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ABSTRACT

Colias eurytheme and C. philodice are sister species with broad sympatry in North America. They hybridize
frequently and likely share a significant portion of their genomes through introgression. Both taxa have
been ecologically well characterized and exploited to address a broad spectrum of evolutionary issues.
Using AFLP markers, we constructed the first linkage map of Colias butterflies. The map is composed of
452 markers spanning 2541.7 cM distributed over 51 linkage groups (40 major groups and 11 small groups
with 2-4 markers). Statistical tests indicate that these AFLP markers tend to cluster over the map, with
the coefficient of variation of interval sizes being 1.236 (95% C.I. is 1.234—1.240). This nonrandom marker
distribution can account for the nonequivalence between the number of linkage groups and the actual
haploid chromosome number (N = 31). This study presents the initial step for further marker-assisted
research on Colias butterflies, including QTL and introgression analyses. Further investigation of the
genomes will help us understand better the roles of introgression and natural selection in the evolution
of hybridizing species and devise more appropriate strategies to control these pests.

HE sulfur butterflies, Colias philodice and C. eury-

theme (Pieridae), are economic pests of alfalfa and
clover crops. They are sympatric and widely distributed
over large areas of the United States and Southern Can-
ada (FeErris and BRownN 1981; OrLER 1992). These two
butterflies can be distinguished easily by their wing color
(wings of C. philodice are yellow, whereas those of C.
eurytheme are orange). They also differ in several other
traits including body size, the size of outer wing band,
male ultraviolet reflectance pattern, pheromone pro-
duction, and female mating preferences (SILBERGLIED
and TayrLor 1973, 1978; GrurLAa and TAYLOR 1979,
1980a,b). Remarkably, almost all of these traits map
genetically to the X chromosome (GRuLA and TAYLOR
1979, 1980a,b). This so-called “large X-effect” may play
a major role in the evolution of Lepidoptera, in which
females are the heterogametic (XY; often referred to
as ZW) sex (SPERLING 1994; PROwELL 1998).

Colias butterflies have drawn researchers’ attention
for decades, especially in the field of evolutionary and
functional ecology. Much is known of their basic biology,
including population ecology (WATT et al. 1977, 1979;
TaBasHNIK 1980), phylogenetic relationships (BRUNTON
1998; PoLLOCK et al. 1998), thermoregulation (KINGSOL-
VER 1983; KINGSOLVER and WATT 1983, 1984; Tsuj1 et al.
1986), seasonal and spatial variation (HOFFMANN 1974,
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1978; ELLERs and Bocacs 2002), oviposition behavior
(STERN and SmrTH 1960; STANTON 1979, 1982, 1984),
larval ecology (AE 1958; SHERMAN and WATT 1973),
mating system (GEROULD 1946; HovaNiTZ 1949; SILBER-
GLIED and TAYLOR 1973; GRAHAM et al. 1980; GRULA et
al. 1980; GruLA and TAayLorR 1980b; RuTowskr 1980;
BocGs and WATT 1981; RUTOWSKI ¢f al. 1981; MAR-
SHALL 1982a,b), and adaptation at allozyme loci (WATT
1977, 1983, 1992; WATT et al. 1983, 1985; CARTER and
WAaTtT 1988). These studies of Colias have melded ecol-
ogy, genetics, and physiology and have significantly con-
tributed to our understanding of natural selection and
adaptation in field settings.

One important feature of Colias butterflies is that
several sympatric species pairs, including C. philodiceand
C. eurytheme, hybridize wherever they are found together
(GErOULD 1946; TaYLOR 1972). Although this species
pair generally has strong assortative mating, driven
largely by female mate choice (SILBERGLIED and TAy-
LOR 1978; GrurLA and TavyrLor 1980b), hybridization
occurs when females, right after eclosing, have not hard-
ened sufficiently to reject heterospecific males (TAYLOR
1972; S1iLBERGLIED and TayLor 1978). Hybridization
rate is therefore density dependent, increasing to near
random at high densities (TAYLOR 1972). At more typi-
cal densities, hybrids constitute ~2-10% of the com-
bined natural population. Laboratory studies showed
F, intercross families usually have lower fitness, which
rebounds in most Fy, and backcross families (GRuLA and
TAayLOR 1980b). These results clearly demonstrate that
a pathway exists for introgression, allowing the sharing
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of neutral and adaptive traits between the taxa. The
Colias system, therefore, offers a great opportunity to study
the roles of introgression and selection in the organization
of closely related genomes.

Although Colias butterflies have been studied for
nearly a century and have already been ecologically well
characterized, information about nuclear DNA markers,
the molecular basis of their species-diagnostic traits, and
genetic linkage is still lacking. Amplified fragment
length polymorphism (AFLP; Vos et al. 1995), a power-
ful DNA marker system that has recently gained atten-
tion (reviewed by BLEARS et al. 1998; MUELLER and WoL-
FENBARGER 1999), presents an ideal method to study
less-known organisms such as Colias. This PCR-based
technique is highly reliable and informative, allowing a
large number of DNA markers to be generated rapidly
with no prior knowledge of DNA sequence. AFLP mark-
ers are highly reproducible, with low between-laboratory
errors (JONES et al. 1997), and effective in a wide range
of organisms. The method has been applied broadly in a
variety of studies and proven useful for resolving genetic
differences and relatedness among not only individuals
or populations, but also independently evolving lin-
eages, especially closely related taxa (MUELLER and
WOLFENBARGER 1999).

The goal of our study was to develop polymorphic
AFLP markers and build a comprehensive linkage map
of C. eurytheme and C. philodice. We performed the link-
age mapping on the basis of a backcross design, given
the feasibility of obtaining large F; and backcross fami-
lies. Such an interspecific map serves as the foundation
for a simultaneous analysis of both genomes. It will
allow us to identify markers exhibiting strong species
differentiation and to locate genes involved in main-
taining species identity. This study provides the initial
step toward carrying out further marker-assisted genetic
and population studies on a genome-wide basis, which
will help us better understand roles of ecological forces
and natural selection in the population dynamics of
these economic pests and the evolution of adaptive ge-
netic variation.

MATERIALS AND METHODS

Insect materials: Our genetic analysis was performed on a
backcross (BC) family since backcross designs give the best
resolution for assessing dominant marker frequencies (Haw-
THORNE 2001; TAN et al. 2001) and therefore yield the most
reliable maps. In addition, the Fy, method suggested by Yasu-
KOCHI (1998) is not valid here since, unlike many other Lepi-
dopteran species, female Colias do recombine (CARTER and
WatT 1988) and therefore maternal-derived markers do not
give the chromosome print as seen in silkworm mapping stud-
ies. Populations of C. eurythemeand C. philodicewere established
from wild females collected locally at Amherst and Sunder-
land, Massachusetts. Individuals from pure-breeding families
of the two species were hybridized to produce F, families. One
of the F; males (of eurytheme female X philodice male) was
crossed to a virgin C. eurytheme female to generate the BC,

population for mapping. The offspring were reared in petri
dishes supplied with fresh-cut alfalfa as a food source. The
rearing conditions were 27° with a photoperiod of 14 L:10 D.
Adult butterflies were frozen right after they emerged and
kept at —80° until DNA isolation. A total of 58 backcross
individuals (31 females and 27 males) were genotyped using
the AFLP method. This number was found to be suitable for
linkage analysis with a sufficient level of statistical confidence
(Ky et al. 2000; TAN et al. 2001).

AFLP analysis: Genomic DNA was isolated using a modified
CTAB method as described by DEL SaL et al. (1989) and
GusTINCICH et al. (1991). The DNA was purified by extraction
with phenol/chloroform, precipitated by ethanol, and resus-
pended in TE buffer (10 mm Tris-HCI, pH 8.0, 1 mm EDTA).
AFLP analysis was conducted according to the procedures
and reaction conditions described by Vos et al. (1995) with
modifications as described below.

Restriction/ligation reactions were performed in an 11-ul
single-tube reaction with 250 ng of genomic DNA, 0.5 units
of Msel, 5 units of EcoRI, 4 units of T4 DNA ligase (New
England Biolabs, Beverly, MA), 4.5 um Msel adapter, 0.45 um
EcoRI adapter, 0.05 mg/ml BSA, 50 mm NaCl, and T4 ligase
buffer (50 mm Tris-HCI, 10 mm MgCl,, 10 mm DTT, 1 mm
ATP, and 25 ng/ml BSA) for 3 hr at 37°. Preamplifications
were run in 20-pl reactions containing 3 pl of the diluted
(1:4) restriction/ligation product, 300 mm of both primer
EcoRI+A and primer Msel+C, 1 unit Taq polymerase, 0.2 mm
dNTPs, and PCR buffer (15 mm MgCl,, 500 mMm KCl, and 100
mM Tris-HCI, pH 8.3). The cycling conditions for preamplifi-
cations were 20 cycles of 94° for 30 sec, 56° for 30 sec, and 72°
for 2 min. Selective amplifications were run in 20-pl reactions
containing 3 pl of the diluted (1:10) preamplification reaction
product, 50 mm of EcoRI+3 primer (labeled with fluorescent
dyes), 250 mm of Msel+3 primer, 1 unit AmpliTaq Gold poly-
merase (Applied Biosystems, Foster City, CA), 0.2 mm dNTPs,
and GeneAmp PCR buffer (15 mm MgCl,, 500 mm KCI, 100
mm Tris-HCL, pH 8.3, and 0.01% w/v gelatin). Selective PCR
conditions were 10 cycles of 94° for 30 sec, 65° (—1°/cycle)
for 30 sec, and 72° for 2 min followed by 35 cycles of 94° for
30 sec, 56° for 30 sec, and 72° for 2 min. All PCR reactions were
carried out in a Perkin Elmer thermocycler 9700 (Applied
Biosystems). PCR products from three primer pairs labeled
with different dyes were pooled and analyzed on a 96-lane
sequencing gel using an ABI Prism 377 DNA sequencer (Ap-
plied Biosystems).

Genotype analysis: AFLP gels were visualized and analyzed
using GeneScan software v. 2.1 (Applied BioSystems). Frag-
ment size data were downloaded and sorted using BinThere
software (N. Garnhart, University of New Hampshire). All
the data points were then checked manually to match the
corresponding bands on the gel. Misassigned data were cor-
rected and ambiguous fragments were counted as missing
data. Therefore, all markers were ultimately scored as presence
(+) or absence (—) of the amplification (band), or unknown
(missing data).

AFLP markers were sorted into three categories with inde-
pendent segregation patterns: (1) amplification present only
in the mother (C. eurytheme), (2) amplification present only
in the father (F, hybrid), and (3) amplification found in both
parents. Results of linkage analysis using markers from only
the second category are reported here since those markers
give the linkage of both autosomes and the X chromosome
(in Lepidoptera, females are the heterogametic sex) and thus
give the best representation of the genome. Information on
other markers and their linkage will be provided by the authors
upon request.

Linkage map construction: Segregating AFLP markers were
tested for deviation from expected 1:1 segregation ratios by
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TABLE 1

AFLP primer combinations used, number of markers generated with each primer combination, and number of
polymorphic markers selected for linkage analysis (in parentheses)

Msel
CAA CAC CAG CAT CTA CTC CTG CTT Total
AAC 50 (9) 37 (12) 40 (8) 37 (6) 37 (10) 27 (9) 40 (6) 29 (6) 297 (66)
AAG 47 (5) 33 (9) 23 (4) 48 (13) 36 (9) 25 (7) 27 (3) 47 (13) 286 (63)
ACA 62 (24) 27 (7) 18 (6) 49 (16) 47 (17) 21 (8) 39 (6) 21 (10) 284 (94)
EcoRI  ACC 17 (3) 22 (6) 31 (11) 13 (3) 23 (4) 7 (1) 15 (3) 19 (7) 147 (38)
ACG 25 (5) 36 (11) 24 (8) 15 (4) 32 (6) 30 (8) 16 (4) 21 (5) 199 (51)
ACT 50 (8) 24 (13) 22 (b) 34 (8) 42 (11) 15 (3) 26 (6) 29 (7) 242 (61)
AGC 44 (14) 22 (3) 12 (4) 48 (11) 17 (4) 25 (7) 33 (7) 38 (8) 239 (58)
AGG 20 (6) 16 (3) 21 (3) 33 (b) 19 (4) 23 (8) 25 (8) 20 (2) 177 (39)
Total 315 (74) 217 (64) 191 (49) 277 (66) 253 (65) 173 (51) 221 (43) 224 (58) 1871 (470)

Only 3'-end selective nucleotides of the primers are shown.

chi-square analysis (P < 0.05), with significance levels cor-
rected for multiple comparisons (Rick 1989). AFLP data show-
ing no significant deviation were used to calculate linkage.
Their segregation type was coded as backcross with the banded
genotype as heterozygous (H) and nonbanded as homozygous
recessive (A). Linkage analysis was performed using the map-
ping software MapMaker/Exp v. 3.0 (LANDER et al. 1987) and
confirmed using Map Manager QTX (MaNLY e/ al. 2001).
Linkage was determined with the criteria of LOD = 3.0 (P =
0.001 for Map Manager QTX) and a maximum recombination
fraction of 0.35 (see LANDER et al. 1987; BECKMANN 1994; and
Liu 1997 for discussion of the criteria used). Marker orders
were estimated using the Kosams1 (1944) mapping function.
To study the marker distribution along the map, we used the
chi-square test for goodness of fit as described by ROUPPE VAN
DER VOORT el al. (1997) to test if the AFLP markers were
randomly distributed within a linkage group. We also used
the Kolmogorov-Smirnov and Lilliefors one-sample test (Kor-
MOGOROFF 1941; LiLLIEFORS 1967) (on standardized data) to
compare the distribution of marker intervals between consecu-
tive loci along the map against the null expectation that they
follow a normal distribution.

RESULTS AND DISCUSSION

AFLP genotypes and segregation distortion: A total
of 1871 AFLP bands ranging from 65 to 600 bp (mostly
between 100 and 300 bp) were scored within the back-
cross family. A total of 64 primer combinations were
used, which gave an average of 29 bands per primer combi-
nation. Reactions with several pairs of primers produced
>40 bands, but one reaction (ACC/CTC) gave only seven
markers (Table 1). The AFLP marker system generally
shows a high multiplex ratio. The number of amplified
products generated in a single reaction, however, de-
pends on the number of selective nucleotides, type of
labels, and the combination of the primers used (LiN
el al. 1996, 1997; HaN et al. 1999; Liu et al. 2003). It
also varies among organisms since the multiplex ratio
is affected by the genome size, the GC content of the
genomic DNA, and the rates of substitutional variation
(LIN et al. 1996; PRIMROSE 1998).

A total of 1242 bands (69.3%) showed presence/ab-
sence of polymorphisms, indicating a substantial
amount of molecular variation. High levels of polymor-
phism were previously observed at several allozyme loci
within wild Colias populations, also suggesting Colias
are highly polymorphic (BUrNs and JoHNsON 1967;
WATT et al. 1985; WATT 1992). Among those polymor-
phic AFLP markers, 510 followed amplification pattern
2, with father banded and mother unbanded. Of these,
470 showed no deviation from the expected 1:1 ratio
and were selected for the linkage analysis. For each
primer combination, the number of bands used for
mapping varied from 1 to 24 (Table 1), with an average
of 7 mappable bands per primer combination.

The overall frequency of our AFLP loci showing segre-
gation distortions was ~12% (149/1242), lower than
the rate reported between strains in silkworm (TAN et
al. 2001). Skewed segregation ratios have been observed
commonly in AFLP loci, but the frequency of distorted
loci is highly variable (KOCHER et al. 1998; VIRK et al.
1998; Ky et al. 2000; KATENGAM et al. 2002; Livu et al.
2003). Segregation distortion of AFLPs can be caused
by comigrating fragment complexes, linkage to lethal
genes, variations in genomic DNA isolation, or simply
vagaries of PCR (VIRK et al. 1998; NIKAIDO et al. 1999;
Ky et al. 2000; TAN et al. 2001). Lack of modifiers to
suppress meiotic drive in hybrids might also be responsi-
ble for some of the distortions observed in interspecific
crosses (DErRMITZAKIS el al. 2000; SCHWARZ-SOMMER et
al. 2003; WILKINSON et al. 2003). In Colias butterflies,
this scenario is perhaps less likely to occur since the
genomes of these two species are homogenized by fre-
quent hybridization. Introgression and high similarity
between the two species may also account for the low
distortion rate we observed.

Genetic linkage map: Of the 470 segregating markers
tested, 452 (96%) showed detectable linkage to another
polymorphism, and 18 markers remained unassigned.
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The final linkage map comprised 51 linkage groups
(Figure 1), encompassing a total of 2541.7 ¢cM. Our
linkage groups ranged in size from 0 to 183.4 cM (mean,
49.8 cM). The number of AFLP markers per group
varied from 2 to 23, with an average of 9 markers. There
were 40 major linkage groups with 5-21 markers and
11 small groups with <5 markers. The mean distance
between adjacent loci was 6.3 cM (*£0.4). There were
seven gaps >30 c¢M in length distributed among 7 link-
age groups. The longest was 34.7 ¢cM on linkage group
37, approaching the maximum recombination fraction
of 0.35.

The genome of C. eurytheme and C. philodice is charac-
terized by numerous small chromosomes, often similar
in size (MAEKI and REMINGTON 1960; GRULA and TAy-
LOR 1980b). Mapping genomes that have a large num-
ber of chromosomes is often difficult (YAsukocHI 1998;
Liu et al. 2003). Both taxa have a haploid number of
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Frcure 1.—Linkage map of Colias
butterflies constructed from 58 back-
683 —}}-— AACCAC191 cross hybrids derived from the inter-
specific cross [eurytheme X (eurytheme X
philodice) ]. A total of 452 AFLP mark-
ers are described in terms of the selec-
tive nucleotides used and the fragment
size; for example, AACCTA339—the
EcoRI primer (AAC), the Msel primer
98.7 —--— ACGCTG309  (CTA), and the size of the band (339
bp). Recombination distances from
the origin (in centimorgans) are
1132 ACACTA155  given on the left side of each linkage
group (LG) and marker names are
to the right.
136.0 i ACTCAT307

31, typical of the Lepidoptera (REMINGTON 1954; MAEKI
and REMINGTON 1960), but much smaller than our
AFLP map of 51 linkage groups. Obviously, some of the
linkage groups are located on the same chromosomes
and large gaps exist between those groups; additional
markers are needed to bridge those gaps. Matching the
linkage group number to a high chromosome number
usually requires many more markers or a combination
of dominant and codominant markers (YASUKOCHI 1998).
In some cases, an insufficient number of markers may
still give a similar number of linkage groups to the actual
chromosomal number, but likely without one-
to-one correspondence due to missing information on
a subset of the chromosomes.

Since our linkage map contains 20 linkage groups
more than the actual haploid chromosomal number,
the complete recombination length of the genome
should be higher than the map length (2541.7 cM) after
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adding the flanking regions of the extra linkage groups.
This accounts for at least an additional 700 cM (20
LGs X 35 ¢cM/LG). Therefore, it seems that the total
recombination length of Colias is substantially higher
than that of the silkworm, which was estimated to be
~2000 cM (Yasukocnr1 1998). The longer length shown
in Colias may reflect a larger genome size or, we suspect,
higher rates of crossing over than in silkworm. High
rates of recombination in some regions of the genome
may also generate large gaps, causing markers on the
same chromosomes to be spuriously assigned to two or
more linkage groups.

AFLP marker distribution: Our AFLP markers placed
on the linkage map deviated significantly from a random
distribution as suggested by two different statistical tests.
Clustering of AFLP markers on linkage groups 2, 15,
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and 25 was revealed by the chisquare test for goodness
of fit (P = 0.05). The test, however, is effective only for
groups with >10 markers, which is not the case for a
majority of our linkage groups. Therefore, clustering
of our AFLP markers may occur more frequently than
shown by the test. The Kolmogorov-Smirnov and Lillie-
fors one-sample test indicated that the distribution of
intervals between consecutive markers significantly devi-
ated from a normal distribution (P = 0.001, Figure 2).
The coefficient of variation of interval sizes was 1.236
(95% C.I is 1.234-1.240, calculated using a jackknife
method), >1. This also suggests our AFLP markers were
not distributed at random but aggregated spatially over
the map.

AFLP markers tend to cluster around regions where
recombination is suppressed, usually corresponding to
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centromere and telomere regions (TANKSLEY et al. 1992;
RouPPE VAN DER VOORT et al. 1997; ALONSO-BLANCO
et al. 1998; Q1 et al. 1998; MIkLAs et al. 2001). Since
Lepidopteran chromosomes are holocentric (centro-
meres spread over >70% of the genome; MURARAMI
and Imar 1974; Papay 1986; MAREC ef al. 2001), dense
clusters are expected to be observed in large portions
of the map if suppressed recombination occurs at the
centromeric regions. To obtain a saturated map of a
3000-cM genome (probability of coverage, 0.95), only
279 polymorphic markers would be needed if they were
randomly distributed (KRuTOVSKII ef al. 1998). But for
markers that are not distributed at random, a substan-
tially higher number is required to achieve the same
level of coverage. Therefore, it is not surprising that
with 470 markers placed on the Colias map, we still
observed a large number of gaps, causing our number
of linkage groups to be more than the actual number
of chromosomes.

Perspectives: Our AFLP map of Colias butterflies is
one of the few linkage maps that have been reported
in Lepidoptera. Although this order represents an ex-
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tremely diverse and economically important group of
insects, mapping studies have been conducted only in
the silkworm, Bombyx mori. Several highly saturated link-
age maps (Dorra 1992; YasukocH1 1998; TaN et al.
2001) and a draft whole-genome sequence (MITA et al.
2004) of the silkworm have been published. Mapping
studies are currently ongoing in at least two other
groups of Lepidoptera (MCMILLAN et al. 2002), which
will further increase our knowledge about lepidopteran
genomes.

This study presents the starting point for further mo-
lecular-based research on Colias butterflies. The map
builds the foundation for thoroughly exploring the en-
tire genome represented by a large number of mapped
AFLP markers. It creates a framework for anchoring
morphological or other molecular markers and identi-
fying quantitative trait loci (QTL) for taxon-diagnostic,
geographically varying, and economically important
traits. This map also can be utilized to locate genes
of interest and to develop DNA probes, SNPs, STS/
expressed sequence tags, or other codominant DNA
markers with a wider range of applications. Further in-
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vestigation of the Colias genome will allow us to identify
factors that maintain their species integrity, to under-
stand the trade-offs between introgression and adapta-
tion, and to measure quantitatively the species bound-
ary. Ultimately, it will help us to predict the population
and evolutionary dynamics of these hybridizing agricul-
tural pests and design more appropriate control strate-
gies.
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