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Abstract
The use of biomarkers is of ever increasing importance in clinical diagnosis of disease. In practice,
a cut-point is required to dichotomize naturally continuous biomarker levels of individuals at risk
for disease and those not. Two methods commonly used for establishing the “optimal” cut-point are
the point on the ROC curve closest to (0,1) and the Youden index, J. Both have sound intuitive
interpretations, the point closest to perfect differentiation and the point farthest from none,
respectively, and are generalizable to weighted sensitivity and specificity. Under the same weighting
of sensitivity and specificity, they identify the same cut-point as “optimal” in certain situations and
different cut-points in others. In this paper, we examine the situations in which the two criteria agree
or disagree and show that J is the only “optimal” cut point for given weighting with respect to overall
misclassification rates. A data driven example is used to clarify and demonstrate the magnitude of
the differences. We also demonstrate a slight alteration in the (0,1) criterion that retains its intuitive
meaning, while resulting in consistent agreement with J. In conclusion, we urge that great care should
be taken when establishing a biomarker cut-point for clinical use.
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The proper diagnosis of disease and treatment administration is a task that requires a variety
of tools. Through advancements in biology and laboratory methods a multitude of biomarkers
are available as clinical tools for such diagnosis. These biomarkers are usually measured on
some continuous scale with overlapping levels for diseased and non-diseased individuals. Cut-
points dichotomize biomarker levels, providing benchmarks that label individuals as diseased
or not based on “positive” or “negative” test results. Biomarker levels of individuals with
known disease status are used to evaluate potential cut-point choices and hopefully identify a
cut-point that is “optimal” under some criteria.

Such a dataset would be comprised of biomarker levels for individuals classified as coming
from the diseased (D) or non-diseased (D̄) population. These levels could then be classified as
a positive (+) or negative (−) test result based on whether the biomarker levels are above or
below a given cut-point, respectively. In most instances, some individuals will be misclassified,
thus truly belonging to a population other than the one indicated by their test results. The
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sensitivity (q(c)) and specificity (p(c)) of that biomarker for a given cut-point, c, are the
probabilities of correctly identifying an individual’s disease status (i.e. true positives and true
negatives)

q(c) = Prob(test result = + | D)

p(c) = Prob(test result = − | D̄ ).

Making 1 minus these values the probability of incorrect classification or false negatives (1 −
q(c)) and false positives (1 − p(c)).

A receiver operating characteristic (ROC) curve is a mapping of this sensitivity by 1 minus
specificity that has become a useful tool in comparing biomarker effectiveness (1–3). This
comparison takes place through summary measures such as the area under the curve (AUC)
and partial area under the curve (pAUC), with higher area values indicating higher levels of
diagnostic ability (1,2,4). A biomarker with AUC=1 differentiates perfectly between diseased,
sensitivity=1, and health, specificity=1, individuals. Meanwhile, an AUC=0.5 means that
overall there is a 50:50 chance that the biomarker correctly identifies diseased or health
individuals as such.

Though useful for biomarker evaluation, these measures do not inherently lead to benchmark
“optimal” cut-points for clinicians and other healthcare professionals to differentiate between
diseased and non-diseased individuals. Several methods have been proposed and applied to
identify an “optimal” cut-point using sensitivity, specificity and the ROC curve (4–8).
Confidence intervals and corrections for measurement error are some of the supporting
statistical developments accompanying cut-point estimation (9). Applications of these
techniques have been demonstrated in nuclear cardiology, epidemiology and genetics to
mention some examples (7,10,11). In the Criterion section, we describe two criteria for locating
this cut-point that have similar intuitive justification. In describing the mathematical
mechanisms behind the criteria, we demonstrate that one of the criteria retains the intended
meaning, while the other inherently depends on quantities that may differ from an investigators
intention. The Example section demonstrates how the two criteria identify different cut-points
for the classification of 120 preeclampsia cases and 120 controls based on plgf levels,
biomarkers of angiogenesis, from nested case control study from the CPEP prospective cohort.
Next, we discuss the appropriateness of the term “optimal” as it applies to each criteria. This
is handled first with equally weighted sensitivity and specificity. Consideration of differing
disease prevalence and costs due to misclassification are also presented as a practical
generalization (5,12). We end with a brief discussion.

CRITERION
The closest to (0,1) criteria

If a biomarker perfectly differentiates individuals with disease from those without based on a
single cut-point, q(c)=1 and p(c)=1, the ROC curve is a vertical line from (0,0) to (0,1) joined
with a line from (0,1) to (1,1) with an AUC =1. However, for a less than perfect biomarker, q
(c)<1 and/or p(c)<1, the ROC curve does not touch the (0,1) point. Here the choice of an
“optimal” cut-point is less straight forward. A criteria has been suggested and utilized where
the point on the curve closest to (0,1) is identified and the corresponding cut-point is labeled
“optimal” (6,7). The rational behind this approach is that the point on the curve closet to
perfection, q(c)=1 and p(c)=1 should be the optimal cut point from all the available cut-point,
thus intuitively minimizing misclassification. Mathematically, the point c* that satisfies the
equation
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min { (1 − q(c))2 + (1 − p(c))2} or

min {(1 − q(c))2 + (1 − p(c))2}
(1)

fulfills this criteria and is thus labeled the cut-point that best differentiates between diseased
and non-diseased.

This criterion can be viewed as searching for the shortest radii originating at the (0,1) point
and terminating on the ROC curve. Reference arcs can be used to visually compare radial
distances, with the arc corresponding to c* being tangent to the ROC curve and thus the
minimum and interior of any of the concentric arcs possible. Figure 1 demonstrates this point
where the dotted arc is completely interior, thus closer to (0,1), to the arc formed by the distance
to an alternate point on the curve.

The Youden Index
Another measure for evaluating biomarker effectiveness is the Youden index (J), first
introduced to the medical literature by Youden (13). J is also a function of q(c) and p(c), such
that

J = max {q(c) + p(c) − 1}

= max {q(c) − (1 − p(c))}
(2)

over all cut-points c, with cJ denoting the cut-point corresponding to J. On a ROC curve, J is
the maximum vertical distance from the curve to the chance line or positive diagonal (figure
1), making cJ the “optimal” cut-point (5,14). The intuitive interpretation of the Youden index
is that J is the point on the curve farthest from chance. It has also been defined as the accuracy
of the test in clinical epidemiology (15).

Agreement/Disagreement
The criteria agree with respect to intuition; maximize and minimize the rate of individuals
classified correctly and incorrectly, respectively. The question “Do they agree on the same
“optimal” cut-point?”, now begs to be answered.

Suppose the biomarker of interest follows continuous distributions for both diseased and
nondiseased populations that are known completely, leading to a true ROC curve. Our only
distributional restriction is that a ROC curve is generated that is differentiable everywhere.
This is intrinsic to the case where diseased and nondiseased individuals are assumed to follow
any number of common continuous densities (i.e. normal, lognormal, gamma, ect.). Through
differentiation, Appendix I shows that the two criteria only agree, c*= cJ = c, when q(c*) = p
(c*) and q(cJ) = p(cJ). When either criteria identify a point on the curve such that q(c*) ≠ p
(c*) or q(cJ) ≠ p(cJ), the criteria disagree on what cut-point is “optimal”, c* ≠ cJ.

An investigator with complete knowledge of a biomarker’s distributions could be faced with
two different cut-points labeled “optimal” under the same intuition. Our motivation here is
simply to show that they are different and address the appropriateness of the label “optimal”
in a later section.

EXAMPLE
Preeclampsia affects about 5 percent of pregnancies, resulting in substantial maternal and
neonatal morbidity and mortality (16). Although the cause remains unclear, the syndrome may
be initiated by placental factors that enter the maternal circulation and cause endothelial
dysfunction resulting in hypertension and proteinuria (16). Identifying women suffering from
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preeclampsia is a very important step in the management of the disease. Placenta growth factor
(Plgf) is a promising biomarker for such classification with an AUC = 0.60 (95% CI 0.526–
0.670); however at what level would a woman be classified as at risk for the disease. A nested
case control study of 120 preeclampsia and 120 normal individuals were randomly chosen from
the CPEP cohort study. Plgf levels were measured from serum specimens that were obtained
before labor. The ROC curve in figure 2 was generated from the log transformed plgf levels.
After calculating the distance to (0,1) and the distance to the diagonal for each point, the cut-
points c*= 4.64 and cJ = 4.12 are identified, respectively. So, criteria with seemingly identical
intuitive intent are close but disagree on an “optimal” cut-point. Again, here it is sufficient to
demonstrate that disagreement exists. We will revisit this example after the question of
“optimality” is addressed in the next section.

“Optimality”
When attempting to classify individuals based on biomarker levels, it is always the intent to
do so “optimally”. However, the event of interest may intrinsically involve constraints which
must for ethical or fiscal reasons be considered. These constraints are commonly accounting
for the prevalence of the event in both populations and the costs of misclassification both
monetary and physiological. So, now mathematic techniques of optimality must operate within
these constraints but the idea of an “optimal” cut-point should remain; choosing a point which
classifies the most number of individuals correctly and thus the least number incorrectly.

First let us assume the simplest scenario absent of constraints or weighting. By definition cJ
found by equation 2 succeeds ideologically by maximizing the overall rate of individuals
classified correctly, q(cJ) + p(cJ). As a result, the overall rate of misclassifications, (1 − q(cJ))
+ (1 − p(cJ)), is minimized. So, we can say that cJ is “optimal” with respect to the total correct
and incorrect classification rate and any cut-point that deviates from it is not.

Under the same scenario, the closest to (0,1) criteria in equation 1 minimizes the total squared
misclassification rates, quadratic terms for which an ideology does not seem to exist other than
being geometrically intuitive. Equation 1 can be expanded and rewritten as

min {(1 − q(c)) + (1 − p(c)) + (q(c)2 + p(c)2) / 2} (3)

to show that this criteria is minimizing the total of the misclassification rates and a third term,
the average of squared correct classification rates. Unless a specific justification for this third
term exists, its usage results in unwarranted and thus unnecessary misclassification because it
identifies a point c* ≠ cJ.

Now, let us consider the circumstance where cost and prevalence are thought to be factors as
they usually are in practice. Using decision theory, a generalized J can be formed where these
factors are represented as a weighting of sensitivity and specificity. The function that minimizes
expected loss in classifying a subject can be written as

min {aπ(1 − q(c)) + (1 − π)(1 − p(c))} (4)

where ‘a’ denotes the relative loss (cost) of a false negative as compared with a false positive
and π is the proportion of diseased individuals in the population of interest (prevalence) (17,
18). It is easy to see that minimizing this expected loss over all possible threshold values is the
same as

J = max {q(c) + r * p(c) − 1} (5)
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where r =
(1−π) / aπ. for r = 1 this is equivalent to J.

Weighting of the (0,1) criteria occurs similarly,

min {(1 − q(c))2 + r * (1 − p(c))2} (6)

where r is exactly the same weighting estimate for cost and prevalence. The issue of the
quadratic term remains

min {(1 − q(c)) + r * (1 − p(c)) + (q(c)2 + r * p(c)2) / 2} (7)

only now its weighted and unnecessary. Comparing this equation to equation 4 it is easy to see
that this absolutely does not minimize loss due to classification.

Example Revisited
To demonstrate this unnecessary misclassification and its possible magnitude, we revisit the
example of plgf levels used to identify preeclamptic women from those without the disease.
Sensitivity and specificity at the cut-points previously identified are q(c*) = 0.592, p(c*) =
0.558 and q(cJ) = 0.817, p(cJ) = 0.358, respectively. The overall correct classification rate (q
+p) is 1.150 for c* and 1.175 for cJ out of a possible 2, with a difference of 0.025. Without the
justification for the third term in equation 3 and without weighting, this difference can be
thought of as one person out of a hundred being unnecessarily misclassified. Relative cost and
disease prevalence are often difficult to assess as discussed by Greiner et al (18). and the
references cited therein. So we will not attempt to adjust in this example.

DISCUSSION
In this paper, we demonstrated the intuitive similarity of two criteria used to chose an “optimal”
cutpoint. We then showed that the criteria agree in some instances and disagree in others. Plgf
levels used to classify women as preeclaptic or not were used to demonstrate this point and
quantify the extent of disagreement.

We addressed both criteria in the context of what an investigator might view as “optimal”, with
and without attention given to misclassification cost and prevalence. Mathematically, J reflects
the intention of maximizing overall correct classification rates and thus minimizing
misclassification rates, while the choosing point closest to (0,1) involves a quadratic term for
which the clinical meaning is unknown. It is for this reason that advacate for the use of J to
find the “optimal” cutpoint.

Since, the (0,1) criteria is visually intuitive we have provided an amended (0,1) criteria in
Appendix 2 that is likewise geometrically satisfying while consistently identifying the same
“optimal” cut-point as J. This criteria relies on a ratio of radii originating at (0,1).

Additional motivation for using J is an ever increasing body of supporting literature. Topics
such as confidence intervals and correcting the estimate for measurement error have been
considered where the (0,1) citeria lacks such support.

Most importantly, cut-points chosen through less than “optimal” criteria or criteria that are
“optimal” in some arbitrary sense can lead to unnecessary misclassifications, resulting in
needlessly missed opportunities for disease diagnosis and intervention. We showed that J is
“optimal” when equal weight is given to sensitivity and specificity, r = 1, and a generalized
J is “optimal” when cost and prevalence lead to weighted sensitivity and specificity, r ≠ 1. So,
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when the point closest to (0,1) differs from the point resulting in J, using this criteria to establish
a “optimal” cut-point does introduces an increased rate of misclassification, unnecessarily.

Acknowledgements

This research was supported by the Intramural Research Program of the NIH, Epidemiology Branch, DESPR, NICHD.

References
1. Zhou XH, Obuchowski NA, McClish DK. Statistical Methods in Diagnostic Medicine. New York:

John Wiley & Sons, Inc., 2002.
2. Faraggi D. Adjusting ROC curves and realted indices for covariates. Journal of the Royal Statistical

Society, Series D, The Statistician 2003;52:179–192.
3. Schisterman EF, Faraggi D, Reiser B. Adjusting the generalized ROC curve for covariates. Statistics

in Medicine 2004;23:3319–3331. [PubMed: 15490426]
4. Pepe M. The Statistical Evaluation of Medical Tests for Classification and Prediction. New York:

Oxford University Press Inc., 2003.
5. Zwieg MH, Campbell G. Receiver-Operating Characteristic (ROC) Plots: A Fundamental Evaluation

Tool in Clinical Medicine. Clinical Chemistry 1993;39(4):561–577. [PubMed: 8472349]
6. Coffin M, Sukhatme S. Receiver Operating Characteristic Studies and Measurement Errors. Biometrics

1997;53:823–837. [PubMed: 9333348]
7. Sharir T, Berman DS, Waechter PB, Areeda J, Kavanagh PB, Gerlach J, Kang X, Germano G.

Quantitative Analysis of Regional Motion and Thickening by Gated Myocardial Perfusion SPECT:
Normal Heterogeneity and Criteria for Abnormality. Journal of Nuclear Medicine 2001;42:1630–
1638. [PubMed: 11696631]

8. van Belle G. Statistical Rules of Thumb. New York: John Wiley & Sons, Inc., 2002;98.
9. Perkins NJ, Schisterman EF. The Youden Index and the Optimal Cut-Point Corrected for Measurement

Error. Biometrical Journal 2005; in press.
10. Schisterman EF, Faraggi D, Brown R, Freudenheim J, Dorn J, Muti P, Armstrong D, Reiser R,

Trevisan MJ. TBARS and cardiovascular disease in a population-based sample. Journal of
Cardiovascular Risk 2001;8:219–225. [PubMed: 11551000]

11. Chen R, Rabinovitch PS, Crispin DA, Emond MJ, Koprowicz KM, Bronner MP, Brentnall TA. DNA
Fingerprinting Abnormalities Can Distinguish Ulcerative Colitis Patients with Dysplasia and Cancer
from Those Who Are Dysplasia/Cancer-Free. American Journal of Pathology 2003;16(2):665–672.
[PubMed: 12547724]

12. Barkan N. Statistical Inference on r * Specificity + Sensitivity, Doctoral dissertation. University of
Haifa, 2001 pp69–74.

13. Youden WJ. An index for rating diagnostic tests. Cancer 1950;3:32–35. [PubMed: 15405679]
14. Schisterman EF, Perkins NJ, Aiyi L, Bondell H. Optimal cut-point and its corresponding Youden

Index to discriminate individuals using pooled blood samples. Epidemiology 2005;16(1):73–81.
[PubMed: 15613948]

15. Chmura Kraemer, H. Evaluating Medical Tests: Objective and Quantitative Guidelines, 1992, SAGE,
Newbury Park, California

16. Levine RJ, Maynard SE, Qian C, Lim KH, England LJ, Yu KF, Schisterman EF, Thadhani R, Sachs
BP, Epstein FH, Sibai BM, Sukhatme VP, Karumanchi SA. Circulating angiogenic factors and the
risk of preeclampsia. N Engl J Med 2004;350(7):672–83. [PubMed: 14764923]

17. Geisser, S. Comparing two tests used for diagnostic or screening processes. Statistics and Probability
letters 1998;40:113–119.

18. Greiner M, Pfeiffer D, Smith RM. Principles and Practical Application of the Receiver-operating
Characteristic Analysis for Diagnostic Tests. Preventive Veterinary Medicine 2000;45:23–41.
[PubMed: 10802332]

Perkins and Schisterman Page 6

Am J Epidemiol. Author manuscript; available in PMC 2006 April 21.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Appendix 1
For continuous ROC curves we make no distributional assumptions beyond that the probability
density functions fD and f D̄, for biomarker levels of diseased and non-diseased individuals
respectively, form a ROC curve that is differentiable everywhere. This is the case when fD and
f D̄ are assumed to be any common continuous parametric distributions (i.e. normal, gamma,
lognormal).

In order to locate these cut-points that minimize and maximize in equations 1 and 2,
respectively, it is first necessary to locate critical values. So, differentiating equation 1,

∂
∂c (1 − p(c))2 + (1 − q(c))2 = 2(1 − p(c))( ∂ (1 − p(c))

∂c ) − 2(1 − q(c))( ∂q(c)∂c ). (A1.1)

Then set the derivative equal to zero,

2(1 − p(c * ))( ∂ (1 − p(c * ))
∂c ) − 2(1 − q(c * ))( ∂q(c * )∂c ) = 0

(1 − p(c * ))( ∂ (1 − p(c * ))
∂c ) = (1 − q(c * ))( ∂q(c * )∂c )

∂q(c * )
∂(1 − p(c * )) =

1 − p(c * )
1 − q(c * )

(A1.2)

Now, we differentiate the second criteria,

∂
∂c q(c) − (1 − p(c)) = ∂q(c)

∂c − ∂(1 − p(c))
∂c (A1.3)

and then setting equal to zero

∂q(cJ )

∂c −
∂(1 − p(cJ ))

∂c = 0

∂q(cJ )

∂c =
∂(1 − p(cJ ))

∂c
∂q(cJ )

∂(1 − p(cJ )) = 1

(A1.4)

The forms of both A1.2 and 4 define the critical points of the criteria in equation 1 and 2,
respectively, by the slopes of their corresponding points on the ROC curve. Since these
solutions are not necessarily unique, multiple solutions may exist, i.e. local maximums or
minimums. Therefore, all solutions and endpoints must be evaluated so that c* and cJ are global
solutions.

Equations A1.2 and 4 show us that the (0,1) and J methods agree, c*= cJ = c, only when q(c*)
= p(c*) and thus (1−p(c*))/(1−q(c*)) = 1. When q(c*) ≠ p(c*), the criteria disagree on what
point is optimal, c* ≠ cJ. We will discuss which criteria might be “optimal” later, but for now
our motivation is simply to show that they are different.

Appendix 2
Equation 1 identifies the point closest to perfection but irrespective of the possibilities of
imperfection. In other words, this criterion minimizes the distance from (0,1) to the curve but
fails to take into account the possible distance to the chance line or weighting the distances in
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equation 1. What if instead we minimize the proportion of the smaller radii (r2) to the larger
(r1) displayed in figure 3 such that

min { r22

r12
} = min { (1 − p(c))2 + (1 − q(c))2

( 1 − p(c)
1 − d )2 + (1 − 1 − p(c)

1 − d )2 }.
= min {1 − d}

(A2.1)

where d = q(c) − (1 − p(c)), we obtain a weighted criterion.

The relation in equation A2.1 can be derived algebraically or by using proportionality of the

triangles in figure 3 such that 
r2
r1

=
r1 − (r1 − r2)

r1
= 1 −

(r1 − r2)

r1
= 1 − d

1 . Figure 3 also,

provides a visual reference for the proposed weighting, as radii passing through different points
on the curve have different distances to the chance line but are treated uniformly in equation
1.

It is now easily seen that the differentiation

∂
∂c {1 − d} = − ∂q(c)

∂c + ∂(1 − p(c))
∂c = 0

∂q(c)
∂(1 − p(c)) = 1

leads to the same critical points on the ROC curve as J and thus to identical cut-points c* =
cJ.
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FIGURE 1.
ROC curve based on simulated diseased and non-diseased populations. The vertical lines and
reference arcs identify the Youden index, J, (solid) and the point closest to the (0,1) point
(dotted) and their corresponding “optimal” cut-points cJ and c*, respectively.
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FIGURE 2.
Empirical ROC curve using placenta growth factor (plgf) levels to differentiate between
women diagnosed with preeclampsia and those without. The graph illustrates that the two
points corresponding to cut-points labeled “optimal” by the point closest to (0,1), c*, and the
Youden index, cJ, differ.
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FIGURE 3.
Similar triangles formed from a point on a ROC curve displaying that the ratio of radii extending
from the (0,1) point, r2 to r1, is equal to one minus the height of the curve from the diagonal
or chance line, d = q(c)−(1−p(c)).
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