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ABSTRACT
The analysis of the haplotype-phenotype relationship has become more and more important. We have

developed an algorithm, using individual genotypes at linked loci as well as their quantitative phenotypes,
to estimate the parameters of the distribution of the phenotypes for subjects with and without a particular
haplotype by an expectation-maximization (EM) algorithm. We assumed that the phenotype for a diplotype
configuration follows a normal distribution. The algorithm simultaneously calculates the maximum likeli-
hood (L0max) under the null hypothesis (i.e., nonassociation between the haplotype and phenotype), and
the maximum likelihood (Lmax) under the alternative hypothesis (i.e., association between the haplotype
and phenotype). Then we tested the association between the haplotype and the phenotype using a test
statistic, �2 log(L0max/Lmax). The above algorithm along with some extensions for different modes of
inheritance was implemented as a computer program, QTLHAPLO. Simulation studies using single-
nucleotide polymorphism (SNP) genotypes have clarified that the estimation was very accurate when the
linkage disequilibrium between linked loci was rather high. Empirical power using the simulated data was
high enough. We applied QTLHAPLO for the analysis of the real data of the genotypes at the calpain 10
gene obtained from diabetic and control subjects in various laboratories.

IN many cases, haplotypes or diplotype configurations There are several common methods for haplotype infer-
but not genotypes are associated with phenotypes. ence using genotype SNP data. For example, the Clark

A diplotype configuration is defined as a combination algorithm (Clark 1990), the EM algorithm (Excoffier
of two haplotype copies possessed by an individual, and and Slatkin 1995; Hawley and Kidd 1995; Long et al.
an ordered diplotype configuration denotes an ordered 1995; Schneider et al. 2000; Kitamura et al. 2002),
list of two haplotypes arranged according to the deriva- PHASE (Stephens et al. 2001), the PL algorithm (Niu
tion (father and mother). Since recent analyses disclosed et al. 2002), and the PL-EM algorithm (Qin et al. 2002)
many linked polymorphic loci within a gene, the multi- have been used. We also proposed an algorithm to esti-
ple loci often have to be treated together rather than mate haplotypes by use of pooled genotype data (Ito et
separately. A haplotype and a haplotype copy have dis- al. 2003). However, the methods to relate such inferred
tinct definitions in this manuscript since when a subject haplotypes to the phenotypes are still to be developed.
is homozygous for a haplotype, he (or she) is interpreted We have recently proposed an algorithm (PENHAPLO)
to have a single haplotype but two haplotype copies. to test the association between qualitative phenotypes

(e.g., affection status) and the presence of a haplotype
by EM algorithm (Ito et al. 2004). Thus far, we have1Present address: Department of Bioinformatics, Graduate School of

Tokyo Medical and Dental University, Yushima 1-5-45, Bunkyo-ku, considered disease status as a qualitative trait with two
Tokyo 113-8510, Japan. outcomes, affected and unaffected, and penetrances as
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types or diplotype configurations. In practice, however,Bldg., 10F, 2-45 Aomi, Koto-ku, Tokyo 135-0064, Japan and Depart-

ment of Applied Biomedical Engineering, Tokyo Women’s Medical the disease phenotype often consists of a quantitative
University, Institute of Rheumatology, 10-22 Kawada-cho, Shinjuku- measurement such as blood sugar level. The locus forku, Shinjuku, Tokyo 162-0054, Japan.
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to as the quantitative trait locus (QTL) and the associated each subject with different probabilities. Using simulation
data and real data, we demonstrate that our approachphenotypes as quantitative phenotypes. Such quantitative
can be used to detect the association between quantita-phenotypes often follow continuous distributions, and
tive phenotypes and the presence of a haplotype andthe quantitative phenotypes should be handled sepa-
to estimate the distribution of the phenotypes. Althoughrately from the qualitative phenotypes. Thus, the pro-
we assumed the normality for the distribution of pheno-gram PENHAPLO cannot be directly applied to quanti-
types in the standard model, the methods to cope with thetative phenotypes.
violation of the normality are discussed in this manuscript.We developed an algorithm to estimate simultane-

ously the diplotype configurations for the subjects and
the distribution of quantitative phenotypes for different METHODS
diplotype configurations and to test the association be-

Analysis of real data: As the real data, we used thetween the phenotypes and the presence of a haplotype.
data from three linked SNP loci of the calpain (CAPN)10Note that the following considerations apply to this arti-
gene and the quantitative phenotypes. Haplotypes at thecle. First, rather than defining the probability of a phe-
CAPN10 gene have been reported to be associated withnotype (penetrance), probability density for a value of
type 2 diabetes (Horikawa et al. 2000). We selected bodya quantitative phenotype was defined. Second, the phe-
mass index (BMI), blood sugar level, and insulin levelnotypes were considered to depend on diplotype con-
as the quantitative phenotypes. We applied the real datafigurations rather than on genotypes at single loci.
of the genotypes at the three linked loci as well as one ofRecent studies have reported that, in some cases, drug
the phenotypes from the subjects to QTLHAPLO. By thisresponses and other phenotypes were associated not
method we tested the association between the haplo-with genotypes but with haplotypes or diplotype config-
types and the phenotypes and, at the same time, esti-urations (Judson et al. 2000; Bader 2001; Urano et al.
mated the parameters of the distribution of the pheno-2002; Tanaka et al. 2002). Tanck et al. (2003) presented
types.a method to estimate multilocus haplotype effects using

Algorithm: Sample space: In this study, the sample spacea weighted penalized log-likelihood model. Schaid et
is defined as a set of outcomes from the following experi-al. (2002) proposed methods to test the association be-
ment. Let us assume that there are l linked SNP loci.tween ambiguous haplotypes and a variety of traits (bi-
The number of all the possible haplotypes will be L �nary, ordinal, and quantitative traits), which were based
2l. We set up a collection of an infinite number of haplo-on score equations for generalized linear models (GLMs).
type copies. The relative haplotype frequencies in theTherefore, it is important to develop a method for
collection are � � (�1, . . . , �j , . . . , �L), where �j is the

testing the association between quantitative phenotypes
relative frequency of j th haplotype, and �j � 0, �L

j�1and different diplotype configurations. One of the prob-
�j � 1. According to the haplotype frequencies, an or-

lems in haplotype inference is that the diplotype con- dered combination of two haplotype copies is given to
figurations for some subjects are not uniquely deter- each of N individuals by randomly drawing them from
mined (ambiguous diplotype configurations). This is the collection of the haplotype copies. A diplotype con-
because more than one diplotype configuration is possi- figuration is defined, in this article, as an ordered combi-
ble for a subject even when the genotypes at all the relevant nation of two haplotype copies. Let a1, a 2, . . . , aL2 be
loci are observed. We could regard the diplotype configu- possible diplotype configurations. The probability that
ration with the highest probability as the true configura- the ith subject has the diplotype configuration ak given
tion and perform the test using the inferred data; however, � is P(di � ak|�) � �l �m, where di is a diplotype configu-
such a test may inflate the type I error rates. ration for the ith subject, and l, m are the labels (1, 2,

To overcome this problem, we developed an algorithm . . . , L) of the haplotypes that constitute ak . The ith
to simultaneously estimate parameters of the phenotype subject develops quantitative phenotype �i, following
distributions, haplotype frequencies, and diplotype con- a probability density function. Let us assume that the
figurations given observed genotypes and the phenotype phenotype for a diplotype configuration follows a nor-
data. mal distribution with a fixed variance but with a mean

As the simplest model, we assumed that the pheno- that depends on the diplotype configuration. An out-
type conditional on a diplotype configuration follows a come from the experiment is defined by (�, D, �),
normal distribution. Thus, the distribution of the phe- where D � (d 1, . . . , dN) denotes the vectors of the
notype for subjects with a specific haplotype follows diplotype configurations and � � (�1, . . . , �N) denotes
N(�1, 	2), while the distribution of the same phenotype the vectors of the phenotypes. The mean � of the distri-
without it follows N(�2, 	2). We estimate haplotype fre- bution of a phenotype is assumed to differ between
quencies, diplotype configurations, and parameters of the the subjects with and without haplotype h b. h b is the
phenotype distribution by an EM algorithm using geno- haplotype that has a different effect from the others.
type and phenotype data. Ambiguous diplotype configu- Let D
 denote a set of diplotype configurations that

contain the haplotype h b. We then define two normalrations are treated as multiple diplotype configurations for
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distributions for a phenotype, one, N(�1, 	2), for the It is not realistic, however, to assign different distribu-
tions for all different diplotype configurations for thesubjects with di � D
 and the other, N(�2, 	2), for those

with di � D
. Let f�1
(x) denote the probability density alternative hypothesis. We then set up only two normal

distributions, N(�1, 	2) and N(�2, 	2), for the alternativefunction that the ith individual develops a phenotype
x when di � D
, and let f�2

(x) denote the probability hypothesis. For the null hypothesis, we set up only one
normal distribution, N(�0, 	2). Thus, under the alterna-density function that the ith individual develops x when

di � D
. tive hypothesis, the ith subject develops the phenotype
x at the probability density function:Thus, if �i denotes the phenotype of ith subject, the

probability density is

f(�i � x|di � D
) � f�1
(x)

f(�i � x|di � ak , �, 	) �








� 1
√2�	

�e�(x��1)2/2	 2
� f�1

(x) if ak � D


� 1
√2�	

�e�(x��2)2/2	 2
� f�2

(x) if ak � D
 .and

f(�i � x|di � D
) � f�2
(x).

EM algorithm: Our algorithm is an extension of the
EM algorithm for estimating marker haplotype frequen-Note that �i is independent of � conditional on di .
cies to the association studies. However, our likelihoodLikelihood function: The observed data are the geno-
function, unlike previous algorithms, includes the infor-types and the quantitative phenotypes of the subjects.
mation about the phenotypes.Let Gobs � (g1, g2, . . . , gN) and �obs � (w1, w2, . . . , wN)

Equation 1 is maximized over �, �, and 	, and thedenote the vectors of the observed genotypes and the
maximum likelihood thus obtained is denoted Lmax.quantitative phenotypes, respectively, where gi and wi de-
Then Equation 2 is maximized over �, �0 , and 	, andnote the observed genotypes and the quantitative pheno-
the maximum likelihood thus obtained is denoted L0max.type of the ith subject.
The likelihood ratio L0max/Lmax is used to test the associa-As the first step, we consider a general case in which
tion between the presence of the haplotype and thethe distributions differ between all the diplotype con-
distribution of the phenotypes.figurations. Let � � (�1, �2, . . . , �L2) denote the vec-

In the maximization for Lmax, the parameters to betor of the means for the distributions for all possible
estimated are � � (�1, �2, . . . , �L), �1, �2, and 	,diplotype configurations. Note that, in this context, the
while in the maximization for L0max, the parameters todistributions of a phenotype are assumed to be poten-
be estimated are � � (�1, �2, . . . , �L), �0, and 	. Undertially different between different diplotype configura-
the null hypothesis, �2 log(L0max/Lmax) is expected totions. Then the likelihood function is
follow the �2 distribution with 1 d.f. (Wilks 1962; Ser-

L(�, �, 	)  �
N

i�1
�

a
k
�A

i

P(di � ak|�, �, 	) fling 1981).
If the complete data of d1, d2, . . . , dN and �1, �2,

. . . , �N were available, the maximum-likelihood� f(�i � wi |di � ak , �, �, 	),
estimates of �1, �2, . . . , �L and �, 	 would be easily

where Ai denotes the set of ak for the ith subject that obtained as �̂j � nj/(2N) for j � 1, 2, . . . , L
are consistent with gi and f is the probability density and �̂1 � �di �D


�i/N
, �̂2 � �di �D

�i/N� ,

function for N(�k, 	2).
Since di is independent of �, 	 and �i is independent 	̂ � √[�di �D


(�i � �1)2 
 �di �D

(�i � �2)2]/N,

of � conditional on di ,
where nj is the number of the copies of the jth haplotype

L(�, �, 	)  �
N

i�1
�

ak�Ai

P(di � ak |�)f(�i � wi|di � ak , �, 	). in the N subjects, N
 denotes the number of subjects who
possess haplotype hb, and N� denotes the number of sub-(1)
jects who do not possess haplotype hb.

Under the null hypothesis that the distribution of the However, the complete data are not available, and
phenotype is independent of the diplotype configura- we observe only genotypes and phenotypes of the
tion, the likelihood function is subjects. Therefore, we substitute the expected values of

nj/(2N), �di�D

�i/N
 , �di �D


�i/N�, and
L(�, �0, 	)  �

N

i�1
�

ak�Ai

P(di � ak |�)f(�i � wi|di � ak , �0, 	),
√[�di �D


(�i � �1)2 
 �di �D

(�i � �2)2]/N

(2)
for the real values in the following EM algorithm.

where, under the null hypothesis, the mean on the distri-
bution of the phenotype for the diplotype configura- i. For n � 0, initial values are given to �(n) � (�(n)

1 ,
�(n)

2 , . . . , �(n)
L ), where �L

j�1�
(n)
j � 1 and �(n)

j � 0.tions is invariable, and �0 denotes the vectors of the
means, �0 � (�0, �0, . . . , �0). Then again, Ai denotes ii. For n � 0, initial values are given to �(n) � (�(n)

1 ,
�(n)

2 ).the set of diplotype configurations for the ith subject
that are consistent with gi . iii. For n � 0, initial values are given to 	(n).
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iv. For all i and for all ak consistent with the genotype E � �
di �D


�i/N
|�obs, Gobs, �(n), �(n), 	(n)� � � N
i�1�i(vb/v0)

� N
i�1(vb/v0)

. (6)
gi , calculate

In the above equation,P(di � a k|�i � wi , �(n), �(n), 	(n)) � P(d i � a k|�(n), �(n), 	(n))

vb � �
ak�Ai�D


P(di � ak|�(n))f(�i|di � ak , �(n)
1 , 	(n)) ,� f (� i � wi|d i � a k ,

�(n), �(n), 	(n))/ �
am�Ai

P(di � a m|�(n), �(n), 	(n)) and

v0 � �
ak�Ai

P(di � ak|�(n))f(�i|di � ak , �
(n)
1 , 	(n)) ,� f (�i � wi |d i � am, �(n), �(n), 	(n)) , (3)

where Ai denotes the set of am consistent with gi. where the denominator and the numerator in Equa-Note that we examine only ak consistent with gi. In
tion 6 are the summed probability densities of theaddition, since di is independent of �(n) and 	(n),
observed data for the ith subject consistent with giand �i is independent of �(n) conditional on di, and those consistent with gi and ak � Ai � D
 ,Equation 3 becomes
E ��� �

di �D



(�i � �1)2 
 �
di �D




(�i � �2)2�/N |�obs, Gobs, �(n), �(n), 	(n)�P(di � a k|�i � wi , �(n), �(n), 	(n))

� P(d i � ak|�(n))
� �1n�

N

i�1

(�i � �1)2 �
N

i�1

(ub/u0) 

1
n �

N

i�1

(�i � �2)2�
N

i�1

(vb/v0)1/2� ,
� f(� i � wi |di � a k , �(n), 	(n))/ �

am�Ai

P(di � am|�(n))

where n denotes �N
i�1(ub/u0) 
 �N

i�1(vb/v0).
� f(�i � wi|di � am, �(n), 	(n)). (4)

vii. From the result of step v, � is updated for the next
v. Since nj, the number of jth haplotype copies pos- step as follows:

sessed by N subjects is a random variable, we can
�(n
1)

j � E[nj|�obs, Gobs, �(n), �(n), 	(n)]/(2N).define the expected number of jth haplotype cop-
ies conditional on the observed data as From the result of step vi, � and 	 are updated for

the next step as follows:E[nj |�obs , Gobs, �(n), �(n), 	(n)]
�(n
1)

1 � E � �
di �D


�i /N
|�obs, Gobs, �(n), �(n), 	(n)�� �
N

i�1
�

a k�Ai

g j(a k)P(d i � a k|�obs, Gobs, �(n), �(n), 	(n)) ,

�(n
1)
2 � E � �

di �D


�i /N
|�obs, Gobs, �(n), �(n), 	(n)�where g j(ak) denotes the number of jth haplotype
copies in ak, and Ai again denotes the set of diplo-

	(n
1) � E ��� �
di �D


(�i � �1)2 
 �
di �D


(�i � �2)2	/Ntype configurations for the ith subject that is consis-
tent with gi . Note that gj(ak) is 0, 1, or 2. The ex-
pected values are calculated for all j. |�obs, Gobs, �(n), �(n), 	(n)� .

vi. Here, �d i �D

�i/N
, �d i �D


�i/N� , and
viii. Steps iv–vii are repeated until the values converge.√[�di �D


(�i � �1)2 
 �di �D

(�i � �2)2]/N The values when converged are considered as the

maximum-likelihood estimates �̂ � (�̂1, �̂2, . . . ,are random variables and, therefore, expected val-
�̂L), �̂1, �̂2, and 	̂.ues conditional on the observed data can be de-

ix. To avoid the local maximum, different sets of valuesfined as
for �(0)

j (j � 1, 2, . . . , L), �(0)
1 , �(0)

2 , and 	(0) are tested.
E � �

di �D


�i/N
|�obs, Gobs, �(n), �(n), 	(n)� � � N
i�1�i(ub/u0)

� N
i�1(ub/u0)

. (5) Here, Equation 1, given the values �̂, �̂, and 	̂, is the
maximum-likelihood Lmax for the alternative hypothesis.

In the above equation, If we give the condition �0 � (�0, �0) and repeat steps
iv–vii, then we get the maximum-likelihood L0max forub � �

ak�D
�Ai

P(di � ak|�(n))f(�i|di � ak , �
(n)
1 , 	(n)) ,

the null hypothesis. The present algorithm can handle
missing data in both the observed genotypes and theand
phenotypes. Thus, when the genotype data were missing

u0 � �
ak�Ai

P(di � ak|�(n))f(�i|di � ak , �(n)
1 , 	(n)) , in some loci for the ith subject, gi, the observed geno-

types for i, were interpreted as the set of all possible
genotypes consistent with the observed genotypes ex-where the denominator and the numerator in Equa-

tion 5 are the summed probability densities of the cluding the loci where the data were missing. When the
phenotype was missing for the ith subject, the likelihoodobserved data for the ith subject consistent with gi

and those consistent with gi and ak � D
 � Ai: of only the observed genotype data but not that of the
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TABLE 1

Haplotype frequencies for the SAA1 gene

Six-locus data Four-locus data

Haplotype Frequency Haplotype Frequency Haplotype Frequency

ACTGCC 0.394 AGCACT 0.018 CTCC 0.391
ACCGTCa 0.214 GGCGCT 0.017 GCCT 0.267
AGCGCT 0.210 ACTGTC 0.013 CCTCa 0.258
GCCGTC 0.036 ACCGCC 0.006 CTCT 0.061
GCTGCT 0.035 ACCATC 0.006 CTTC 0.013
GGCACT 0.023 AGCGCC 0.003 CCCC 0.007
ACTGCT 0.023 GCCC 0.003

a The haplotype that was assigned as the “quantitative phenotypes-associated haplotype.”

phenotype data was included in the calculation. Even cally estimated from samples generated by the simula-
tion.when the phenotype data were missing for some sub-

jects, the inclusion of their observed genotype data for The estimation of power: The purpose of this simulation
was to estimate the power under the alternative hypothe-the analysis has increased the accuracy of the estimation

of the population haplotype frequencies. sis. With varying values of �1, �2, and 	, the empirical
power was determined.Under the null hypothesis, the statistic �2 log(L0max/

Lmax) is expected to follow, asymptotically, �2 distribution Bootstrap method to calculate standard errors of the
estimated parameters: To evaluate the reliability of esti-with 1 d.f.. The above algorithm is implemented as a

computer program QTLHAPLO. mated parameters �̂1 , �̂2, and 	̂, we used the bootstrap
method (nonparametric bootstrap method) to calculateDesigns of simulations: The QTL parameter estimations:

The purpose of the simulation was to verify the accuracy means and standard errors. From the original real sam-
ple, an artificial sample was generated by drawing theof the estimation of the parameters for the distribution

of the phenotype. A sample was generated by the experi- same number of the subjects at random. A single subject
in the original sample may be repetitively drawn. Itment defined above. Then an ordered combination of

two haplotypes was randomly selected from a collection means that a new sample was drawn from the population
in which the subjects in the original sample were uni-of haplotype copies and given to each of the N subjects

according to the given haplotype frequencies. We ob- formly distributed. Using the new artificial sample, the
parameters were estimated using QTLHAPLO. Thetained haplotype frequencies for the SAA1 gene from

a previous study (Moriguchi et al. 2001). SNP data at above procedure was repeated 10,000 times and the
values of the estimated parameters were used to calcu-six loci were included in the haplotype data of the SAA1

gene. We performed two types of simulations, one using late the mean and the standard error.
Extension of the algorithm: The present algorithmthe data from six loci and the other from four loci. The

latter set of loci (four loci) was obtained by excluding was extended so that it can handle dominant, recessive,
and additive modes of inheritance. Let A denote thethe first and the fourth loci, which were in only weak

linkage disequilibrium with the other loci. Haplotype haplotype for a genetic region R that is related to the
phenotype, and let B denote the complement of A, i.e.,frequencies used in the two types of simulations are

shown in Table 1. We assumed that one of the haplo- the set of all haplotypes other than A. We gave the
following mean variables for different diplotype con-types is associated with the phenotype, and the pheno-

type of the subject with that haplotype follows N(�1, 	2). figurations. Thus, we gave �1 for both AA and AB and
�2 for BB in the dominant mode, while we gave �1 forThe phenotype of the subject without that haplotype

was assumed to follow N(�2, 	2). Thereafter, we removed AA and �2 for both AB and BB in the recessive mode.
In the additive mode, we gave �1 and �2 for AA and BB,the phase information and ran our algorithm to esti-

mate parameters. respectively, and (�1 
 �2)/2 for AB. In addition, we
have implemented the mode in which the three differ-Behavior of the statistic �2 log(L0max/Lmax) under the null

hypothesis: The purpose of this simulation was to examine ent means �1, �2, and �3 were given to the three different
diplotype configurations.the distribution of the likelihood-ratio test statistic �2

log(L0max/Lmax) under the null hypothesis �1 � �2. The Another extension is to define A not as a single haplo-
type but as a set of multiple haplotypes. For example,null hypothesis was equivalent to the assumption of no

association between the phenotype and the presence of we can denote D
 as the set of diplotype configurations
that contain either of the two phenotype-associated hap-the haplotype. The test statistic was determined for each

sample. The distribution of the test statistic was empiri- lotypes. More generally, we can define a set Q as a set
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TABLE 2 Then, we incorporated the quantitative phenotype
data in addition to the genotype data into the analysis.Estimated haplotype frequencies for the CAPN10 gene
Thus, one of the following quantitative phenotypes was
selected: BMI, BS at 0 min (BS 0�), BS 30�, BS 60�, BSFrequency under

Haplotypea Frequencyb linkage equilibriumc 120�, IRI at 0 min (IRI 0�), IRI 30�, IRI 60�, or IRI
120� (Table 4). The results indicate that there were121 0.5696 0.4285
significant associations between the presence of the hap-112 0.2588 0.0974
lotype 112 and both BS 30� and BS 60� (Table 4). Table111 0.1078 0.2557
5 shows that when the haplotype 112 was assumed to be221 0.0468 0.0250

122 0.0087 0.1632 the phenotype-associated haplotype, �̂1 � �̂2, suggesting
212 0.0070 0.0057 that the subjects with the 112 haplotype exhibit higher
222 0.0012 0.0095 blood glucose levels at 30 and 60 min after the glucose

ingestion than those without the haplotype. SE by theGenotypes were determined at three SNP sites in the
CAPN10 gene in 281 diabetic subjects. These three SNP sites bootstrap method were (�1 � SE, �2 � SE, 	 � SE) �
have been reported to be associated with the development of (147.1 � 2.6, 138.9 � 2.2, 28.2 � 1.1) in the blood
type II diabetes (Horikawa et al. 2000). Using the genotype glucose level at 30 min, and (138.5 � 3.7, 129.0 � 3.0,
but not the phenotype data in 281 subjects, the haplotype

38.8 � 1.5) in the blood glucose level at 60 min. Infrequencies were estimated by QTLHAPLO using only the
addition, haplotype 122 was significantly associated withgenotype data.

a Haplotype involving the three SNP sites within the CAPN10 BS 0� (Table 4). However, this may not necessarily indi-
gene. cate that the subjects with the 122 haplotype exhibit

b The haplotype frequencies � were estimated from the lower fasting glucose levels than those without the hap-
genotype data by assuming the presence of the linkage disequi-

lotype. In fact, the frequency of the 122 haplotype waslibrium using QTLHAPLO.
0.0087, a value too low to evaluate (Table 2). Althoughc The haplotype frequencies � were estimated from the

genotype data by assuming the linkage equilibrium. Note that such problems as multiple testing should be kept in
the frequencies of a haplotype are expressed as the product mind, these results suggest an association between the
of the allele frequencies in the case of linkage equilibrium. 112 haplotype and blood glucose levels.

The accuracy of estimated values of parameters: We
used the simulation to generate samples under eitherof all phenotype-associated haplotypes and D
 as the
the null or the alternative hypothesis and analyzed theset of diplotype configurations with at least one member
data in the sample using QTLHAPLO.of Q. We implemented dominant, recessive, and additive

First, haplotype frequencies � were employed frommodes for the analysis using such sets of haplotypes. In
the four-locus data at the SAA1 gene, as shown in Tablethis way, we can test the association between a set of
1. The CCTC haplotype was considered to be the pheno-haplotypes and a phenotype. Since a SNP can be defined
type-associated haplotype. Note that all of the four locias a set of haplotypes, we could test the association
were in tight linkage disequilibrium with each other.between a SNP and a phenotype in this way. This exten-
Two haplotype copies were selected using the haplotypesion was also implemented in QTLHAPLO.
frequencies and assigned to each subject. The pheno-
type of the subject was determined stochastically using

RESULTS two normal distributions. N(�1, 	2) was used when the
subject possessed the phenotype-associated haplotype,Analysis of real data: We analyzed the data from the
while N(�2, 	2) was used when the subject did not possessdiabetic patients. The data included the genotypes at
the haplotype. The parameters �1, �2, and 	 were givenCAPN10 and quantitative phenotypes such as BMI,
to each simulation as described in Table 6. A sampleblood glucose level (BS), and immunoreactive insulin
consisted of a total of N subjects.level (IRI). The precise data will be published elsewhere

After diplotype configurations and phenotypes were(N. Iwasaki, Y. Horikawa, Y. Kitamura, Y. Nakamura,
determined for all the subjects, the phase informationY. Tanizawa, Y. Oka, K. Hara, T. Kadowaki, T. Awata,
was removed. Using the genotype information and theM. Honda, K. Yamashita, M. Ogata, N. Kamatani,
phenotypes of the subjects, we used QTLHAPLO toN. J. Cox, G. I. Bell and Y. Iwamoto). These quantita-
estimate the parameters �, �1, �2, and 	 and, at thetive phenotypes are expected to follow asymptotically
same time, calculated P-values for excluding the nullnormal distributions (data not shown). Table 2 also
hypothesis.shows the haplotype frequencies � inferred under the

The results showed that our algorithm is highly accu-hypothesis of no linkage disequilibrium. Table 3 shows
rate for estimating the parameters �1, �2, and 	, whetherthat the pairwise linkage disequilibrium measures D, D�,
the simulation is performed under the null hypothesisand r2 estimated under the presence of linkage disequi-
or the alternative hypothesis under the given conditionslibrium. These results showed that there was consider-
(Table 6). As expected, the P-value to exclude the nullable linkage disequilibrium between each pair of the

loci of CAPN10. hypothesis was high when the simulation was under the
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TABLE 3

Estimated linkage disequilibrium measures for the CAPN10 gene

Disequilibrium Standardized
Locus 1 Locus 2 parameter: D disequilibrium: D� r 2

1 2 �0.0138 �0.6709 0.0157
1 3 �0.0094 �0.6148 0.0084
2 3 0.1628 0.9424 0.5669

The haplotype frequencies � were estimated from the genotype data from 281 subjects at the three loci
within the CAPN10 gene under the assumption of the presence of linkage disequilibrium, and the pairwise
linkage disequilibrium measures D, D�, and r2 were calculated from the estimated �̂.

null hypothesis, while it was low when the simulation was for each subject conditional on only the observed geno-
type data [P(di � ak|Gobs)] was also determined usingperformed under the alternative hypothesis (Table 6).

Next, � was employed from the six-locus data at the the same program. It is of interest to examine whether
the diplotype distribution changes when the observedSAA1 gene, shown in Table 1. Note that two of the six

loci were in only weak linkage disequilibrium with the phenotype data are added to the observed genotype
data. Another question is whether the inference be-other loci. In this case, the ACCGTC haplotype was

considered to be the phenotype-associated haplotype. comes more accurate when the observed phenotype
data are incorporated. Table 8 shows the comparisonThe simulation and the analysis of the data generated

by the simulation were performed exactly as in the case of the diplotype distribution for each subject inferred
by only the genotype data and inferred by both theof the four-locus data as described above except for the

number of loci. genotype and the phenotype data. In this case, the simu-
lation was performed under the conditions �1 � 165,Table 7 again shows that the estimation of the parame-

ters was accurate. The risk to exclude the null hypothesis �2 � 160, 	 � 5.0, and N � 1000. The results were
shown only for individuals i � 1, 2, . . . , 10. For the(P-value) was high when the data were simulated under

the null hypothesis, while it was very low when they were subjects 1, 3, 4, 5, 6, 8, and 9, the diplotype configura-
tions were concentrated on single events whether orsimulated under the alternative hypothesis (Table 7).

Accuracy of estimated diplotype configuration: Using not the observed phenotype data were incorporated
(Table 8). For subjects 2, 7, and 10, the diplotype con-the simulated data, the posterior probability distribu-

tion of the diplotype configuration (diplotype distribu- figurations were not concentrated on single events; how-
ever, the distributions were almost identical between thetion) for each subject conditional on the observed geno-

type and phenotype data [P(di � ak|Gobs, �obs)] was two inferences, one made by incorporating the observed
phenotype data and the other without them (Table 8).determined by QTLHAPLO. The diplotype distribution

TABLE 4

Results of the test of association between the possession of a haplotype within the CAPN10 gene and a phenotype

Haplotypea

Quantitative
phenotypeb 111 112 121 122 212 221

BMI 0.6945c 0.8070 0.8212 0.2023 0.6404 0.6388
BS 0� 0.1359 0.9367 0.3346 0.0202 0.3308 0.7343
BS 120� 0.1629 0.3311 0.7492 0.8296 0.7076 0.3930
BS 30� 0.3446 0.0140 0.6959 0.9199 0.9823 0.2765
BS 60� 0.5855 0.0406 0.3630 0.4207 0.6450 0.6953
IRI 0� 0.8445 0.8333 0.6737 0.3340 0.4997 0.6336
IRI 120� 0.5277 0.5698 0.2823 0.3505 0.9530 0.7354
IRI 30� 0.8457 0.4698 0.5068 0.2656 0.8750 0.7758
IRI 60� 0.8581 0.0589 0.3135 0.3548 0.8576 0.7383

a Each haplotype was assumed to be the phenotype-associated haplotype.
b One of the various quantitative phenotypes was selected for the test. The genotype data for 281 subjects

were combined with the phenotype data and analyzed by QTLHAPLO to test the association between the
possession of a haplotype and the quantitative phenotype. BMI, body mass index; BS, blood glucose level; IRI,
immunoreactive insulin level; 0�, 30�, 60�, and 120�: 0, 30, 60, and 120 min, respectively.

c The results show P-values that exclude the null hypothesis that the quantitative phenotype is not associated
with the haplotype. The underlined values indicate P-values �0.05.
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TABLE 5

Estimates of the parameters for the distributions of the phenotypes under various conditions

Haplotypea

111 112 121
Quantitative
phenotypeb �̂1 �̂2 	̂ �̂1 �̂2 	̂ �̂1 �̂2 	̂

BMI 22.4c 22.3 3.01 22.4 22.26 3.01 22.3 22.4 3.01
BS 0� 91.0 93.2 9.35 92.8 92.74 9.39 93.0 91.7 9.37
BS 30� 139.2 143.3 28.5 147.1 138.9 28.2 142.8 141.2 28.5
BS 60� 130.5 133.8 39.0 138.5 129.0 38.8 134.2 128.9 39.0
BS 120� 102.1 105.9 18.2 106.4 104.2 18.2 105.3 104.5 18.2
IRI 0� 1.78 1.77 0.423 1.77 1.78 0.424 1.78 1.75 0.424
IRI 30� 3.49 3.48 0.540 3.51 3.46 0.539 3.47 3.52 0.539
IRI 60� 3.58 3.60 0.562 3.67 3.54 0.559 3.61 3.53 0.561
IRI 120� 3.25 3.30 0.545 3.31 3.27 0.545 3.31 3.22 0.544

Haplotypea

122 212 221
Quantitative
phenotypeb �̂1 �̂2 	̂ �̂1 �̂2 	̂ �̂1 �̂2 	̂

BMI 20.3 22.3 3.00 21.6 22.3 3.01 22.6 22.3 3.01
BS 0� 82.8 92.9 9.30 88.6 92.8 9.37 92.2 92.8 9.38
BS 30� 141.2 142.5 28.5 141.9 142.5 28.5 136.8 143.1 28.5
BS 60� 118.7 133.3 39.0 125.1 133.3 39.0 130.3 133.4 39.0
BS 120� 103.4 105.2 18.2 102.0 105.2 18.2 102.3 105.5 18.2
IRI 0� 1.58 1.78 0.423 1.91 1.77 0.423 1.74 1.78 0.424
IRI 30� 3.76 3.48 0.539 3.52 3.48 0.540 3.51 3.48 0.540
IRI 60� 3.35 3.60 0.561 3.64 3.60 0.562 3.56 3.60 0.562
IRI 120� 3.05 3.29 0.545 3.27 3.29 0.545 3.26 3.29 0.545

The genotype data at the three loci within the CAPN10 gene were combined with the data of one of the
quantitative phenotypes and analyzed by QTLHAPLO under the alternative hypothesis, assuming that one of
the haplotypes was the phenotype-associated haplotype. The underlined data indicate that the difference was
considered significant (P-values �0.05) by the test described in methods.

a One of the haplotypes was assumed to be the phenotype-associated haplotype.
b One of the quantitative phenotypes was selected as the phenotype to be tested.
c Maximum-likelihood estimates of the parameters under the alternative hypothesis.

The comparison of the diplotype distribution be- type configurations becomes more accurate by incorpo-
rating the phenotype data in addition to the genotypetween the two inferences was done using the six-locus

data for the SAA1 gene. Part of the results are shown data. Thus, the inference of the diplotype configuration
for each subject was performed using only the genotypein Table 9. In this case, the diplotype distributions were

not concentrated on single events in the subjects i � 53, data or using both genotype and phenotype data from
the simulated samples. Then, we counted how many of55, 57, 58, and 59. For the subject i � 55, the diplotype

distribution differed significantly between the two infer- the subjects’ inferred diplotype configurations became
more accurate and how many became less accurate byences. Since this subject has a quantitative phenotype

of 167.8, the subject is likely to possess the phenotype- incorporating the phenotype data. When the posterior
probability of the true diplotype configuration becameassociated haplotype ACCGTC because �1 � 165 and �2 �

160. The incorporation of the phenotype data changed higher by incorporating the phenotype data, as was the
case with the subject i � 55 in Table 9, we judged thatthe diplotype distribution of the subject i � 55 so that the

probability of the diplotype configuration occurring with the inference became more accurate. On the other
hand, when the posterior probability of the true diplo-the phenotype-associated haplotype (ACCGTC GCTGCT)

increased. Thus the inclusion of the phenotype data type configuration became lower by the incorporation
of the phenotype data, we judged that the inferencechanged the diplotype distribution for each subject and

seemed to improve the accuracy of the inference of the became less accurate. When the six-locus haplotype fre-
quencies were used, the proportions of the subjectsdiplotype configurations.

We have intensively addressed this issue by the simula- whose inference of the diplotype configurations became
more and less accurate by the incorporation of the phe-tion; i.e., we asked whether the inference of the diplo-
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TABLE 6

Accuracy of estimation of the parameters for the distribution of a quantitative phenotype in the
analysis of simulated four-locus data for the SAA1 gene

Sampleb Estimatedc

Populationa

(�1, �2, 	) N Mean 1 Mean 2 SD �̂1 � SE �̂2 � SE 	̂ � SE P-valuesd

(160, 160, 5.0)e 100 160.31 159.03 5.142 160.31 � 0.72 159.03 � 0.72 5.142 � 0.319 0.223
200 159.00 159.94 5.148 159.00 � 0.57 159.94 � 0.47 5.148 � 0.243 0.197
400 159.87 159.78 4.860 159.87 � 0.36 159.78 � 0.33 4.860 � 0.143 0.862

1000 160.18 159.92 4.883 160.18 � 0.23 159.92 � 0.21 4.883 � 0.114 0.404
(161, 160, 5.0) 100 161.17 159.75 5.271 161.17 � 0.80 159.75 � 0.71 5.271 � 0.328 0.188

200 161.22 160.00 4.795 161.22 � 0.46 160.00 � 0.49 4.795 � 0.191 0.0739
400 160.89 160.01 4.788 160.89 � 0.36 160.01 � 0.32 4.788 � 0.156 0.0661

1000 161.38 160.16 5.091 161.38 � 0.24 160.16 � 0.22 5.091 � 0.120 0.000159
(163, 160, 5.0) 100 163.27 160.23 4.925 163.27 � 0.80 160.23 � 0.63 4.926 � 0.352 0.00312

200 162.90 159.38 5.020 162.90 � 0.56 159.38 � 0.47 5.020 � 0.223 1.61 � 10�6

400 162.74 159.70 4.858 162.74 � 0.36 159.70 � 0.33 4.859 � 0.167 1.23 � 10�9

1000 163.10 159.68 4.933 163.10 � 0.23 159.68 � 0.20 4.934 � 0.107 3.86 � 10�26

(165, 160, 5.0) 100 163.80 160.07 5.159 163.80 � 0.80 160.08 � 0.69 5.159 � 0.304 0.000598
200 164.99 160.17 4.953 164.99 � 0.48 160.17 � 0.51 4.953 � 0.248 8.66 � 10�11

400 165.16 160.67 4.894 165.16 � 0.37 160.67 � 0.33 4.895 � 0.169 3.32 � 10�18

1000 165.12 160.21 4.875 165.12 � 0.23 160.21 � 0.21 4.875 � 0.113 1.30 � 10�50

A sample of size N was obtained by simulation using a set of given parameters, and the data obtained were analyzed, after
removing the phase information, using QTLHAPLO for both the estimation of parameters and the test of the association between
the presence of a haplotype and the quantitative phenotype.

a Values described in parentheses were given to the parameters �1, �2, and 	. Two haplotypes were selected from the population
haplotype pool according to the haplotype frequencies (�) obtained from the four-locus data of the SAA1 gene (see Table 1)
and given to each subject. The quantitative phenotype was determined stochastically for each subject depending on whether
the phenotype-associated haplotype (CCTC haplotype was assumed to be the phenotype-associated haplotype in this case) was
present (�1 was used) or absent (�2 was used) using the two normal distributions N(�1, 	2) and N(�2, 	2).

b For each sample, the means of the quantitative phenotypes for the subjects with the phenotype-associated haplotype (mean 1)
and that for the subjects without the haplotype (mean 2) were determined. SDs of the quantitative phenotypes for all the subjects
were calculated as follows: SD � √[�di �D


(wi � mean 1)2 
 �di �D

(wi � mean 2)2]/N, where D
 is a set of diplotype configura-

tions with the phenotype-associated haplotype, while di is the diplotype configuration for the ith subject. wi is the observed
quantitative phenotype of the ith subject.

c From the sample, phase information was removed. The genotype information and the phenotype information were used for
the estimation of the parameters using QTLHAPLO. SEs of the estimated parameters were calculated as described in Designs of
simulations.

d At the same time, the sample statistic �2 log(L0max/Lmax) was calculated for each sample, and the P-value was determined by
QTLHAPLO assuming that, under the null hypothesis, the sample statistic followed a �2 distribution with 1 d.f.

e This parameter set is equivalent to the null hypothesis.

notype data were 0.1957 � 0.0429 and 0.1061 � 0.0413 log(L0max/Lmax) obtained by the analysis of the simulated
data using QTLHAPLO. Thus, when the parameters(results from simulations under the same conditions as

in Table 9), respectively. On the other hand, when the were �1 � �2 � 160 and 	 � 5, the statistic followed
asymptotically the �2 distribution with 1 d.f. Similar sim-four-locus haplotype frequencies were used, the propor-

tions of the subjects whose inference of the diplotype ulations were performed under various conditions fol-
lowed by the analysis of the data using QTLHAPLO.configurations became more and less accurate by the

incorporation of the phenotype data were 0.1387 � Table 10 shows the results of the estimated values of
the parameters and the type I error rates using two0.0111 and 0.0589 � 0.0075 (results from simulations

under the same conditions as in Table 8), respectively. different � data sets (four-locus and six-locus data sets
in Table 1) and two sample sizes (100 and 1000). TheDistribution of the statistic �2 log(L0max/Lmax) under

the null hypothesis: The null hypothesis is that the distri- estimated parameters were accurate for both � data sets
and two sample sizes. In addition, when the value of 3.841,bution of the quantitative phenotype is independent

of the diplotype configurations. It is equivalent to the where the cumulative distribution function for �2 distribu-
tion with 1 d.f. becomes 0.95, was set as the threshold,assumption of �1 � �2. The samples were simulated

under the null hypothesis using various values of �1 � the proportion of the samples that generated statistic val-
ues over the threshold (empirical type I error rate) was�2, and 	. For �, the four-locus data (Table 1) were

used and the 10,000 independent samples were gener- very close to the expected value of 0.05 (Table 10).
Power of the test: We determined the empirical pow-ated. Figure 1 shows the histogram for the statistic �2



534 K. Shibata et al.

TABLE 7

Accuracy of estimation of the parameters for the distribution of a quantitative phenotype in the
analysis of simulated six-locus data for the SAA1 gene

Sampleb Estimatedb

Populationa

(�1, �2, 	) N Mean 1 Mean 2 SD �̂1 � SE �̂2 � SE 	̂ � SE P-valuesb

(160, 160, 5.0)b 100 159.33 159.65 5.178 159.20 � 0.80 159.72 � 0.69 5.174 � 0.312 0.637
200 159.88 159.36 5.164 159.87 � 0.70 159.36 � 0.44 5.164 � 0.239 0.517
400 159.51 159.98 4.855 159.39 � 0.40 160.05 � 0.30 4.851 � 0.143 0.194

1000 159.94 160.10 4.884 159.95 � 0.26 160.09 � 0.19 4.884 � 0.113 0.642
(161, 160, 5.0) 100 159.99 160.44 5.229 160.16 � 0.88 160.34 � 0.67 5.233 � 0.329 0.870

200 160.99 160.12 4.737 160.95 � 0.55 160.13 � 0.47 4.739 � 0.234 0.220
400 160.65 159.99 4.781 160.63 � 0.40 160.02 � 0.30 4.782 � 0.170 0.209

1000 160.77 159.84 5.056 160.78 � 0.27 159.84 � 0.20 5.055 � 0.115 0.00345
(163, 160, 5.0) 100 162.81 160.49 4.915 162.90 � 0.79 160.51 � 0.63 4.911 � 0.350 0.0219

200 162.55 159.90 5.235 162.50 � 0.59 159.87 � 0.49 5.236 � 0.285 0.000794
400 163.20 159.83 5.188 163.06 � 0.39 159.95 � 0.34 5.229 � 0.205 6.47 � 10�9

1000 162.76 159.89 4.873 162.65 � 0.25 159.98 � 0.20 4.900 � 0.109 2.90 � 10�17

(165, 160, 5.0) 100 165.15 159.23 5.178 165.04 � 0.90 159.30 � 0.64 5.227 � 0.319 5.58 � 10�7

200 164.47 159.17 4.541 164.26 � 0.50 159.27 � 0.44 4.623 � 0.189 3.95 � 10�13

400 164.98 160.03 5.021 164.95 � 0.42 160.09 � 0.31 5.047 � 0.171 1.72 � 10�19

1000 164.89 160.11 4.957 164.81 � 0.24 160.19 � 0.20 4.996 � 0.112 9.62 � 10�44

A sample of size N was obtained by the simulation using a set of given parameters, and the data obtained were analyzed, after
removing the phase information, using QTLHAPLO for both the estimation of parameters and the test of the association between
the presence of a haplotype and the quantitative phenotype.

a The conditions of the simulations were the same as in Table 6 except for the following two points: the haplotype frequencies
(�) obtained from the six-locus data of the SAA1 gene (see Table 1) were used and the ACCGTC haplotype was assumed to be
the phenotype-associated haplotype.

b The methods for the calculations of the values in these categories are the same as those in Table 6.

ers of the present test using various conditions. First, hood estimates thus obtained were very close to the
values of the parameters that had been given before thesamples were simulated under the alternative conditions

and the data were analyzed by QTLHAPLO. The propor- simulation, indicating that our algorithm could accu-
rately estimate the parameters.tions of the samples that generated the statistic over the

threshold value of 3.841 were considered as empirical Then we examined the distribution of the generalized
likelihood-ratio statistic, obtained by analyzing the datapowers. The results show that the power increases as a

function of |�1 � �2| and sample size (Figure 2). Addi- derived under the null hypothesis. Under various condi-
tions, the statistic was found to follow an asymptoticallytional simulation experiments with different parameters

followed by the analysis of the data show that the power �2 distribution with 1 d.f. In addition, the analysis of
the data simulated under the alternative hypothesis indi-was a function of |�1 � �2|/	 as expected (data not

shown). Thus, our algorithm has a sufficient power cated that the power was considerably high when |�1 �
�2|/	 and sample size N were sufficiently large; i.e., (�1 �when |�1 � �2|/	 and sample size are large.
�2)/	 � 0.2, N � 1000 and (�1 � �2)/	 � 0.6, N � 100.

The importance of |�1 � �2|/	 for the power of the
DISCUSSION

test is easily understood as follows. Let A denote the
haplotype for a genetic region R that is related to theIn this investigation, we developed an algorithm to

estimate the parameters of the distribution of a quantita- phenotype, and let B denote the complement of A, i.e.,
the set of all haplotypes other than A. In fact, bothtive phenotype and to test the association between the

presence of a haplotype and the quantitative phenotype. A and B may be sets of haplotypes rather than single
haplotypes. In our model, the distribution of the pheno-The data used are genotype data at linked loci as well

as the data of a quantitative phenotype in multiple sub- type was assumed to be different between the subjects
with the (unordered) diplotype configurations AA, AB,jects.

We examined whether our algorithm could accurately and BB. This means that we divided the phenotype into
two parts, i.e., the part due to the effect of the diplotypeestimate the parameters. Samples of genotypes and phe-

notypes for multiple subjects were generated using vari- configurations in region R and the part independent of
that effect. The latter part contains both environmentalous sets of parameters, and the data were analyzed by

the maximum-likelihood method. The maximum-likeli- and genetic elements unrelated to region R. Thus, we
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TABLE 8

Posterior probability distribution of diplotype configuration for each subject: four-locus data

Quantitative Diplotype Posterior Posterior
Subject (i) phenotype configuration True or falsea distributionb distributionc

1 157.1 GCCT GCCT True 1.0000 1.0000
2 170.3 CCTC CTCC True 0.9993 0.9999

CCCC CTTC False 0.0007 0.0001
3 173.4 CCTC GCCT True 1.0000 1.0000
4 158.2 CTCT GCCT True 1.0000 1.0000
5 170.6 CTCT GCCT True 1.0000 1.0000
6 162.4 CTCC CTCC True 1.0000 1.0000
7 161.6 CTCC GCCT True 0.9975 0.9975

CTCT GCCC False 0.0025 0.0025
8 149.4 CTCC CTCC True 1.0000 1.0000
9 164.3 CCTC GCCT True 1.0000 1.0000

10 165.1 CTCC GCCT True 0.9975 0.9975
CTCT GCCC False 0.0025 0.0025

Simulations were started by assigning diplotype configurations to N � 1000 number of subjects according
to the haplotype frequencies employed from the four-locus data for the SAA1 gene. Depending on whether
the subject possessed the phenotype-associated haplotype CCTC, a quantitative phenotype was drawn from
N(�1, 	2) or N(�2, 	2), where �1 � 165, �2 � 160, and 	 � 5. After removing the phase information, QTLHAPLO
was used to determine the posterior probability distribution of the diplotype configuration (diplotype distribu-
tion) for each subject either by using only genotype data or by using both genotype and phenotype data.

a Possible diplotype configurations for each subject were compared with the diplotype configuration before
the phase information was removed. “True” means that the diplotype configuration before the removal of the
phase information was the same as the estimated diplotype configuration, while “False” means that they were
different.

b Posterior probability distribution of the diplotype configuration given only the observed genotype data
[P(di � ak|Gobs)].

c Posterior probability distribution of the diplotype configuration given the observed genotype and phenotype
data [P(di � ak|Gobs, �obs)].

assumed covariance neither between the effects of re- AA and BB are �1 and �2. Then, if Hardy-Weinberg
gion R and other genetic loci nor between the effects equilibrium can be assumed, the phenotypic variance
of region R and the environment. It means that no due to region R is written when �1 � �2 as
epistasis was assumed in our model.

	2
r � p(1 � p)[2(�3 � �2)2

The impact of the effect on the phenotype is evalu-
ated by comparing the variances (Fisher 1918). Thus, 
 (�1 � 3�2 
 2�3)(�1 
 �2 � 2�3)p
the impact of the effect of region R on the phenotype


 (�1 
 �2 � 2�3)2p2], (7)is evaluated by the ratio of the variance of the effect of
region R to the total phenotypic variance (Amos 1994;

where �3 denotes the mean of the phenotypes for theAlmasy and Blangero 1998; Pratt et al. 2000; Sham
subjects with the diplotype configuration of AB, and pet al. 2000).
denotes the population frequency of the haplotype A.The mathematical modeling of this kind was initiated

In our model, 	2
n, the variance unrelated to region Rby Fisher (1918) many years ago, although it was not

is equal to 	2, the variance of the phenotypes for theabout the diplotype configurations but about the geno-
subjects with the same diplotype configurations for re-types. Let 	2

t and 	2
r denote the total phenotypic variance

gion R. Note that we assumed no difference in the vari-and the variance due to region R, respectively. The ratio
ance for different normal distributions between the phe-	2

r/	2
t is an indicator of the impact of region R in the total

notypes for different diplotype configurations.phenotypic variation. The difference 	2
n � 	2

t � 	2
r con-

In the dominant model (the phenotypes for AA andtains elements from both the environment and the ge-
AB are the same), �3 � �1 and Equation 7 becomesnetic loci other than region R. If region R is the only

genetic region relevant to the phenotype, then 	2
n � 	2

e ,
	2

r � p(1 � p)2(2 � p)(�1 � �2)2. (8)
where 	2

e denotes the variance due to environment. Note
that, in this case, 	2

r/	2
t � 	2

r/(	2
r 
 	2

e) equals to herita- In the recessive model (the phenotypes for AB and BB
bility. are the same), �3 � �2 and Equation 7 becomes

According to our model, the means of the phenotypes
for the subjects with the diplotype configurations of 	2

r � p 2(1 
 p)(1 � p)(�1 � �2)2. (9)
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TABLE 9

Estimated probability distribution of diplotype configuration for each subject: six-locus data

Quantitative Diplotype Posterior Posterior
Subject (i) phenotype configuration True or false distribution distribution

51 157.3 AGCGCT AGCACT True 1.0000 1.0000
52 172.0 AGCGCT AGCGCT True 1.0000 1.0000
53 152.6 ACTGCC AGCGCT True 0.9993 0.9993

ACTGCT AGCGCC False 0.0007 0.0007
54 155.5 AGCGCT AGCGCT True 1.0000 1.0000
55 167.8 ACCGTC GCTGCT True 0.8871 0.9619

ACTGCT GCCGTC False 0.1129 0.0381
56 161.7 ACTGCC ACTGCC True 1.0000 1.0000
57 165.7 ACTGCC AGCGCT True 0.9993 0.9993

ACTGCT AGCGCC False 0.0007 0.0007
58 153.9 ACTGCC AGCGCT True 0.9993 0.9993

ACTGCT AGCGCC False 0.0007 0.0007
59 157.0 ACTGCC AGCGCT True 0.9993 0.9993

ACTGCT AGCGCC False 0.0007 0.0007
60 166.7 ACTGCC ACTGCC True 1.0000 1.0000

Conditions for the simulation as well as the methods for the analysis of the simulated data were the same
as those in Table 8, except that six-locus data for the SAA1 gene (Table 1) instead of four-locus data were
used for the simulation.

In the additive model, �3 � (�1 
 �2)/2 and Equation that the diplotype configurations of some subjects are
7 becomes not unequivocally determined. Such subjects with am-

biguous diplotype configurations should be treated in
	2

r �
1
2

p(1 � p)(�1 � �2)2 . (10) the analysis. If one attempts to test the association be-
tween the diplotype configurations and a phenotype,
the subjects with ambiguous diplotype configurationsTherefore, in dominant (8), recessive (9), and additive
cannot be unequivocally categorized. As is often done,(10) modes, 	2

r has the form of f(p)(�1 � �2)2, and
they can be classified into some categories according to	2

r/	2
t � 	2

r/(	2
r 
 	2) has the form of

the most likely diplotype configurations. However, such
forced categorization may cause inflation of type I er-	2

r/	2
t �

f(p)((�1 � �2)/	)2

f(p)((�1 � �2)/	)2 
 1. rors. In fact, our simulation studies have shown that the
algorithm presented here is superior to such methodsThus, the ratio of the phenotypic variance due to the
in that it allows the presence of ambiguous diplotypedifference in the diplotype configurations for region R
configurations when testing the association between theto the total phenotypic variance is positively correlated
presence of a haplotype and a quantitative phenotype.with |�1 � �2|/	. Note that f(p) � 0 for 0 � p � 1.

The problems of ambiguous diplotype configurationsThis ratio (	2
r/	2

t ) is equivalent to the heritability when
are amplified when the linkage disequilibrium of theregion R is the only genetic region influencing the
loci to be analyzed is weak. We analyzed two cases inphenotype.

One of the problems in the haplotype inference is detail. In one case, all the four loci were in tight linkage

Figure 1.—Histograms of the
statistic �2 log(L0max/Lmax) pro-
duced under the null hypothesis.
Simulation was performed under
the null hypothesis, �1 � �2 � 160,
	 � 5.0. Sample size N was either
(A) 100 or (B) 1000, and number
of repeats for a simulation was
10,000. The histograms of the sta-
tistic are shown with bars. The
probability density function of �2

distribution with 1 d.f. is shown
with curves.
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TABLE 10

Estimated parameters and empirical type I error rates for analysis of the simulated data under the null hypothesis

Sample No. of Type I
� �1 � �2 size N samples �̂1

a (mean � SD) �̂2
a (mean � SD) 	̂a (mean � SD) error rate

Four-locus model 160 100 10,000 160.01 � 0.753 160.01 � 0.676 4.936 � 0.353 0.0496
Four-locus model 160 1000 10,000 160.00 � 0.237 160.00 � 0.213 4.995 � 0.112 0.0514
Six-locus model 160 100 10,000 160.00 � 0.822 159.99 � 0.635 4.933 � 0.352 0.0606
Six-locus model 160 1000 10,000 160.00 � 0.256 160.00 � 0.201 4.994 � 0.110 0.0541

Each simulation was performed under the null hypothesis, �1 � 160, �2 � 160, 	 � 5, with N � 100 or 1000. Every simulation
was repeated 10,000 times for each condition.

a Mean � SD of the estimates for parameters of the distribution of the quantitative phenotype obtained by the analysis.

disequilibrium, while two of the six loci were in weak ever, it is likely to emerge when polymorphic loci outside
the haplotype blocks or those in the region that includeslinkage disequilibrium in the other. When all the four

loci were in tight linkage disequilibrium, the percentage the border(s) of the block(s) are the targets of the
study. The value of the present algorithm may be highof the subjects with ambiguous diplotype configurations

was low and the degree of the ambiguity was minimal. especially when the involved loci are not within a block.
We then applied this algorithm to the analysis of theHowever, when two of the six loci were in weak linkage

disequilibrium, the problems of the ambiguous diplo- data from diabetic patients. The data were composed
of the genotypes at three SNP loci within the CAPN10type configurations became large. Interestingly, the esti-

mated probability of the true diplotype configuration gene as well as the quantitative phenotypes. The three
loci were in moderate linkage disequilibrium (|D�| �was often larger when the phenotype data in addition

to the genotype data were incorporated for the analysis 0.6). The analysis has shown that there were significant
associations between certain haplotypes and some quan-than when only the genotype data were used. This indi-

cates that the inference of the diplotype configurations titative phenotypes.
We modeled the test of the association between haplo-becomes more accurate by incorporating the phenotype

data when there is a true association between the pres- types and quantitative phenotypes in a way similar to
that employed by Chiano and Clayton (1998), Fallinence of a haplotype and a quantitative phenotype.

Wu et al. (2002) proposed the joint linkage and link- et al. (2001), Zaykin et al. (2002), and Lou et al. (2003).
Thus, Chiano and Clayton (1998) developed the lin-age disequilibrium mapping strategy for estimating al-

lelic frequencies, recombination fractions, and linkage ear logistic regression model, which not only tests for
association but also determines how far the haplotypedisequilibria for multiallelic markers in natural popula-

tions using the Fisher-scoring algorithm. The genomic harboring the putative disease gene extends, and esti-
mated haplotype frequencies by the EM algorithm. Zay-region within which the linkage disequilibrium is tight is

denoted the haplotype block or linkage disequilibrium kin et al. (2002) have also developed a statistical method
to test the association of haplotype frequencies with(LD) block. Within the haplotype block, the problem
phenotypes in samples of unrelated individuals. Theyof ambiguous diplotype configurations is not large; how-
estimated haplotype frequencies using the EM algo-
rithm and then related the inferred haplotype probabili-
ties for each individual to the phenotype using regression-
based analysis. Fallin et al. (2001) devised a method to
test the association between haplotypes inferred by the
EM algorithm and the disease phenotype using the chi-
square statistic for contingency tables. They applied
their method for testing the association between multi-
ple SNPs in the APOE gene region and Alzheimer’s
disease and showed that it was useful even when the
linkage disequilibrium was weak and the effect of the
gene was rather small. The proposed framework by Lou
et al. (2003) can accommodate genetic effects of differ-
ent kinds for the QTL. Our model is easily extendable to
estimate the interactions of two haplotypes and between
haplotypes and environment (Chiano and ClaytonFigure 2.—Power of the test with regard to sample size and
1998). There are some similarities between the above|�1 � �2|/	. The solid line is for N � 100, and the dashed

line is for N � 1000. methods and our algorithm; however, our algorithm
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differs from each of them. For example, epistasis is not Recently, several groups have proposed algorithms
assumed in our algorithm while that by Lou et al. (2003) and methods to study the association between haplo-
assumed its presence. In the extended phase of our types and quantitative phenotypes. Lou et al. (2003) pro-
algorithm, sets of haplotypes rather than single haplo- posed a haplotype-based algorithm for multilocus link-
types can be handled. In addition, the sample size of age disequilibrium mapping of quantitative trait loci
100 is sufficient for our algorithm while their algorithm with epistasis. Thus, the likelihood approach to the esti-
needs larger sizes (Lou et al. 2003). mation of haplotype frequencies is useful; however,

Our algorithm can be applied to real data only when there are some limitations (Fallin and Schork 2000;
the quantitative phenotypes are expected to follow the Tishkoff et al. 2000). Fallin and Schork (2000) re-
normal distributions. Indeed, many quantitative pheno- ported that the accuracy of haplotype estimation in-
types may follow asymptotically normal distributions; creases as the amount of linkage disequilibrium between
however, there are certainly phenotypes that do not. loci increases using the likelihood approach. In this
One of the solutions to such problems may be to use respect, Tanck et al. (2003) developed the weighted
the transformed value of the quantitative phenotype penalized log-likelihood model and compared it with
that is expected to follow, under the null hypothesis, a the different log-likelihood models.
normal distribution. Some of the mathematical transfor- Although there have been several proposals for stud-
mations that convert the phenotype include the loga- ies of the association between quantitative phenotypes
rithm transformation for the skewed trait (Schaid et and haplotypes, procedures that are both reliable and
al. 2002; Wrigth 1968) and the power transformation accurate still need to be developed. Such sophisticated
(Hoaglin et al. 1983). The nonparametric method may methods will be necessary because a number of different
be another approach. quantitative phenotypes are expected to be studied in

Although our algorithm is useful for cohort studies, the near future at the population basis. Thus, not only
it may be extended in other types of studies. One exten- quantitative phenotypes obtained by simple clinical ex-
sion is the application of our algorithm to case-control aminations but also multiple clinical tests as well as the
studies. In principle, this algorithm can be applied to results from DNA microarray studies can be used. Even
the data from cohort studies and clinical trials but not quantitative data from proteomics studies can be used
to those from case-control studies. The reason is that as quantitative phenotypes.
the estimated parameters �, �1, �2, and 	 do not indi- In conclusion, we developed an algorithm to simulta-
cate the population parameters when this algorithm is neously estimate, by the maximum-likelihood method,
applied to data from case-control studies. However, the the population haplotype frequencies and the parame-
test of the association between the presence of a haplo- ters of the distributions of quantitative phenotypes that
type and a quantitative phenotype may be possible by are different between subjects with different diplo-
this algorithm even for the data from case-control stud- type configurations using both genotype and phenotype
ies. In this case, however, the maximum-likelihood esti- data from multiple subjects. Using a test statistic, �2
mates obtained by the algorithm are not the real estimates log(L0max/Lmax), we could construct a method to test the
of the parameters. We are now extensively analyzing this association between the presence of a haplotype and a
issue by simulations to examine whether the application quantitative phenotype. We implemented this algo-
of the present algorithm to data from case-control stud- rithm in a computer program, QTLHAPLO. The analy-
ies is plausible. The test of the association between a sis of the simulated and real data using this program
phenotype and the diplotype configurations using sub- indicated that this method can accurately estimate the
jects with “extreme” phenotypic values will be useful. If parameters and reliably test the association between the
we can obtain two samples, one with high phenotypic haplotypes and the phenotypes.
values and the other with low phenotypic values, the

This study was supported by a grant from the New Energy andtest of the association will become very powerful. In this
Industry Technology Development Organization.case, however, the same problem as stated above in the

case of case-control studies will emerge. Although the
data from such samples can be submitted to our algo-
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