs was varied between blocks. For all three experiments, Van Zandt et al. concluded that
the Poisson counter model provided a better description of the decision process than did the
Wiener diffusion model. Here, we argue that the assumptions they made in fitting the deadline
experiments were not the most appropriate assumptions for fitting deadline data, and we present
new fits of the Wiener diffusion model for their third experiment to show that the model can
account for the data satisfactorily.

The procedure Van Zandt et al. (2000) used was similar to a deadline procedure used in a two-
choice letter identification experiment by Ratcliff and Rouder (2000, Experiment 2). Ratcliff
and Rouder applied the Wiener diffusion model, assuming that the decision process is time
controlled, not information controlled. With time control, responses are made when a criterion
time is reached, unlike the usual information-controlled process for which responses are made
when the accumulated evidence reaches a response boundary. Van Zandt et al. assumed the
usual information-controlled process. With time control, when the time criterion is reached,
one response is made if the total amount of accumulated evidence is above the starting point,
and the other response is made if it is below the starting point (Ratcliff & Rouder, 2000). It
would be possible to have both types of control in the Wiener diffusion model for application
to deadline data, both a time and information control, but Ratcliff (1988) showed that a model
with only time control can mimic a model with both types in situations in which there is a
progressive growth of accuracy as a function of time.

One consequence of the use of deadlines in Ratcliff and Rouder’s (2000) experiment was that
the RT distributions were relatively symmetric, except at the longest deadline, with the RT
distributions centering on times slightly longer than the deadline times. Also, as would be
expected, the distributions shifted as a function of deadline, with little or no change in skewness
or standard deviation. When diffusion models are combined with information-controlled
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processing, they do not predict symmetric RT distributions; such distributions are more
consistent with accumulator and Poisson counter models, as pointed out earlier in this article.
Thus, it seems likely that the good fits Van Zandt et al. (2000) found for the Poisson counter
model came about because RT distributions were relatively symmetric with the deadline
procedure, and it is also likely that the Wiener diffusion model would fit well with time-
controlled processing.

Van Zandt et al.’s (2000) Experiment 2 used a standard RT procedure. The proportion of trials
for which “same” was the correct response was manipulated between blocks of trials: It was .
20, .50, or .80. We fit the Wiener diffusion model to the data from the 3 subjects in this
experiment. Van Zandt et al.’s results suggested larger than typical variability in the data; so,
we used the WLS method, which is more robust than the chi-square method (see Ratcliff &
Tuerlinckx, 2002). Van Zandt et al. fit the Wiener diffusion model under the assumption that
drift rates, boundary separation, and starting point were free to vary across probability
conditions. In our fits, we made slightly different assumptions. Following Ratcliff (1985),
Ratcliff et al. (1999), and Experiment 3 here, we kept boundary separation and the difference
between drift rates for same and different stimuli constant across proportion conditions and
allowed drift criterion and starting point to vary. Allowing drift criterion to vary meant that the
difference between the drift rates for same and different stimuli remained constant across
conditions, but the zero point varied. In addition, unlike Van Zandt et al., we assumed
variability in starting point across trials, sz.

The results are presented in Figure 12, plotted in a form designed to facilitate comparison with
the results of Van Zandt et al. (2000). The fits of the model are reasonably good, especially in
comparison to those shown in Van Zandt et al.’s Figures 9 and 11. Generally, the observed and
predicted accuracy values and mean RTs are close, although the differences in mean error RTs
are somewhat variable. More important, the data and predictions fall around a line of unity
slope, which means that there are no systematic deviations between theory and data. This
contrasts with Van Zandt et al.’s Figure 11, which showed extremely poor fits for accuracy,
good fits for correct RTs, and poor fits for error RTs. The parameter values are shown in Table
8.

There are several possible reasons why we obtained good fits of the Wiener diffusion model
to Van Zandt et al.’s (2000) Experiment 2 when they did not. One concerns estimates of Ter
and choice of fitting method. Their estimates of Ter from the chi-square method were between
210 and 270 ms, whereas our estimates from the WLS method are between 330 and 400 ms.
As noted above, the chi-square method is insensitive to a few short (outlier) RTs, but if there
are enough short RTs to affect the lowest quantile RT used in fitting (the .1 quantile in our
fits), the chi-square method is extremely sensitive and can produce distortions in the fit and
parameter values. For chi-square to be well-defined, Ter must be estimated to be smaller than
the smallest empirical quantile across all experimental conditions. If there is extraneous
variability in the leading edge of the RT distribution, due either to psychological processes not
represented in the model or to short outlier RTs, then the chi-square method will set Ter too
low, and in doing so, it will distort the fit of the model to the rest of the data. In contrast, the
WLS fit statistic is more robust to the presence of outliers. Some of the RTs in the .8 probability
conditions in Van Zandt et al.’s data are between 200 and 300 ms, which suggests that at least
some responses are fast outliers and some proportion comes from variability in Ter The presence
of a small proportion of fast outliers and/or extraneous variability in Van Zandt et al.’s data is
likely responsible for their poor fit of the Wiener diffusion model to the data from their
Experiment 2.
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General Discussion
Sequential sampling models are attractive models for simple two-choice decisions because
they predict the behavior of accuracy as well as correct and error RTs and their distributions.
They provide a way to understand both the speed and the accuracy of performance in a common
theoretical framework. In this article, we described comparative fits of sequential sampling
models to three sets of experimental data. We also examined whether the models can mimic
each other, which of the models have the most flexibility, and whether the models can fit
patterns of data that are not obtained experimentally.

The four traditional models we investigated in detail were the Wiener diffusion model, the OU
diffusion model, the accumulator model, and the Poisson counter model. For each model,
across-trial variability in the drift or accrual rate, in the boundary positions or the starting point
of the decision process, and in the nondecision component of RT were assumed. Three neurally
inspired models were also examined, the Usher and McClelland (2001) leaky competing
accumulator model and two variants, the leaky accumulator and the leaky accumulator with
relative criteria. Across-trial variability in some components of processing was also assumed
for these models.

For the Wiener and OU diffusion models, results show that the models mimic each other when
decay in the OU model is moderate (β = 4), and the best fits of the OU model are obtained
when there is no decay at all, that is, when the OU model becomes the Wiener model. The
models give a good account of the data from all three of the experiments presented here. When
stimulus difficulty is manipulated in such a way that subjects cannot change their response
criteria or drift criterion according to the type of item being tested, the models have only one
free parameter, the rate of accumulation of evidence. Changes in this parameter account for
the effects of difficulty on accuracy, the leading edges and skews of the RT distributions, and
the relationship between RTs for correct and error responses. The models also give a good
account of the effects of between-blocks manipulations, manipulations across which the
response criteria and the drift criterion can vary. Subjects can change their criteria to adapt to
speed or accuracy instructions or to changing proportions of one kind of test item versus the
other.

The OU model has sometimes been argued to be more plausible than the Wiener diffusion
model because the decay component of the OU model has been thought to have neural
plausibility. However, the best fits of the OU model to the data from the experiments presented
here were obtained when the decay parameter was zero, which suggests that the neural
plausibility argument should be revisited. It may be that aggregating over populations of
neurons averages out decay in these paradigms, or it may be that the standard OU model is not
a plausible model.

Usher and McClelland’s (2001) leaky competing accumulator model can also explain the data
from all three experiments. It has more flexibility than the Wiener and OU diffusion models,
in part because the rate of accumulation of evidence is determined by three factors (information
from the stimulus, decay, and inhibition from the competing counter). The best fits of the model
are obtained when decay is moderate and inhibition is large, both of which lead the model to
behave in ways similar to the Wiener model and the OU model with moderate decay. The leaky
accumulator with relative criteria fit the data about as well as the leaky competing accumulator,
but the leaky accumulator did not produce fast errors (but see Footnote 4).

Both the leaky competing accumulator model and the OU diffusion model without across-trial
variability in drift rate have the problem that subjects can make accuracy arbitrarily high by
appropriately setting their decision criteria. The models have this problem because the
distribution of sample paths asymptotes in a normal or approximately normal distribution.
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Because the tails of the normal distribution fall off quickly, by setting the response criteria
farther and farther from the starting point, a smaller and smaller proportion of errors is made
relative to correct responses, and so, accuracy becomes higher and higher. The Wiener diffusion
model with variability in drift across trials avoids this problem because there is always some
proportion of processes in the lower tail of the distribution of drift rates that has negative drift
rates. These processes more consistently hit the error boundary as the boundaries are moved
farther apart.

The accumulator model with exponentially distributed criteria fails on only one major aspect
of the data, and that is that it cannot predict error responses faster than correct responses. This
pattern was found in Experiment 2 and also is typically observed in experiments from the choice
RT paradigm. In the diffusion models, the slow errors that come from across-trial variability
in accumulation rate can be offset by fast errors that come from across-trial variability in the
starting point. However, in the accumulator model, slow errors arise from the underlying
structure of the model, and they cannot be offset by across-trial variability in any component
of the model.

To fit RT distributions, the accumulator model requires the assumption that the values of the
response criteria vary exponentially across trials. Under the assumption that the distributions
of criteria become more spread as decision criteria are increased, the model’s predicted RT
distributions become more skewed instead of becoming more symmetric as they would without
this assumption of increased spread in the criteria. The distributions skew because the tails of
the RT distributions tend to follow the tails of the exponentially distributed criteria. In contrast,
predictions from the Wiener diffusion model and the OU diffusion model are insensitive to the
shape of the distribution of variability in starting points.

None of the variants of the Poisson counter model that we considered are able to produce RT
distributions that match empirical data, nor are they able to produce error responses faster than
correct responses. It may be possible to obtain better fits for this model by relaxing the
constraint that overall accrual rate (α + β) stays constant while the relative rates for the two
counters vary. However, we could see no principled way to do this and still retain the
assumption that the only model parameters that should vary within a block of trials are those
that reflect the difficulty of the stimulus.

We attempted to ensure that the conclusions outlined here generalize beyond the data sets we
investigated by choosing the data sets that are widely representative of two-choice paradigms.
The data from Experiment 1 (dot separation) are similar to those obtained with other signal
detection tasks (e.g., brightness discrimination, numerosity judgments, red– green
discrimination, and same– different judgments of brightness; Ratcliff & Rouder, 1998; Ratcliff
et al., 1999). The data are also similar to those obtained with a letter discrimination task in
which subjects identify backward masked letters. We fit the same four models as in this article
to data from this latter task (data from the young subjects in Thapar et al., 2003) and came to
the same conclusions as presented here. Experiment 2 provided data representative of lexical
decision experiments, and the finding of errors faster than correct responses with speed
instructions is representative of data from many choice RT experiments. Also, for both
Experiments 1 and 2, there were large changes in the data as a function of speed versus accuracy
instructions, again representative of the effects of such instructions in many experiments.
Finally, Experiment 3 provided recognition memory data and a manipulation of bias toward
one or the other of the two responses.

The work reported here cannot rule out all versions of models of the unsuccessful types. We
have not considered all possible assumptions about how processing components vary, either
between or within conditions, and we have restricted our evaluations to stationary models, that
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is, models in which both the rate of accumulation of information from the stimulus and the
response criteria are constant over time. There may be principled ways to relax these
constraints, but new assumptions would need to be motivated theoretically.

A major theoretical assumption that underlies all of the work reported here is the assumption
of variability across trials in components of processing. Variability of this kind is plausible
theoretically and supported experimentally. Indeed, in our view, it is a necessary part of any
complete theory of simple decisions. All existing sequential sampling models require some
variability of this kind if they are to fit all of the relevant features of experimental data. With
across-trial variability in model components, the Wiener and OU diffusion models capture a
large number of degrees of freedom in the experimental data with relatively few parameters
and with considerable invariance of parameters across experimental manipulations.

A particular strength of the diffusion models is that they predict RT distributions that change
in shape with manipulations of difficulty and speed–accuracy instructions in the same way as
the data do. For example, the data show that the difficulty of the decisions has only a small
effect on the location of the leading edge of the distribution, with most of the change in mean
RT across experimental conditions being due to spread in the tail. Conversely, manipulation
of speed–accuracy instructions has a large effect on the leading edge of the distribution (about
half the size of the total change in mean RT). These behaviors are captured by the diffusion
models with considerable economy of parameters. The effects of speed–accuracy instructions
are modeled by changes in boundary separation alone; changes in difficulty are modeled by
changes in drift rate alone. It is important to note that the Wiener and OU diffusion models
cannot be modified to produce RT distributions that behave differently from those presented
here, unlike the Poisson counter and accumulator models. For example, the models could not
handle data in which stimulus difficulty produced a shift in the leading edge of the RT
distribution without an accompanying change in skewness (e.g., Ratcliff, 2002).

In all of the successful models, there is interaction between the accumulating amounts of
evidence for the two-choice alternatives. In the Wiener and OU diffusion models and the leaky
accumulator with relative criteria, evidence for one alternative is evidence against the other
alternative. In the leaky competing accumulator, the more evidence there is for one alternative,
the more it inhibits evidence for the other alternative. In terms of neural populations, these
behavioral models suggest that competing populations either inhibit each other or communicate
so that relative activity can be monitored (but see Footnote 4).

It is clear that current versions of the Wiener and OU diffusion models, the leaky competing
accumulator model, and the leaky accumulator with relative criteria can fit experimental data
that are rich and systematic. In fact, it is remarkable that all these models do so well. However,
we have also shown that various models of the sequential sampling class can be discriminated
from each other on qualitative grounds and that it is possible to understand why particular
models fail and under what conditions. The research we have reported here provides a summary
of the current state of modeling simple two-choice decisions and also provides a starting point
for further evaluation of sequential sampling models.
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Appendix The Mathematical Models
This appendix describes the mathematical models that were evaluated in the text. The notation
used to present the models is as follows. At some time after presentation of the stimulus, one
of two responses, Ra or Rb, is made with probability P(a) or P(b), respectively, and response
time T. In sequential sampling models, T is identified with the time at which the accumulated
stimulus information first exceeds a response criterion or absorbing barrier. This time is
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referred to as the first passage time of the accumulation process. The predicted distribution of
decision times in the models is the distribution of first passage times. First passage time
probability density functions are denoted by g(t), and (cumulative) distribution functions by
G(t). All of the expressions for density functions given here are for joint density functions.
That is, they are functions of the form gi(t), i = a, b, where

gi(t)h ≈ P Ri & t ≤ T < t + h ,

for small h. (This expression becomes exact in the limit, as h goes to zero.) Conditional density
functions are obtained by dividing the functions gi(t) by their associated response probabilities,
P(i), to make the mass in each density function equal to unity. The marginal density function,
g(t), which describes the distribution of T, irrespective of the response, is just the sum of the
joint densities:

g(t) = ga(t) + gb(t).

Expressed in terms of conditional densities, this expression becomes

g(t) = P(a)g(t | Ra) + P(b)g(t | Rb),

where g(t|Ri), i = a, b is the conditional density of response Ri. Because a response is always
made in finite time in all of the models considered here, it is always the case that P(a) + P(b)
=1 (Cox & Miller, 1965).

Diffusion Process Models
A diffusion process is continuous-time Markov process, X(t), whose sample paths are also
continuous. Diffusion processes may arise either as the solutions of stochastic differential
equations (e.g., Smith, 1995, 2000) or, classically, as the solutions of a pair of partial differential
equations: the so-called Kolmogorov backward and forward equations (e.g., Ratcliff, 1978,
1988). Let f(x, t|z, τ) denote the transition density for the unconstrained diffusion process, that
is, the process in the absence of absorbing barriers:

f (x, t | z, τ)h ≈ P x ≤ X (t) < x + h | X (τ) = z ,

for small h. The transition density satisfies the backward equation

− ∂ f (x, t | z, τ)
∂τ = 1

2 σ 2(z, x) ∂
2 f (x, t | z, τ)

∂2z
+ μ(z, x) ∂ f (x, t | z, τ)

∂ z , (A1)

and its adjoint, the forward (or Fokker–Planck) equation (Cox & Miller, 1965). The latter
equation is similar to the backward equation, but partial derivatives are taken with respect to
the “forward,” or current, state variable, x, rather than the “backward,” or initial, state variable,
z. Typically, the forward equation is used to characterize the transition density as a function of
its current state when its starting point is fixed; the backward equation is used to characterize
the density as a function of its starting point when the final state is fixed, as occurs when the
process is constrained by absorbing barriers or response criteria.

The first passage time densities, gi(t), i = a, b, also satisfy the backward and forward equations
subject to the initial condition X(0) = z and to appropriate boundary conditions (Cox & Miller,
1965, p. 231). The particular diffusion process described by these equations is determined by
the functions μ(z, x) and σ2(z, x) in Equation A1. These functions, which are known as the
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drift and diffusion coefficient of the process, respectively, describe the change in X(t) per unit
of time as a function of its initial and final state.

The two diffusion process models considered in this article are the Wiener diffusion process
and the OU process. For both these models, the diffusion coefficient is constant, σ2(z, x) =
s2. The Wiener model also has constant drift, μ(z, x) = ξ, whereas in the OU model the drift
depends on (x − z), the difference between the current state of the process and its starting point:
μ(z, x) = ξ − β(x − z). The state-dependent part of the drift in the OU model can be interpreted
as a restoring force that pulls the process back toward its starting point, the strength of which
depends on the distance from the starting point and on the magnitude of the decay constant
β. The initial and final states both appear in the notation for the drift and diffusion coefficients
in Equation A1 to emphasize that in some diffusions, like the OU model, either the drift or the
diffusion coefficient, or both, may depend jointly on these two variables. This explicit
representation is useful for the models we consider in this article, in which starting point is
allowed to vary across trials.

Spectral Representation of First Passage Time Densities
For a Wiener process with drift ξ, starting position X(0) = z, and absorbing barriers at a and
b, such that b < z < a, the first passage time densities ga(t) and gb(t) may be shown to be

ga(t) =
πs 2

(a − b)2
exp ξ(a − z)

s 2 − ξ 2t

2s 2

× ∑
k=1

∞
k exp − k 2π2s 2t

2(a − b)2
sin kπ(a − z)

a − b

(A2a)

and

gb(t) = πs 2

(a − b)2
exp ξ(z − b)

s 2 − ξ 2t

2s 2

× ∑
k=1

∞
k exp − k 2π2s 2t

2(a − b)2
sin kπ(z − b)

a − b

(A2b)

(cf. Feller, 1968; Ratcliff, 1978, Equation A9; Smith, 1990a, Equations 16a and 16b).

The probabilities of responding at the upper and lower barriers, P(a) and P(b), may similarly
be shown to be

P(a) = exp( − 2ξz / s 2) − exp( − 2ξb / s 2)

exp( − 2ξa / s 2) − exp( − 2ξb / s 2)
(A3a)

and

P(b) = exp( − 2ξd / s 2) − exp( − 2ξz / s 2)

exp( − 2ξa / s 2) − exp( − 2ξb / s 2)
(A3b)

It is often more convenient to work with the first passage time distribution functions, Ga(t) and
Gb(t), than with the associated density functions. These functions also satisfy the backward
and forward equations with appropriate boundary conditions. The distribution function
corresponding to Equation A2b may be found in Ratcliff (1978, Equation A12) and Ratcliff et
al. (1999, Appendix). Its complement may be obtained via a symmetry argument. The
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parameterization of diffusion models in this article follows the conventions used in previous
publications of Ratcliff, namely, b = 0, with z and a being free to vary. The diffusion coefficient
is treated as a fundamental scaling parameter of the model whose value is set to s = 0.1. When
b = 0, Equation A2b reduces to Equation A9 in Ratcliff (1978).

Integral Equation Representation of First Passage Time Densities
The first passage time densities for the OU model were computed using an integral equation
method developed by Buonocore, Giorno, Nobile, and Ricciardi (1990). This method is
described in detail in Smith (2000, 2001). Let ga(a, t|z, 0) and gb(b, t|z, 0) be the first passage
time density functions for a diffusion process X(t), with initial condition X(0) = z, through
absorbing barriers a and b, respectively, and let f(x, t|y, τ) be the transition density of the
unconstrained process. The first passage time density functions satisfy the Fortet (1943)
equations

f (a, t | z, 0) = ∫0tga(a, τ | z, 0) f (a, t | , a, τ)dτ

+∫0tgb(b, τ | z, 0) f (a, t | , b, τ)dτ
(A4a)

and

f (b, t | z, 0) = ∫0tga(a, τ | z, 0) f (b, t | , a, τ)dτ

+∫0tgb(b, τ | z, 0) f (b, t | b, τ)dτ.
(A4b)

Equations A4a and A4b express the unknown first passage time densities as functions of the
free transition density of X(t). They are obtained by decomposing the sample paths of X(t) that
pass through a pair of open intervals, one above the upper barrier and one below the lower
barrier, at time t:

f (a, t | z, 0)h ≈ P a < X (t) < a + h
f (b, t | z, 0)h ≈ P b − h < X (t) < b .

To avoid awkwardness when dealing with limiting cases in which the transition density
becomes singular, the barriers are excluded from the intervals—an interpretation that is
justified by the continuity of the transition distribution.

Because these intervals lie outside the absorbing boundaries of the process, any sample path
that passes through one of them at time t must, of necessity, have made at least one boundary
crossing at some time prior to t. For example, Equation A4a describes sample paths that pass
through the interval (a, a + h) at time t. As all such paths have made at least one boundary
crossing, there must have been a first such crossing, either at a or at b, at some time τ, τ < t.
For the path to pass through (a, a + h) at t, the process must make a further transition from a
or b into the interval (a, a + h) during the period (τ, t), possibly making further, unspecified,
boundary crossings while doing so.

Equation A4a provides an exhaustive and mutually exclusive decomposition of sample paths
of this kind. The initial segment of the path, up to the first boundary crossing at a or b, is
described by the first passage time densities, ga(a, τ|z, 0) and gb(b, τ|z, 0), respectively. The
subsequent transition into the interval (a, a + h), irrespective of the number of intervening
boundary crossings, is described by the densities f(a, t|a, τ) and f(a, t|b,τ), respectively,
depending on whether the first boundary crossing was at a or b. Because X(t) is a Markov
process, the probability density function for the entire path is given by the product of the two

Ratcliff and Smith Page 43

Psychol Rev. Author manuscript; available in PMC 2006 April 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



densities, and the integral over τ sums over all possible times at which the first boundary
crossing can occur. Equation A4b provides a similar decomposition of sample paths passing
through an interval (b − h, b) on the lower barrier at time t.

Mathematically, Equations A4a and A4b are Volterra equations of the first kind, which can be
solved analytically only in special cases. Such equations can in principle be solved numerically,
by approximating the integrals with sums. However, any attempt to approximate them directly
will be numerically unstable, because the transition density f(x, t|y, t − Δ) approaches a Dirac
delta function as the interval of approximation, Δ, becomes small. In the terminology of integral
equation theory, the kernel of the equation is singular. Buonocore et al. (1990) showed that
these equations could be transformed into Volterra integral equations of the second kind, in
which the unknown first passage time densities at time t are expressed as functions of their
values at all preceding times, τ < t, and of a kernel function, ψ(x, t|y, τ), that goes to zero as τ
approaches t:

ga(a, t | z, 0) = − 2Ψ(a, t | z, 0) + 2∫0tga(a, τ | z, 0)Ψ(a, t | a, τ)dτ

+2∫0tgb(b, τ | z, 0)Ψ(a, t | b, τ)dτ
(A5a)

and

gb(b, t | z, 0) = 2Ψ(b, t | z, 0) − 2∫0tga(a, τ | z, 0)Ψ(b, t | a, τ)dτ

− 2∫0tgb(b, τ | z, 0)Ψ(b, t | b, τ)dτ.
(A5b)

In these equations, the kernel function ψ(x, t|y, τ) depends on the characteristics of the diffusion
process in question. For an OU process with drift ξ − β(x − z) and diffusion coefficient s2 the
kernel has the form

Ψ(x, t | y, τ) = f (x, t | y, τ)
2 (β(x − z) − ξ − 2 exp − β(t − τ)

1 − exp − 2β(t − τ)
× {exp β(t − τ) β(x − z) − ξ − β(y − z) − ξ}).

(A6)

The transition density is the Gaussian density

f (x, t | y, τ) = β

πs 2{1 − exp − 2β(t − τ) }
× exp( − β{(x − z) − ξ /β − exp − β(t − τ) (y − z) − (ξ / β) }2

s 2{1 − exp − 2β(t − τ) } ).
(A7)

The preceding equations are special cases of the more general formulas given by Smith
(2000, Equations 28 and 58) for an OU process with time-varying drift and absorbing barriers,
modified to allow for a nonzero starting point. The kernel function and transition density for
the Wiener diffusion process, which are obtained as limiting cases of Equations A6 and A7
when β goes to zero, may also be found in Smith (2000).

Unlike the previous integral equations, Equations A5a and A5b are numerically stable and may
be solved recursively. To do so, one must replace the integrals by sum; the values of ga(a, t|
z, 0) and gb(b, t|z, 0) at each of a sequence of time steps, kΔ, k = 1, 2, …, are then computed
as functions jointly of their values and of the values of the kernel function at all preceding time
steps, jΔ, j = 0, 1, …, k − 1. The computational formulas may be found in Smith (2000, Equations
47a and 47b) and in the original article of Buonocore et al. (2000). For the computations

Ratcliff and Smith Page 44

Psychol Rev. Author manuscript; available in PMC 2006 April 20.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



reported in this article, the size of the approximating step was set to Δ = 10 ms. When β is small
(e.g., β = .01), the OU model closely approximates the Wiener model. Under these
circumstances, statistics for the model computed using the spectral method (Equations A2a
and A2b) and the integral equation method agreed to better than 1 ms, thereby providing a
useful check on the accuracy of both methods.

The Accumulator Model
General expressions for the first passage time probabilities for an accumulator model with
arbitrary increment distributions were derived by Smith and Vickers (1988). The algorithm for
the model with normal increments, used here, was described by Smith and Vickers (1989).

The accumulator model assumes that evidence is accrued as a pair of positive, real-valued
evidence totals, Ta and Tb, which are initially set to zero. A sequence of normally distributed
sensory samples, Zn, n = 1, 2, …, each distributed as N(z;μ, σ), is sampled at equally spaced
time points, t(n) = nλ. The interval between samples, λ, is known as the inspection time
parameter of the model. Each value of Zn is classified by comparing it with a sensory referent
c. If Zn > c, the quantity Z+ = Zn − c is added to the total Ta; if Zn < c, the quantity Z− = minus;
(Zn − c) is added to the total Tb. Accumulation continues until Ta ≥ Ka or Tb ≥ Kb, at which
point the response associated with the winning total is emitted.

To write expressions for the first passage time probabilities for this model, let f(z) and g(z) be
the conditional density functions for Z+ and Z−, respectively, and let p = P(Zn > c) be the
probability that a given sensory sample exceeds the referent. The conditional densities are:

f (z − c) = {N (z; μ, σ) / p z > c
0 z ≤ c

g(c − z) = {N (z; μ, σ) / (1 − p) z < c
0 z ≥ c,

where N(z;μ, σ) is a normal density function, with mean μ and standard deviation σ. Let fk(z)
denote the k-fold convolution of f(z), that is, the result of convolving k copies of f(z) with itself,

fk(z) = ∫0z f k−1(z − x) f (x)dx, (A8)

and define gk(z) as the k-fold convolution of g(z) in a similar way. Then Pa(n) and Pb(n), the
probabilities of responding Ra or Rb, respectively, after exactly n sample steps, are

Pa(n) = ∑
i=0

n−1 (n − 1
i )p i(1 − p)n−i−1∫0

Kbgn−i−1(y)dy

× p∫0
Ka f i(x)∫Ka−x

∞ f (z)dzdx

(A9a)

and

Pb(n) = ∑
i=0

n−1 (n − 1
i )p i(1 − p)n−i−1∫0

Ka f i(x)dx

× (1 − p)∫0
Kbgn−i−1(y)∫Kb−y

∞ g(z)dzdy.

(A9b)

In general, the probability of terminating with a particular response, say Ra, at step n is the
product of the probability that at step n − 1, both evidence totals are less than their associated
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criteria (i.e., Ta(n − 1) < Ka and Tb(n − 1) < Kb) and the probability that at step n, an increment
to Ta is sampled that exceeds Ka − Ta(n − 1). The integrals in Equations A9a and A9b sum the
products of these probabilities over all possible nonterminating states at step n − 1 and over
all values of the terminating increment at step n. In these equations, the joint density of the set
of nonterminating states, [Ta (n − 1), Tb (n − 1), at step n − 1, conditional on a sequence of
Na observations favoring Ra and Nb observations favoring Rb, is

P x ≤ Ta(n − 1) < x + h1 & y ≤ Tb(n − 1)

< y + h2 | Na = i, Nb = n − i − 1 ≈ f i(x)gn−i−1(y)h1h2.

The summation over i in Equations A9a and A9b computes these probabilities for all possible
sequences of increments to Ta and Tb in the first n − 1 steps. (A formal induction proof of this
relationship was given by Smith and Vickers, 1988.) The probability of response Ra is then the
probability of sampling an increment to Ta, at step n that is greater than Ka − x, the difference
between the Ra criterion and the current Ta total. Similarly, the probability of response Rb is
the probability of sampling an increment to Tb that is greater than Kb − y. The integrals of f
and g over z, in Equations A9a and A9b, respectively, sum over all possible values of z that
satisfy this requirement. The double integrals of the joint densities over x and y sum over all
points in the rectangle 0 ≤ Ta(n −1) < Ka, 0 ≤ Tb(n − 1) < Kb of nonterminating states.

Because the convolution of truncated normal distributions in Equation A8 has no closed form
expression, the densities fi(x) and gn−i−1(y) in Equations A9a and A9b must be approximated
numerically. In the algorithm described by Smith and Vickers (1989), the probability density
of the increment variable Z is divided into 100 equal steps on the range −Kb to Ka, and the
integrals are approximated by sums. Response probabilities and other RT statistics are obtained
by appropriate summation of terms (see Smith & Vickers, 1988, 1989).

The Poisson Counter Model
Explicit expressions for the first passage time density function for the Poisson counter model
were given by Townsend and Ashby (1983; see also Van Zandt et al., 2000). The model
associates a positive, integer-valued evidence counter, Ta and Tb, with each of the responses
Ra and Rb, respectively. Evidence for the two responses accumulates in continuous time in unit
increments, independently and in parallel, until Ta ≥ Ka or Tb ≥ Kb. The evidence stream is
modeled as a pair of Poisson processes, one with rate α, which represents evidence for, Ra, and
one with rate β which represents evidence for Rb. The probability that Ra is made during a
small interval (t, t + h) is the product of the probability that the last of a sequence of Ka
observations favoring Ra arrives during the interval (t, t + h) and the probability that the time
taken to accumulate Kb observations favoring Rb is greater than t + h. Because the intervals
between counts of either kind are distributed exponentially, the probability density associated
with response Ra at time t is a Ka-stage gamma density with rate α. Similarly, the probability
that Kb observations favoring Rb have not accrued by t is the survivor function of a Kb-stage
gamma distribution with rate β. The same considerations apply to response Rb made at time
t, with the roles of the two counters reversed. The first passage time density functions may thus
be written

ga(t) =
(αt)

Ka−1
αe−αt

(Ka − 1) ! { ∑
j=0

Kb−1
(βt) j

j ! e −βt} (A10a)

and
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gb(t) = (βt)
Kb−1

βe−βt

(Kb − 1)! { ∑
j=0

Ka−1
(αt) j

j ! e −αt}. (A10b)

By an argument based on the superposition property of Poisson processes—that is, a pair of
independent Poisson processes with rates α and β behave like a single Poisson process with
rate α + β—it may be shown that the probability that a given observation in the evidence stream
favors Ra is α/(α + β); the probability that it favors Rb is β/(α + β) (Townsend & Ashby,
1983). The probability that the final response is Ra is therefore just the probability that Ka
observations favoring Ra are accrued before Kb observations favoring Rb. Any sequence
consisting of between Ka and Ka + Kb − 1 observations, Ka of which favor Ra and j of which
favor Rb, where 0 ≤ j ≤ Kb − 1, will result in an Ra response. The probability of this response,
P(a), is just the sum of the negative binomial probabilities of such sequences. The same analysis
applies to P(b) with the roles of the two counters reversed:

P(a) = ∑
j=0

Kb−1

(Ka − j − 1

j )( β
α + β ) j( α

α + β )Ka (A11a)

and

P(b) = ∑
j=0

Ka−1

(Kb − j − 1

j )( α
α + β ) j( β

α + β )Kb. (A11b)

The index j in these equations runs over all possible numbers of observations in the nonresponse
counter.

Neurally Inspired Models
These models assume that evidence for competing responses is accumulated in parallel, as
occurs in counter and accumulator models, but that the evidence is continuously distributed
and is accumulated in continuous time, as occurs in diffusion models. The three models were
the leaky competing accumulator model of Usher and McClelland (2001), the leaky
accumulator model of Smith (2000), and a leaky accumulator model with relative criterion.
For each of these models, the growth of evidence as a function of time is described by a pair
of stochastic, dynamic equations. These equations describe the growth of evidence for the two
responses as a function jointly of the stimulus and of the evidence already obtained. In Usher
and McClelland’s (2001) notation, the two evidence totals are denoted and x1 and x2. The
growth of evidence as a function of time is described by the following stochastic equations:

dx1 = (ρ1 − kx1 − βx2)
dt
τ + ξ1

dt
τ (A12a)

and

dx2 = (ρ2 − kx2 − βx1)
dt
τ + ξ2

dt
τ . (A12b)

These equations give dxi, the change in the amount of evidence in dxi, counter i, i = 1, 2, during
a small time step dt. This change is the sum of three terms: the information derived from the
stimulus, ρi; a decay term, −kxi, which is proportional to the evidence in the counter; and an
inhibition term, −βxi, which is proportional to the evidence in the other counter. Decay in these
models operates in the same way as in the OU model: The more evidence that has accumulated,
the greater the decay. The inhibition term induces competition between counters such that the
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more evidence there is in one counter, the more the accrual rate in the other counter is reduced.
Moment-by-moment variability in the accrual rate comes from the quantities ξ1 and ξ2, which
are independent, normally distributed random variables with a mean of zero and standard
deviation of 1.0. The parameter τ functions like the inspection-time parameter, λ, in the
accumulator model to fix the time scale of the model. Like the accumulator and Poisson counter
models, evidence is accrued in the two counters in parallel until one or other counter exceeds
its criterion, that is, until x1 ≥ a1 or x2 ≥ a2, and the associated response is then made.

In the leaky competing accumulator model, the accrual rates in the two counters depend on the
combined effects of the stimulus, decay, and inhibition. In the leaky accumulator model of
Smith (2000), there is no inhibition between counters (i.e., β1 and β2 in Equations A12a and
A12b are both zero) and the accrual rates in the two counters depend on the stimulus and decay
only. The leaky accumulator with relative criterion is identical, except it uses a relative rather
than an absolute stopping rule. In this model, response Ra is made if

x1 − x2 ≥ a1;

response Rb is made if

x2 − x1 ≥ a2.

As in the other models, RT is the smallest value of t for which the stopping condition is satisfied.
Following Usher and McClelland (2001), we assumed the accrual rates in the two counters
were constrained so that ρ2 = 1. Like them, we used Monte Carlo methods to derive predictions
for these models.

Distributions of Parameters
The parameters of the models investigated here were assumed to be subject to trial-by-trial
variation. For all of the models, three sources of independent variability were assumed:
variation in the quality of the information contained in the stimulus, variation in the amount
of information required for a response, and variation in the nondecisional component of
processing. For the Wiener and OU diffusion processes, variation in information quality was
represented by variation in the drift parameter, ξ; variation in the amount of information needed
for a response was represented by variation in starting point, z. Let &gmacr;i(t), i= a, b denote
the predicted first passage time distributions when variation in parameters is assumed. These
functions are related to the original first passage time functions (i.e., Equations A2a and A2b
for the Wiener model; Equations A5a and A5b for the OU model) in the following way:

ḡ i(t; z, υ) = ∫Ter−st/2
Ter+st/2

∫−∞
∞ ∫z−sz/2

z+sz/2
gi(t − τ; ζ, ξ)

× uz(ζ)N (ξ; υ, η)ut(τ) dζ dξ dτ.
(A13)

In this equation, N(ξ; υ, η) is a normal density of drift with mean v and standard deviation η;
uz (ζ) =1/sz, z − sz/2 ≤ ζ ≤ z + sz/2, is a uniform density of starting points with mean z and range
sz; and ut(τ) = 1/st, Ter − st/2 ≤ τ ≤ Ter + st/2, is a uniform distribution of nondecisional times
with mean Ter and range st. The triple integral in Equation A13 was evaluated numerically, by
approximating the continuous distributions of parameters with discrete distributions and by
evaluating the integrals as sums.

The first passage time probabilities for the accumulator model with variation in parameters are
related to those in Equations A9a and A9b by an equation similar to Equation A13, but with
an additional inspection time parameter, λ, that maps the model from discrete to continuous
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time. As in Equation A13, let &gmacr;i(t), i= a, b denote the first passage time density function
for response i at time t. These functions are obtained from the mass functions in Equations A9a
and A9b by integrating over parameters in a similar way:

ḡ i(t; ka + κ, kb + κ, μ) = ∫Ter−st/2
Ter+st/2

∫−∞
∞ ∫0∞ ∑

n=1

∞
δ(t − nλ − τ)

× Pi(n; ka + k, kb + k, ξ)wK(k; κ)N (ξ; μ, σ)ut(τ) dk dξ dτ.
(A14)

In this equation, N(ξ; μ, σ) is a normal distribution of increment distribution means with mean
μ and standard deviation σ, which describes trial-by-trial variation in the average information
content of the stimulus. The sum of Dirac delta functions, ∑ δ(t − nλ), represents a sequence
of unit masses concentrated at t = nλ, n = 1, 2,…, which maps the model to continuous time.
The function ut(τ) is a uniform distribution of nondecisional times, which is defined in the same
way as for the diffusion models.

The function wK(k; κ) in Equation A14 is the probability density function for the distribution
of response criteria. A number of candidate distributions were considered for this role,
including normal, uniform, and Weibull distributions. The distribution function for the latter
is

WK(k) = 1 − exp − ( k − ki
κ )α ,

k ≥ ki, i = a, b. In this equation, ki is an offset parameter,κ is a scale parameter and α is a shape
parameter. Variation in α yields a wide variety of distributional shapes, including positively
skewed, symmetric, and negatively skewed distributions. When α was free to vary, the best
fits were obtained with a value of α around 1.0. This special case of the Weibull is an offset
exponential distribution with offsets ka and kb and means ka + 1/κ and kb + 1/κ respectively.
As for Equation A13, the triple integral in Equation A14 was evaluated by summing over values
of the approximating discrete distributions.

The analogous expression for the Poisson counter model is

gi(t; ka + κ, kb + κ, α + β, ρ) = ∫Ter−st/2
Ter+st/2

∫01 ∑
k=0

∞
gi t − τ; ka + k,

kb + k, π(α + β), (1 − π)(α + β) h (π; ρ)wK(k; κ)ut(τ)dπdτ.
(A15)

In this equation, the function h(π; ρ) describes the distribution of relative accrual rates in the
two counters, and ut(τ) is a uniform distribution of nondecisional times that was parameterized
in the same way as for the other models.

To model between-trials variation in accrual rates, the sum of the Poisson rates in the two
counters, α + β, was held constant while the relative accrual rate, π = α/(α + β), varied. The
rate on any trial was treated as a random sample from a beta distribution h(π, ρ), with mean
ρ. This distribution provides a general model for a binomial success probability π, 0 < π < 1,
when the success probability is a random variable. The probability density function for the beta
distribution is

h (π) = πu−1(1 − π)υ−1

B(u, υ) .
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where B(u, υ) is the beta function and u and υ are parameters that jointly determine the mean,
variance, and shape of the distribution (Johnson & Kotz, 1970). The mean and variance are

ρ = u
u + υ

and

var(π) = uυ

(u + υ)2(u + υ + 1)
,

respectively. By varying the shape parameters u and υ, the beta distribution can exhibit a wide
variety of shapes including uniform, symmetric, and skewed distributions. For example, with
u and υ equal to 2 and 3, the beta distribution produces skewed distributions of rates that are
similar to those proposed by Van Zandt (2000) to model recognition memory (cf. Johnson &
Kotz, 1970, pp. 42– 43). For the fits reported here, the shape of the beta distribution, u + υ,
was assumed to be constant across stimulus conditions, while the mean, ρ, was free to vary.
To model biases in the accrual rates in Experiment 3, a bias parameter, r, was introduced, and
the mean rate in each condition was set to

ρ = u − r
u + υ .

In this equation, the ratio u/(u + υ) is a within-block parameter that depends on the stimulus,
whereas r is a between-blocks parameter that depends on the relative frequencies of old and
new items.

The function wK(k; κ) in Equation A15 is a discrete distribution of criterion values. Rectangular
and offset geometric distributions of criteria were both considered as candidate distributions,
with the latter providing a better account of the data. The mass function for a geometric
distribution with mean κ is

wK(k; κ) = (1 /κ)(1 − 1/κ)(k−1),

where 1/κ, 0 < 1/κ < 1, is the Bernoulli success probability. Equation A15 was again evaluated
by summing over approximating discrete distributions.

For the neurally inspired models, variability in nondecisional times was included in the same
way as for the other models. In addition, variability in starting point was introduced to allow
the models to predict fast errors (cf. Usher & McClelland, 2001, p. 570).
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Figure 1.
The relationship between the various stochastic reaction time models. The models evaluated
in this article are in bold.
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Figure 2.
Illustration of the Wiener and Ornstein–Uhlenbeck (OU) diffusion models with a list of
parameters. RT = response time; distrib. = distribution; S.D. = standard deviation.
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Figure 3.
Illustration of the accumulator model with a list of parameters. RT = response time; distrib. =
distribution; S.D. = standard deviation.
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Figure 4.
Illustration of the Poisson counter model with a list of parameters. RT = response time.
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Figure 5.
Mapping from quantiles to response time distributions. The distances between quantiles (e.g.,
X and Y in the left panel) map into width of the rectangles in the histograms on the right. Prob.
= probability.
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Figure 6.
Fits of the Wiener and Ornstein–Uhlenbeck (OU) diffusion models and the accumulator and
Poisson counter model for the data from Experiment 1. The decay parameter (β) was fixed for
the two OU model fits. RT = response time; exp. crit. = exponential criteria; rectang. crit. =
rectangular criteria; geom. crit. = geometric criteria; ^ = .1 quantile RT; ▪ = .3 quantile RT; ♦
= .5 quantile RT; ▾ = .7 quantile RT; ▴ = .9 quantile RT.
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Figure 7.
Fits of the Wiener diffusion model to the data from Experiment (Expt.) 2. RT = response time;
^ = .1 quantile RT; ▪ = .3 quantile RT; ♦ = .5 quantile RT; ▾ = .7 quantile RT; ▴ = .9 quantile
RT.
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Figure 8.
Fits of the Wiener diffusion model to the data from Experiment (Expt.) 3. RT = response time;
^ = .1 quantile RT; ▪ = .3 quantile RT;♦ = .5 quantile RT; ▾ = .7 quantile RT; ▴ = .9 quantile
RT.
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Figure 9.
Fits of the Wiener diffusion model to predictions from the Ornstein–Uhlenbeck (OU; β = 4)
and the Poisson counter models with geometrically distributed criteria, fits of the Poisson
counter model with geometrically distributed criteria to the accumulator model with
exponentially distributed criteria, and fits of the accumulator model with exponentially
distributed criteria to the Poisson counter model with geometrically distributed criteria. Poiss.
geom. = Poisson geometric; RT = response time; ^ = .1 quantile RT; ▪ = .3 quantile RT; ♦ = .
5 quantile RT; ▾ = .7 quantile RT; ▴ = .9 quantile RT.
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Figure 10.
Illustrations of the Usher and McClelland (2001) leaky competing accumulator, the leaky
accumulator, and the leaky accumulator with a relative criterion (top) and fits of these models
to data from Experiment 1 (bottom). Parameters of the fit for the leaky competing accumulator
were as follows: speed criterion = 1.30; accuracy criterion = 1.94; criterion range = 1.02; Ter
= 276 ms; st = 7.3 ms; four accrual rates = .556, .676, .759, and .965; inhibition (β) = 3.49;
decay constant (k) = 0.077; and standard deviation in within-trial noise (σ) = 0.675. The
parameters for the leaky accumulator were as follows: speed criterion = 1.30; accuracy criterion
= 1.91; criterion range = 0.372; Ter = 240 ms; st = 114 ms; four accrual rates = .555, .685, .
780, and .994; decay constant (k) = 0.309; standard deviation in within-trial noise (s) = 0.503;
and variability in drift rate across trials = 0.240. The parameters for the leaky accumulator with
a relative criterion were as follows: speed criterion = 0.801; accuracy criterion = 1.34; criterion
range = 0.203; Ter = 233 ms; st = 104 ms; four accrual rates = .555, .678, .755, and .954; decay
constant (k) = 0.308; standard deviation in within-trial noise (s) = 0.627; and variability in drift
rate across trials = 0.178. RT = response time; Ter = mean of the nondecision component of
RT; st = range in rectangular distribution of nondecision component of RT; ̂  = .1 quantile RT;
▪ = .3 quantile RT; ♦ = .5 quantile RT; ▾ = .7 quantile RT; ▴ = .9 quantile RT.
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Figure 11.
Illustration of the growth of evidence in the Ornstein–Uhlenbeck and Usher and McClelland
(2001) models (top). The Usher and McClelland model would have low inhibition between
counters. The bottom three panels show the hit rates and false alarm (FA) rates for repeated
sampling from the asymptotic distributions of evidence. The values labeled Pr are the hit and
FA rates for single samples, and the overall hit and FA rates are computed from repeated
samples using the single-sample probabilities (e.g., .758 = .5/[.5 + .1586]).
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Figure 12.
Fits of the Wiener diffusion model to data from Experiment 2 of Van Zandt et al. (2000). RT
= response time.
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Table 1
Drift Rates, Accrual Rates, and Chi-Square Values in the Fits of the Models to Experiment 1

Model υ1 υ2 υ3 υ4 X2 df BIC

Wiener 0.0391 0.1320 0.1944 0.3208 15.42 78 8,162.1
OU (β = 4) 0.0399 0.1349 0.1983 0.3312 23.18 77 8,176.6
OU (β = 8) 0.0342 0.1150 0.1702 0.2772 37.03 77 8,210.7
Rectangular accumulator 0.2150 0.7519 1.1029 1.6386 42.92 76 8,260.6
Exponential accumulator 0.1220 0.4140 0.6088 1.0252 14.86 76 8,172.0
Rectangular Poisson counter 0.5536 0.6793 0.7572 0.9002 65.62 76 8,285.8
Geometric Poisson counter 0.5460 0.6545 0.7230 0.8646 26.58 76 8,194.6

Note. υ1 to υ4 are generic parameters: They represent drift rates in the Wiener and Ornstein–Uhlenbeck (OU) models (also denoted υ in the text), step
increment distribution means in the accumulator model (denoted μ in the text), and the relative accumulation rates in the Poisson counter model (denoted
ρ in the text). BIC = Bayesian information criterion.
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Table 4
Parameters of the Poisson Counter Models

Model Experiment Ter u +υ α + β κs κa st ka+
kb

k1 k2 k3 k4 k5

Rectang Poiss 1 0.2219 1.66 30.33 4.00 9.00 0.0425 4 6
Geom Poiss 1 0.2559 3.32 37.82 2.43 5.95 0.1000 4 6
Geom Poiss 2 0.3500 19.15 39.66 2.56 5.29 0.1000 4 3 6 6
Geom Poiss 3a 0.4105 5.55 32.95 3.76 0.0750 10 7 7 6 5 4
Geom Poiss 3b 0.4100 6.13 32.83 3.70 0.0750 10 7 7 6 5 4

Note. Experiments 1 and 2 have speed–accuracy manipulations; Experiment 3 manipulates relative stimulus probability. k1 to k5 are used as generic
decision criteria for these experiments. For Experiments 1 and 2, k1 and k2 are speed criteria, and k3 and k4 are accuracy criteria. For the rectangular
Poisson counter model, k1 to k4 are means of rectangular distributions with ranges κs and κa for the speed and accuracy conditions, respectively. For the
geometric Poisson counter model, k1 to k4 are offsets to geometric distributions of criteria; means of the geometric portion of the distributions are κs and
κa for the speed and accuracy conditions, respectively. For Experiment 3, ka + kb, the sum of the offset parameters for the two distributions of criteria,
was held constant as the relative offset was varied. The parameters k1 to k5 are the offsets for one distribution of criteria; ka + kb minus the value of k1
through k5 are the offsets for the other. α + β is the sum of the Poisson rates in the two counters. This was kept fixed across all conditions as the relative
accrual rate π = α/(α + β) varied randomly according to a beta distribution with shape parameters u and υ and mean ρ = u/(u + υ). The sum u + υ, which
determines the distribution’s shape, was held constant across conditions. Ter = mean of the nondecision component of response time; st = variability in
nondecision component of response time across trials; Rectang = rectangular; Poiss = Poisson counter model; Geom = geometric.
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Table 5
Drift Rates, Accrual Rates, and Chi-Square Values in the Fits of the Models to Experiment 2

Model υ1 υ2 υ3 υ4 X2 df BIC

Wiener 0.4316 0.2749 0.1818 −0.2566 28.96 76 7,889.9
OU (β = 4) 0.4190 0.2740 0.1840 −0.2371 44.87 75 7,930.8
Exponential accumulator 1.0417 0.6621 0.4306 −0.5296 36.77 74 7,925.6
Geometric Poisson counter 0.8364 0.7365 0.6468 0.3128 67.02 74 7,987.6

Note. υ1 to υ4 are generic parameters. They represent drift rates in the Wiener and Ornstein–Uhlenbeck (OU) models (also denoted υ in the text), step
increment distribution means in the accumulator model (denoted μ in the text), and the relative accumulation rates in the Poisson counter model (denoted
ρ in the text). BIC = Bayesian information criteria.
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Table 7
Drift Criteria (Diffusion Models), Step Increment Distribution Criteria (Accumulator Model), and the
Accumulation Rate Criteria (Poisson Counter Model) for the Probability Conditions in Experiment 3

Model 67% old 50% old 33% old 22% old

Wiener 0.0048 0.0025 −0.0106 −0.0163
OU (β = 4) 0.0257 0.0850 0.1174 0.1388
Exponential accumulator 0.0550 0.1237 0.1308 0.2331
Geometric Poisson counter −0.2054 −0.2538 −0.1980 0.0114

Note. These criteria are relative to zero criterion for the 78% old (3.5 old:1 new) condition. The parameters represent drift rates in the Wiener and Ornstein–
Uhlenbeck (OU) models (denoted υ in the text), step increment distribution means in the accumulator model (denoted μ in the text), and the relative
accumulation rates in the Poisson counter model (denoted ρ in the text).
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Table 8
Average Parameter Values Across Subjects for the Fits of the Wiener Diffusion Model to Experiment 2 of Van
Zandt et al. (2000)

Bias a Ter η sz υs υd z υc

80 0.1017 0.3646 0.0252 0.0168 0.2161 −0.3659 0.0795 0
50 0.0589 0.0335
20 0.0374 0.0905

Note. The drift criterion (υc) is added to both the same and different drift rates. a = boundary separation; Ter = mean of the nondecision component of
response time; η = variability in drift rate across trials; sz = variability in starting point across trials; υs = drift rate for same condition; υd = drift rate for
different condition; z = starting point.
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