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ABSTRACT
Associations between markers and complex quantitative traits were investigated in a collection of 146

modern two-row spring barley cultivars, representing the current commercial germ plasm in Europe.
Using 236 AFLP markers, associations between markers were found for markers as far apart as 10 cM.
Subsequently, for the 146 cultivars the complex traits mean yield, adaptability (Finlay-Wilkinson slope),
and stability (deviations from regression) were estimated from the analysis of variety trial data. Regression
of those traits on individual marker data disclosed marker-trait associations for mean yield and yield
stability. Support for identified associations was obtained from association profiles, i.e., from plots of
P-values against chromosome positions. In addition, many of the associated markers were located in regions
where earlier QTL were found for yield and yield components. To study the oligogenic genetic base of
the traits in more detail, multiple linear regression of the traits on markers was carried out, using stepwise
selection. By this procedure, 18–20 markers that accounted for 40–58% of the variation were selected.
Our results indicate that association mapping approaches can be a viable alternative to classical QTL
approaches based on crosses between inbred lines, especially for complex traits with costly measurements.

THE genetic dissection of complex traits still pre- pleiotropic effects on a number of performance traits
in barley, but Cattivelli et al. (2002) concluded thatsents a challenge. The oligo/polygenic character
little is known about the regulatory mechanisms control-of complex traits, combined with interactions between
ling stress responses, mainly because all stress responsesloci, makes the task a priori difficult and intricate. In
involve many genes.addition, environmental factors trigger and modify gene

The polygenic basis of complex traits has conse-actions and thereby further complicate the analysis.
quences for the application of quantitative trait locusYield is the classical example of a complex trait. Yield
(QTL) mapping methodology, as many markers thatfluctuations in relation to environmental factors are
are associated with the trait need to be identified. Typi-often described in terms of adaptability and stability.
cally, for QTL mapping, a cross between two inbredThe latter can be considered to constitute complex traits
lines is made and the cosegregation of alleles of mappedon their own. Parameters quantifying adaptability and
marker loci and phenotypic traits allows the identifica-stability require observations across a range of environ-
tion of linked markers. For complex traits with GE inter-ments for their estimation. The parameters are typically
action, this approach implies large-scale testing of spe-defined in terms of linear and quadratic functions of
cial mapping populations across a range of environments.the genotype by environment (GE) interaction (Lin et
Several researchers have conducted such multi-environ-al. 1986).
ment trials for various traits in different plant species,Adaptability has been studied from several perspec-
e.g., drought resistance in cotton (Saranga et al. 2001),tives, manifested by special conferences of breeders and
photoperiod plasticity in Arabidopsis (Ungerer et al.geneticists (Tigerstedt 1997) and physiologists (Thomas
2003), growth and yield in rice (Hittalmani et al.and Farrar 1997). Geneticists incline to explanations
2003), and yield in barley (Romagosa et al. 1996; Teu-in terms of favorable epistatic combinations of alleles
lat et al. 2001; Voltas et al. 2001). They all succeeded(Allard 1997). Physiologists focus on the stress re-
in identifying loci that interacted with the environment,sponse and developmental genes involved. Forster et
so-called stability loci. Some loci for stability colocalizedal. (2000) stated that developmental genes have strong
with loci for the mean expression of the trait, while
others appeared at positions where no QTL for the
mean expression were found. This finding leaves incon-
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al. (1995). In the allelic sensitivity model, the constitu- cultivars) across environments (Finlay and Wilkinson
1963). Yield stability was defined as the mean square oftive gene is itself regulated in direct response to the

environment, whereas in the gene regulation model one deviations from the Finlay-Wilkinson line (Eberhart
and Russell 1966). We used data from the official Dan-or more regulatory loci are under the direct influence of

the environment and the constitutive genes are switched ish barley variety trials for the national and recom-
mended lists from 1993 to 2000. Although many QTLon and off by the regulatory gene(s). Colocalization of

QTL exhibiting GE interaction and QTL for stability have been found for yield (see for an overview http://
barleyworld.org/NABGMP/qtlsum.htm), only a few haveparameters would point in the direction of allelic sensi-

tivity models. QTL for stability parameters appearing been reported for yield adaptability and yield stability
(Voltas et al. 2001; Malosetti et al. 2004). Yield stabil-elsewhere than the QTL for the trait itself would indi-

cate a regulatory gene model. ity is considered an important attribute of good culti-
vars, but selection for yield stability is too time andIn this article we explore the possibilities of mapping

traits in a collection of modern cultivars, instead of in money consuming to be carried out routinely.
Earlier attempts for establishing association betweena segregating population derived from a biparental

cross. We looked at methodology that has become popu- traits and markers across germ-plasm collections con-
cerned oat, rice, maize, sea beet, and barley. In oat,lar in human genetics under names such as association

mapping and linkage disequilibrium (LD) mapping. Beer et al. (1997) found associations between markers
and 13 quantitative traits in a set of 64 landraces andThe success of LD mapping is obvious from the series

of disease genes that have been fine mapped. For a cultivars. In rice, Virk et al. (1996) predicted the value
for 6 traits using multiple linear regression. In maize,review, see Cardon and Bell (2001). Therefore, quanti-

tative geneticists working in crop plants have started to Thornsberry et al. (2001) found associations between
Dwarf8 polymorphisms and flowering time. In sea beet,adapt the methodology to their situation (e.g., Jannink

and Walsh 2002; see Gaut and Long 2003 for a review Hansen et al. (2001) mapped the bolting gene, using
AFLP markers in four populations. In barley, Igartuaof LD in crop plants).

In the plant breeding context, LD mapping has sev- et al. (1999) concluded that marker-trait associations for
heading date, found in mapping populations, were, toeral advantages over classical linkage analysis using seg-

regating populations. First, broader genetic variation some extent, maintained in 32 cultivars. Ivandic et al.
in a more representative genetic background can be (2003) found association between markers and the traits
included in the analyses. Second, LD mapping may at- of water-stress tolerance (chromosome 4H) and pow-
tain a higher resolution. Third, multi-trial phenotypic dery mildew resistance in 52 wild barley lines. Chromo-
data stored in databases can be linked to marker charac- some 4H is, according to Forster et al. (2000), known
terizations of the involved cultivars. Especially the latter for many loci involving abiotic stress tolerance, includ-
advantage is important when evaluation of the trait is ing salt tolerance, water use efficiency, and adaptation
time and money consuming, as is the case with mean to drought environments.
yield, adaptability, and stability. This article is, to the best of our knowledge, the first

A genome-wide LD scan requires many markers, the publication on the extent of LD in a large collection of
number depending on the level of LD. In sugar beet, commercial barley cultivars and on the usage of LD to
LD extended up to 3 cM (Kraft et al. 2000), while in explore the genome for markers linked to complex
some Arabidopsis populations LD exceeded even 50 traits such as mean yield and yield stability.
cM (Nordborg et al. 2002). In contrast, in maize LD
diminished already after 2000 bp (Remington et al.
2001). As no data are known for barley, a first objective MATERIALS AND METHODS
of our research was to obtain an estimate of the level

Plant material and quantitative traits: Yield data of 146 mod-of LD in barley. Our germ plasm consisted of 146 mod- ern European two-row spring barley cultivars were obtained
ern two-row European spring barley cultivars. They were from the official Danish variety trials over the period 1993–
homozygous, diploid lines, created by inbreeding or by 2000. Each year new cultivars were added to the trials, while

others were discarded. The number of cultivars tested perdoubling haploids. As the cultivars were grown all over
year varied between 49 and 66. The number of locations atnorthwest Europe during the last decade, including the
which a cultivar was tested varied between the years: 15 forUnited Kingdom, France, Germany, Sweden, Denmark, 1993, 13 for 1994, and 5 for 1995–2000. Cultivars were tested

and The Netherlands, they were therefore representa- in varying numbers of environments (year by location combi-
tive for a large part of the European germ plasm. nations) with a minimum of 5, a maximum of 50, and an

average of 15 environments per cultivar. Each trial consistedThe main objective of this article was the detection of
of two replicates. More details can be found at http://www.associations between marker alleles and the quantitative
planteinfo.dk.traits mean yield, yield adaptability, and yield stability

The yield trials were either treated or not treated with chemi-
in a set of modern spring barley cultivars. Yield adapt- cals to control leaf diseases. For treated and untreated trials,
ability was defined as the slope of the regression of yield Finlay-Wilkinson regression coefficients were estimated as a

measure for yield adaptability (bi ; Finlay and Wilkinsonfor an individual cultivar on the mean yield (over all
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1963). As a measure for yield stability, mean squared deviations Population structure: To investigate possible structure in
the set of cultivars, various analyses were performed. First, anfrom regressions were estimated (si

2; Eberhart and Russell
1966). Both statistics were based on the regressions of yields agglomerative hierarchical cluster analysis was performed on

band incidence. As the measure for proximity, the Jaccardfor individual genotypes in a trial on an environmental index,
the latter supposed to express the general growing conditions coefficient was chosen, while for the cluster algorithm average

linkage, also known as UPGMA, was used (Gordon 1981).in the trial. We estimated the environmental index by the
environmental effects obtained from the fit of an additive Second, a correspondence analysis was applied to the cultivar

by marker matrix of band incidences (Greenacre 1984) andmodel (phenotype � genotype � environment). Values of si
2

were log transformed for subsequent analyses. Yield, stability, the plot of cultivar scores on the first two axes was used to
investigate population structure. Finally, a Bayesian-model-and adaptability will be called YLD, STAB, and ADAP, respec-

tively, with subscript tr or untr referring to treated and un- based clustering was performed as described by Pritchard
et al. (2000). The basis of this clustering method is the alloca-treated trials, respectively.

AFLP markers: The testing authorities supplied us with seed tion of individual genotypes to groups in such a way that
Hardy-Weinberg equilibrium and linkage equilibrium areof all the cultivars tested in 1999. For cultivars not tested in

1999, seed was provided by the original breeders. Collection valid within clusters, whereas these forms of equilibrium are
absent between clusters. As we worked with homozygous lines,of DNA from leaf tissue and AFLP analysis were done as de-

scribed by Qi and Lindhout (1997). Fourteen primer combi- we adapted the method to our situation by using the method
to detect exclusively association between marker loci whilenations were employed: E33M54, E35M48, E35M54, E35M55,

E35M61, E37M33, E38M50, E38M54, E38M55, E39M61, E42- ignoring the within-marker locus situation. The analysis was
applied once to the complete set of all markers and once toM32, E42M48, E45M49, and E45M55. Individual markers were

identified following the profiles of Qi and Lindhout (1997; a set of moderately independent markers.
Linkage disequilibrium: A commonly used measure foralso see http://wheat.pw.usda.gov/ggpages/Qi/). Markers were

scored for presence (1) or absence (0) of a band. When two quantifying and comparing LD in the context of LD mapping
is the squared correlation coefficient r2 between pairs of bial-markers were very closely linked, or when they were allelic,

the marker with most missing values was discarded. In total lelic markers (Pritchard and Przeworski 2001). We have
calculated r2 between all pairs of loci and plotted it against286 polymorphic markers were scored within this germ plasm.

For analyses, 236 markers with band frequencies between 5 the genetic distance in centimorgans to determine the map
distance across which LD can occur within our set of cultivars.and 95% were used.

Map position based on an integrated map: Map positions Marker-trait associations: Pearson correlation coefficients
were calculated among the traits YLD, ADAP, and STABof markers were derived from an integrated map using three

segregating populations: (1) L94 � Vada, 568 markers (Qi (treated and untreated), on the one hand, and band inci-
dences for markers on the other hand. This is effectively equiv-and Lindhout 1997); (2) Apex � Prisma, 252 markers (Yin

et al. 1999); and (3) GEI119 � Gunhild, 137 markers (Koore- alent to t -tests using marker incidence as a grouping variable.
The test statistic for Pearson correlations, t* � r (n � 2)1/2/vaar 1997). The integrated map was constructed with the

software package JoinMap (Van Ooijen and Voorrips 2001). (1 � r 2)1/2, with r the correlation and n the number of observa-
tions, follows a t (n�2) distribution under the null hypothesis.The assumption was made that AFLP markers with equal gel

mobility were identical (Rouppe van der Voort et al. 1997; To control for multiple testing, we tested at a false discovery
rate (FDR) of 0.20 (Benjamini and Hochberg 1995). TheWaugh et al. 1997). The role of the integrated map is critical

in our study. Every genetic map created with real life data, false discovery rate, q*, is defined as the expected proportion
of true null hypotheses within the class of rejected null hypoth-and therefore probably including scoring and other errors,

will give rise to some mistakes in the order of the marker loci. eses. In practice, the procedure works as follows. Let H(1), H(2),
. . . , H(m) represent a series of hypotheses sorted by increasingThe integration of three different maps into one is another

source of errors. For that reason, the AFLP data were checked P-value, P(1), P(2), . . . , P(m), so that P(1) � P(2) � . . . � P(m). Then
the hypotheses H(1), H(2), . . . , H(k) are rejected, where k is thewith great care, and any suspicious marker was removed. Fur-

thermore, we carried out an extra control measure in the largest i for which P(i) � (q* i)/m. In analogy to LOD profiles
in QTL testing, association profiles were created by plottingform of reference gels, including all markers and all parental

lines, to double-check gel mobility and to minimize erroneous P-values for marker-trait correlations against chromosome po-
sition. Association profiles graphically display the LD regionequal labeling of markers.

The number of markers common to two or three popula- around an associated marker and can help in the assessment
of the “credibility” of a marker-trait association. To verify thetions was 89, varying from 8 on chromosome 1 to 18 on chro-

mosome 7. To constrain the number of possible map orders, relevance of our marker-trait associations, we checked the
literature for QTL in the regions near markers with significantfive loci per chromosome provided a “skeleton map” (fixed

order) to which other markers were added. The fixed-order trait association.
In addition to studying marginal marker-trait associations,loci were chosen to cover well the chromosomes from the

map of Qi et al. (1998). The latter map was aligned to the i.e., correlations between markers and traits without correction
for associations with other markers (cf. simple interval map-RFLP map of the Proctor � Nudinka population (Becker et

al. 1995). ping), YLD, ADAP, and STAB were regressed on markers using
multiple linear regression (cf. composite interval mapping) inGoodness of fit of proposed marker orders and positions

on chromosomes were tested by a statistic that measured the an attempt to investigate conditional marker-trait associations.
The final objective of this exercise was to obtain an estimateoverall discrepancy between map distances based on “direct”

estimates of recombination frequencies between individual of the minimum and maximum theoretical trait values achiev-
able by selective choice of marker alleles. Two methods formarkers on the one hand and the fitted map distances based

on all available pairwise recombination frequencies on the model construction were used. First, a stepwise regression
procedure (Montgomery and Peck 1982) with an F-value forother hand (Stam 1993). This statistic approximately follows

a chi-square distribution under the null hypothesis of a correct entering the regression model, Fin, of 4 and an F-value for
dropping out of the model, Fout, of 1 was used. The markerorder of the markers on the map, with degrees of freedom

equal to the total number of pairwise distances minus the set for model building was the full set of markers. In this
way a model with a good combination of markers out of thenumber of adjacent pairs of markers on the chromosomes.
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TABLE 1

Descriptive statistics for yield, adaptability, and stability

YLD (kg/ha) ADAP (bi ) STAB [ln(s 2
i )]

Treated Untreated Treated Untreated Treated Untreated

Average 5779.3 5367.9 1.001 0.9978 1.8639 1.6041
Minimum 4841.0 4123.6 0.713 0.595 �1.8363 �3.5166
Maximum 6377.1 6037.9 1.490 1.254 4.0054 3.5825
Variance 2.7046 3.835 0.1061 0.0978 0.8192 0.8426

Correlations
YLDtr

YLDuntr 0.90***
ADAPtr �0.06 �0.08
ADAPuntr �0.11 �0.19 0.76***
STABtr �0.25* �0.34*** 0.15 0.15
STABuntr �0.29** �0.45*** 0.02 0.06 0.60***

Descriptive statistics for yield (YLD), adaptability (ADAP), and stability (STAB). The yield trials were either
treated (tr) or not treated (untr) with chemicals to control leaf diseases. *P � 0.01, **P � 0.001, ***P �
0.0001.

complete set of markers was selected. Second, a regression unique identification of each cultivar. To investigate
model was constructed on the basis of the subset of markers population structure, which could cause associations in
that had significant correlation on an individual basis with

the absence of linkage, we performed three types ofthe trait. In this second model, we used a combination of the
analysis. A hierarchical cluster analysis with proximityindividually best markers to predict the response, no selection

was applied any more. The differences in predictions from defined by Jaccard coefficients and average linkage as
both models illustrate the necessity of accounting for correla- clustering algorithm produced a dendrogram that
tions between markers. We chose as goodness-of-fit statistics hinted at the existence of two subgroups. Correspon-
the amount of explained variation adjusted for the number

dence analysis confirmed this split in the germ plasmof regressors (R 2
adj ; Montgomery and Peck 1982).

(Figure 1). The split could not be explained by geo-
graphic arguments or by a separation of fodder and

RESULTS malting barleys. Various analyses using the Bayesian
clustering methodology described in Pritchard et al.Yield, stability, and adaptability: Table 1 presents sev-
(2000) did not provide information on possible popula-eral statistics concerning YLD, ADAP, and STAB. Mean
tion structure. The posterior probabilities for the num-YLDtr was higher than YLDuntr, as expected. The correla-
bers of clusters either remained about constant or kepttion between the treated and untreated versions of YLD,
steadily increasing with the number of clusters withoutADAP, and STAB was highly significant. YLD was weakly
individual varieties being allocated clearly to specificnegatively correlated with STAB, treated and untreated.
clusters. In both cases we concluded for absence ofIntegrated map and map position: The final inte-
population structure.grated map, based on three crossing populations, con-

Linkage disequilibrium: Figure 2 gives LD as a func-sisted of 811 AFLP markers on a genome of 1052 cM
tion of genetic distance. LD was very common for dis-(Kosambi mapping function) with eight gaps �10 cM
tances �10 cM. Occasionally, LD occurred between lociand one gap �20 cM (data not shown). The quality of
farther apart. The r2 between unlinked loci on differentthe integrated map was good, considering the low values
chromosomes was always �0.28, except for two markersfor the goodness-of-fit statistics for map order across the
on chromosomes 3 and 5, which had an r2 of 0.40. Thesechromosomes (see materials and methods). Of the
two markers also exhibited markedly different band fre-236 markers that were found to be polymorphic across
quencies between the two subgroups found by the clus-the cultivars, 123 appeared also on the integrated map
ter and correspondence analysis. In contrast to a prioriof the crossing populations. The other 113 markers were
expectation, some marker pairs that were close togethernot mapped, because they were apparently present or
on the integrated map were not correlated across theabsent in both parents of the populations. Coverage
cultivars and so were in linkage equilibrium (LE). Tofigures for the 123 mapped markers showed 12 gaps
check whether this unexpected apparent LE could bebetween 10 and 20 cM, 6 gaps between 20 and 30 cM,
explained by misplaced markers due to the integrationand 7 gaps of �30 cM. However, some of the 113 un-
of maps from different mapping populations, we investi-mapped loci may be located inside those gaps.

Population structure: The 236 AFLP markers allowed gated the closely linked marker pairs in more detail.
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Figure 1.—Correspondence
analysis plot for 146 modern
barley cultivars based on 236
AFLP markers. The germ
plasm roughly falls apart in the
subgroups at the top left and
the bottom right in the plot.

There were in total 53 marker pairs with distance �1 general, markers were correlated with only one of the
traits. Two unmapped markers formed an exception ascM, of which 32 had a significant correlation (P � 0.01),

while 19 pairs were not significantly correlated (P � they were correlated with both YLD and STAB. As none
of the markers found associated with a trait differed in0.01) and thus in LE. Of the 19 pairs in LE, 13 contained

two markers that were mapped using different popula- allele frequency between the two subgroups of cultivars
identified by the cluster analysis and the correspon-tions, while 6 pairs consisted of two markers that were

mapped in the same population. The three loci pairs dence analysis, we concluded that the associations were
not caused by substructure in the germ plasm.in LE with the shortest distance between them (�0.06

cM) were all mapped in the L94 � Vada population. In Figure 3 the P-value of the correlation is given
as a function of map position for a selection of trait-This shows that the map integration in itself could not be

the only explanation for apparent LE on short distances. chromosome combinations. For YLDuntr a peak ap-
peared on chromosome 2 at 34 cM with a rapid declineAssociation: Table 2 gives an overview of markers with

their genome positions and correlations with traits. For at 5 cM before the peak and 1 cM after the peak. The
same peak showed up in the YLDtr graph, but with athe correlations, P-values and q* values of the FDR analy-

sis are presented. All markers with q* � 0.20 belong to lower magnitude. For both YLDtr and YLDuntr, peaks ap-
peared on chromosome 3 at 20 cM. No mapped markersa group for which the proportion of false positives is

no greater than 0.20. Only markers with a P � 0.01 for were located before this peak, and the markers shortly
beyond this peak showed a fast decrease in correlation,at least one of the traits are shown.

Taking q* � 0.20 as the threshold, 4 markers could suggesting LD across a short distance. On chromosome
7 (5H), there were peaks at 7 and at 32 cM. The firstbe identified for YLDtr, 15 markers for YLDuntr, and 8

markers for STABtr. No markers with significant associa- peak at 7 cM was preceded by a significant correlation
at 0 cM, suggesting LD over a distance of at least 7 cM.tion for STABuntr and ADAPtr/untr were found at q* � 0.20.

The most significantly correlated markers for YLDtr/untr The second peak at 32 cM decayed already 1 cM before
and 2 cM after the peak.were located at the top of chromosome 7 (7.4 cM)

and chromosome 3 (19.5 cM). The most significant For STABtr, peaks were found at chromosomes 2, 4,
and 6. All peaks faded rapidly. On chromosome 4 at 46correlations for STABtr were for a marker with unknown

position and for markers on chromosomes 4 and 6. In cM, the graph jumped up and down in the 46–48 cM
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Figure 2.—Linkage disequilib-
rium (r2) as a function of genetic dis-
tance for 123 AFLP loci on the barley
genome. LD has been determined
with 146 modern barley cultivars; the
genetic distance has been deter-
mined with an integrated map from
three segregating populations. A ge-
netic distance of 200 cM was chosen
to represent unlinked loci on differ-
ent chromosomes. The inset provides
an enhanced view of LD decay.

area. After the first peak at 46 cM, a drop followed and Performing the regression with the subset of only
those markers that showed significant marker-trait cor-then a second (smaller) peak followed at 48 cM.

In Table 3 an overview is given of the trait-associated relations on an individual basis, and so without further
selection by a regression subset procedure, led in allmarkers, their map position, and related QTL found

in the same region by other authors. All of our YLD- cases to a lower R 2
adj. In addition, predicted minimum

and maximum values were less extreme, and in mostassociated markers and three of the STAB-associated
markers were found in a region where at least once cases did not exceed realized minima and maxima.

The final sets of markers selected by the two differentbefore a yield QTL has been reported. In addition, two
of the three STAB-associated markers also coincided strategies contained only a very modest overlap. Across

the six traits under study, the maximum observed over-with a region known to exhibit QTL � E interaction
(Voltas et al. 2001; Malosetti et al. 2004). lap amounted to five markers, roughly a quarter of the

selected set by stepwise regression.Multiple linear regression: Using all 236 markers,
mapped and unmapped, we tried to describe variation
in YLD, ADAP, and STAB by a linear regression model

DISCUSSION
including marker predictors. Stepwise regression re-
sulted in regression models containing 18–20 markers The main findings for the collection of barley cultivars

that we studied are: (1) LD was extended to as far as(Table 4). The R 2
adj, adjusted for the number of pre-

dictors in the model, was 55/56% for YLDtr/untr, 45/40% 10 cM distance, (2) markers were associated with the
traits of yield and yield stability, and (3) the markersfor ADAPtr/untr, and 56/58% for STABtr/untr. Therefore a

large amount of the variation of these traits could be could be useful for selection.
LD: LD stretched over a distance of at least 10 cM.described by regression on markers (band incidence).

By choosing the adequate marker profile, i.e., by creat- It is difficult to give the number of markers needed for
a genome-wide scan, because LD varies over the genomeing a hypothetical marker genotype, the regression

models could be used to predict minimum and maxi- in relation to, among other factors, varying recombina-
tion rate and selection. Contrary to expectation, we alsomum theoretical trait values. For YLDtr, the minimum and

maximum value were 3631 and 7804 kg/ha, respectively. found LE between some closely linked markers. The
same observation on LD at larger distances and LE atThis is much less and much more, respectively, than

the realized minimum and maximum of 5779 and 6377 short distances was found in Arabidopsis (Nordborg
et al. 2002).kg/ha. So, if a genotype with all the favorable alleles

for the selected set of markers could be created, this In comparison to other species, an LD interval up to
10 cM is large. Only in Arabidopsis populations weregenotype would theoretically yield 7804 kg/ha. A similar

transgression can be observed for the other traits. larger distances found (�50 cM), but this was in popula-
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TABLE 2

Correlation of AFLP markers with yield, adaptability, and stability

Yield Adaptability (bi) Stability [ln(s 2
i )]

Treated Untreated Treated Untreated Treated Untreated
Position

AFLP Chromosome (cM) r P q* r P q* r P q* r P q* r P q* r P q*

E38M55-205 1 95.9 0.02 0.04 �0.24 * �0.18 0.06 0.07
E38M50-119 1 105.8 �0.10 �0.08 0.24 ** 0.19 0.06 �0.12
E42M48-270 2 6.7 0.13 0.15 �0.13 �0.16 �0.23 * q �0.06
E35M54-412 2 33.7 �0.21 �0.28 *** q �0.18 �0.08 0.15 0.21
E45M55-086 2 36.2 0.08 0.12 �0.06 �0.13 �0.26 ** q �0.15
E42M32-333 2 94.5 �0.21 �0.22 * q �0.05 �0.03 �0.10 �0.05
E35M48-250 3 19.5 �0.29 *** q �0.29 *** q �0.04 �0.06 0.10 0.14
E45M55-142 4 45.8 0.10 0.16 0.05 0.05 �0.26 ** q �0.22
E33M54-282 4 47.8 �0.18 �0.25 * q �0.05 �0.02 0.15 0.21
E42M48-139 4 48.3 0.10 0.12 �0.06 0.07 �0.22 * �0.12
E45M55-212 4 86.1 �0.22 * �0.21 q 0.15 0.08 0.03 0.05
E35M55-262 4 105.0 �0.14 �0.16 �0.13 �0.17 0.30 *** q 0.16
E37M33-083 5 129.5 �0.17 �0.22 * q 0.14 0.04 0.12 0.04
E42M48-103 6 35.1 0.20 0.20 �0.04 �0.05 �0.32 *** q �0.15
E38M55-114 7 0.0 0.27 ** q 0.28 ** q �0.06 �0.09 �0.06 �0.09
E38M54-247 7 7.4 0.30 *** q 0.34 **** q �0.06 �0.05 �0.11 �0.04
E38M50-385 7 28.5 �0.15 �0.23 * q �0.17 �0.04 0.12 0.15
E38M50-355 7 32.4 0.24 * 0.31 *** q �0.06 �0.12 �0.21 �0.24
E35M48-380 Unmapped �0.27 ** q �0.25 ** q �0.20 �0.12 0.15 0.22 *
E35M54-069 Unmapped 0.19 0.25 ** q 0.17 0.03 �0.17 �0.22 *
E35M61-106 Unmapped �0.22 �0.23 q �0.22 �0.19 0.14 0.25 *
E38M50-382 Unmapped 0.24 * 0.19 0.00 0.02 �0.05 �0.04
E38M50-388 Unmapped �0.07 �0.10 0.16 0.26 * 0.03 0.09
E38M50-390 Unmapped 0.21 0.28 *** q 0.07 �0.04 �0.25 ** q �0.26 **
E38M55-110 Unmapped �0.08 �0.08 0.23 * 0.15 0.00 0.00
E42M32-187 Unmapped 0.20 0.26 ** q 0.15 0.02 �0.24 ** q �0.22
E42M32-271 Unmapped �0.07 �0.05 0.02 0.12 �0.33 **** q �0.25 **

Only AFLP markers with a significant marker-trait correlation are given (P � 0.01). A q indicates that the false discovery rate
control value calculated according to Benjamini and Hochberg (1995) is �0.20; see materials and methods. The position
on the chromosome is given in centimorgans from the top of the short arm. *P � 0.01, **P � 0.005, ***P � 0.001, ****P �
0.0001.

tions founded by only a few genotypes and after extreme A hierarchical cluster analysis and correspondence anal-
ysis did point to the existence of two subpopulations.inbreeding (Nordborg et al. 2002). In sugar beet lines,

LD was �3 cM (Kraft et al. 2000) and in maize LD However, fortunately, no trait-associated markers were
in the set of markers discriminating between the twodiminished over a distance of 2000 bp (Remington et

al. 2001). Many factors influence LD (see Ardlie et al. subpopulations, so we concluded that identified marker-
trait associations were not a consequence of population2002), but the most probable cause for the high level

of LD in barley is the fact that it is an inbreeder. In structure, but very probably were indeed caused by
linkage.addition, the current population of cultivars descended

from a limited number of founding types (Russell et Association: Association between markers and traits
(YLD, ADAP, and STAB) was examined in three ways:al. 2000) in which some haplotypes were lost and others

were preserved, which will have increased LD. Finally, (1) significance of marker-trait correlations, (2) LD pro-
files over chromosomes (P-values against chromosomeselection can increase LD, for instance, by a hitchhiking

effect, in which the alleles at flanking loci of a locus position), and (3) marker-trait associations found in
other (QTL) studies.under selection can be rapidly swept to high frequency

or fixation. Establishing a significance threshold for marker-trait
associations is critical. In genome-wide LD mapping,A major complication in LD studies like the one un-

dertaken in this article is the appearance of false-positive many markers are tested simultaneously, and some cor-
rection for multiplicity of testing is required. Well-marker-trait associations due to population structure.

Bayesian cluster analysis following Pritchard et al. known approaches include Bonferroni-like procedures
(e.g., Holm 1979) and permutation tests (Churchill(2000) gave no clue to the existence of such structure.
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TABLE 3

Trait-associated markers and QTL reported in literature in the same region

Associated in this research Reported in
literature

Position Associated
Chromosome (cM) with Bin QTL for Population Author

2 33.7 YLDtr/untr 3–4 Yield Steptoe/Morex Hayes et al. (1993)
2 94.5 YLDuntr 10 Yield Steptoe/Morex Hayes et al. (1993)
3 19.5 YLDtr/untr 3 Yield Blenheim/Kym Bezant et al. (1997)
4 47.8 YLDuntr 5 Yield Harrington/Morex Marquez-Cedillo et al. (2000)
4 86.1 YLDuntr 8–10 Yield Harrington/TR306 Tinker et al. (1996)
5 129.5 YLDuntr 12–13 Yield Harrington/Morex Marquez-Cedillo et al. (2000)
7 0/7.4 YLDtr/untr 1–2 Yield Blenheim/Kym Bezant et al. (1997)

Yield Apex/Prisma M. Jarso (unpublished results)
7 28.5/32.4 YLDtr/untr 3 Yield Harrington/TR306 Tinker et al. (1996)
2 6.7 STABtr 1 — —
2 36.2 STABtr 3–4 Yield Steptoe/Morex Hayes et al. (1993)

G � E Steptoe/Morex Voltas et al. (2001);
Malosetti et al. (2004)

4 45.8 STABtr 5 Yield Harrington/Morex Marquez-Cedillo et al. (2000)
4 105.0 STABtr 11 Yield Steptoe/Morex Hayes et al. (1993)

G � E Steptoe/Morex Voltas et al. (2001)
Stress-response Several Forster et al. (2000)

6 35.1 STABtr 3–4 — —

Significant marker-trait associations, marked with q in Table 2, linked to QTL reported in literature. The traits were yield
(YLD) and yield stability (STAB). The yield trials were either treated (tr) or not treated (untr) with chemicals to control leaf
diseases. The Bin positions were determined using the Bin maps available at http://www.barleyworld.org, where an overview of
known QTL also can be found. The position on the chromosome is given in centimorgans from the top of the short arm.

and Doerge 1994). Both kinds of approaches aim at ciated marker will show whether the associated marker
stands out or whether a smooth rise and fall appearscontrolling the type I error; that is, the probability of

obtaining any false positive should be below a specified before and after the marker. The latter pattern might
point to real association, although it still remains possi-level, usually 0.05. As a result, the power (or the pro-

portion of correctly identified positives) of these ap- ble that LD extends over such a short distance that a
ragged profile appears. Therefore, a smooth associationproaches can become very low. Holland and Copen-

haver (1987) improved the Holm method with respect profile confers confidence with respect to the identified
marker-trait association, but a ragged profile does notto power, but it remained conservative with impaired

power. Instead of controlling the type I error, Benjamini necessarily invalidate a found association.
Another kind of confirmation for identified associa-and Hochberg (1995) advocated the control of the so-

called FDR. FDR was defined as the expected proportion tions came from reported QTL from linkage analysis
studies. All of the YLD-associated markers coincidedof true null hypotheses within the class of rejected null

hypotheses. The multiplicity control in FDR is directed with earlier reported yield QTL. Most of the earlier
reported QTL were found in crosses within North Amer-at not surpassing a particular percentage of false posi-

tives (wrongly rejected null hypotheses, marker-trait as- ican germ plasm, while we used only European material.
This suggests that, at least for yield, the North Americansociations that “in reality” do not exist) within the set of

identified positives. We argue that for our purposes—an germ plasm genotypically resembles the European germ
plasm. An explanation might be that North Americanexploratory genome-wide LD scan—an FDR control for

multiplicity is more appropriate than a type I control. cultivars and European cultivars have common ances-
tors. Support for this hypothesis is given by FischbeckIdentification of associated markers in LD mapping

could be followed by the creation of a segregating popu- (2003), where it is stated that barley seeds were intro-
duced to North America from many countries, espe-lation, polymorphic for the involved loci, in which the

association is confirmed or refuted. In a similar vein, cially from Central, Northern, and Eastern Europe.
Furthermore, three of the STAB-associated markersWeller et al. (1998) demonstrated the utility of an FDR

approach in the genetic dissection of complex traits. were located in a region of known yield QTL, and two
of those three (on chromosomes 2 and 4) also coincidedIn any LD mapping, it will be informative to examine

the flanking markers of trait-associated markers. A chro- with a region earlier found to exhibit QTL � E interac-
tion (Table 3). In addition, the STAB-associated markermosome-wide association profile containing a trait-asso-
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TABLE 4

Predicting phenotypes with multiple linear regression analysis

Realized Predicted with selection
Selection of No. of selected

Trait markers markers R 2
adj (%) Mean Min Max Min Max

YLDtr Stepwise 19 54.5 5779 4841 6377 3631 � 330a 7804 � 305
P � 0.05 29 32.9 4782 � 418 6603 � 401
P � 0.01 7 25.8 5414 � 65 6155 � 66

q* � 0.20 4 21.7 5588 � 37 6143 � 67
YLDuntr Stepwise 18 56.4 5368 4124 6038 2494 � 343 7117 � 159

P � 0.05 35 40.2 3944 � 299 6967 � 318
P � 0.01 13 29.9 4400 � 209 6309 � 207

q* � 0.20 19 34.0 4395 � 221 6131 � 219
ADAPtr Stepwise 18 44.9 1.00 0.60 1.25 0.41 � 0.08 1.70 � 0.08

P � 0.05 25 17.4 0.76 � 0.07 1.27 � 0.08
P � 0.01 3 10.9 0.91 � 0.02 1.05 � 0.01

q* � 0.20 0 NA NA NA
ADAPuntr Stepwise 18 40.3 1.00 0.71 1.49 0.55 � 0.06 1.68 � 0.08

P � 0.05 14 21.3 0.84 � 0.03 1.30 � 0.05
P � 0.01 1 1.8 0.99 � 0.01 1.05 � 0.03

q* � 0.20 0 NA NA NA
STABtr Stepwise 18 55.7 1.60 �3.52 3.58 �6.29 � 0.72 9.10 � 0.87

P � 0.05 21 25.7 �2.19 � 0.74 3.81 � 0.73
P � 0.01 9 22.7 �0.76 � 0.46 2.40 � 0.37

q* � 0.20 8 23.2 �0.69 � 0.42 2.29 � 0.23
STABuntr Stepwise 20 57.5 1.86 �1.84 4.00 �7.27 � 0.80 9.55 � 0.80

P � 0.05 18 18.2 �0.68 � 0.60 3.27 � 0.57
P � 0.01 5 13.2 0.71 � 0.40 2.01 � 0.27

q* � 0.20 0 NA NA NA

Predicting YLD, ADAP, and STAB with a subset of markers. The subset was chosen either using stepwise regression starting
with the full set or on the basis of the significance of correlation of the markers with the trait of interest. R 2

adj is the adjusted R 2.
Realized mean, min(imum), and max(imum) values are given for comparison. Predicted min and max values were calculated
using the regression model with the least/most favorable allele configuration. Yield is in kilograms per hectare. NA, not available.

a � standard error.

on chromosome 4 is located in the region where several set of markers using stepwise regression, between 40
and 58% of the variation could be explained. We pre-stress-responsive genes have been found (Forster et al.

2000). dicted the theoretical minimum and maximum for all
traits according to the final regression model by choos-The question on the feasibility of selection on stability

is an old one. Heritability for stability measures is gener- ing the favorable alleles (1 or 0, depending on the sign
of the effect) for the selected markers. The predictedally low (Becker and Leon 1988; Leon and Becker

1988; Lin and Binns 1991; Sneller et al. 1997). We minimum and maximum values were far beyond the
observed minimum and maximum values. This could behave found markers associated with stability, but we do

not know the nature of the genes linked to these mark- explained by the absence of genotypes with exclusively
(un)favorable alleles, but also by the fact that accumulat-ers. Three of five of the STAB-associated markers were

in a region where yield QTL also have been found, ing alleles almost always result in a lower effect than
one might expect on the basis of adding up the effectssuggesting the presence of environmentally affected

yield QTL. The other two STAB-associated markers were of all the alleles. Nevertheless, selection on the basis of
these markers might result in genotypes with superiorin a region where so far no yield or yield-related QTL

were reported, suggesting environmentally affected reg- yield and/or stability potential.
The marker-trait assocation models were fitted by re-ulatory genes. However, if yield QTL were present at

those locations, their irregular expression might be the gression under the assumption that individual varieties
represented independent units. Of course, this assump-reason for their nonidentification so far.

Multiple linear regression: The question of whether tion will have been violated by pedigree relations be-
tween the varieties. At first sight it may seem attractivemarkers could be useful for predicting phenotypic re-

sponses was answered with multiple linear regression, to take account of these pedigree relations by inclusion
of a relationship matrix in a mixed-model analysis ofexplaining traits by band incidence of markers. When

subsets of 18–20 markers were selected from the total the same data. However, several considerations have
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linkage disequilibrium in the human genome. Nat. Rev. Genet.prevented us from changing from a standard regression
3: 299–309.

model to a mixed-model analysis. First, the pedigree Becker, H. C., and J. Leon, 1988 Stability analysis in plant breeding.
Plant Breed. 101: 1–23.information for collections of varieties as included in

Becker, J., P. Vos, M. Kuiper, F. Salamini and M. Heun, 1995 Com-the present study typically is very incomplete. Second,
bined mapping of AFLP and RFLP markers in barley. Mol. Gen.

the use of a relationship matrix is a logical consequence Genet. 249: 65–73.
Beer, S. C., W. Siripoonwiwat, L. S. O’Donoughue, E. Souza, D.of the use of polygenic models for quantitative traits,

Matthews et al., 1997 Associations between molecular markersbut its use in oligogenic QTL models is far less natural.
and quantitative traits in an oat germplasm pool: Can we infer

The estimator of the genetic correlation between geno- linkages? J. Agric. Genom. 3 (http://www.cabi-publishing.org/
gateways/jag/papers97/paper197/indexp197.html).types in a polygenic model is a function of the expected

Benjamini, Y., and Y. Hochberg, 1995 Controlling the false discov-identity by descent across the whole of the genome.
ery rate: a practical and powerful approach to multiple testing.

However, in an oligogenic QTL model, the use of the J. R. Stat. Soc. 57: 289–300.
Bezant, J. H., D. A. Laurie, N. Pratchett, J. Chojecki and M. J.expected identity by descent across the whole genome

Kearsey, 1997 Mapping of QTL controlling NIR predicted hotin the estimation of genetic correlations becomes ques-
water extract and grain nitrogen content in a spring barley cross

tionable. In the latter case, the use of local identity- using marker-regression. Plant Breed. 116: 141–145.
Cardon, L. R., and J. I. Bell, 2001 Association study designs forby-descent relations on the positions of the QTL would

complex diseases. Nat. Rev. Genet. 2: 91–99.seem more appropriate. These local identity-by-descent
Cattivelli, L., P. Baldi, C. Crossati, M. Grossi, G. Valé et al.,

measures may be estimated from the allele composition 2002 Genetic bases of barley physiological response to stressful
conditions, pp. 307–360 in Barley Science, edited by G. A. Slafer,of trait-associated markers as described by Milligan
J. L. Molina-Cano, R. Savin, J. L. Araus and I. Romagosa. The(2003). The reliability of such estimates is still a matter
Haworth Press, Binghamton, NY.

of discussion and for that reason we preferred to use Churchill, G. A., and R. W. Doerge, 1994 Empirical threshold
values for quantitative trait mapping. Genetics 138: 963–971.equally weighted independent varieties above disputa-

Eberhart, S. A., and W. A. Russell, 1966 Stability parameters forbly weighted and correlated varieties.
comparing varieties. Crop Sci. 6: 36–40.

It may be contested that linkage will preclude the Finlay, K. W., and G. N. Wilkinson, 1963 The analysis of adaptation
in a plant-breeding programme. Aust. J. Agric. Res. 14: 742–754.attainment of optimal allele configurations. However,

Fischbeck, G., 2003 Diversification through breeding, pp. 29–50 inclosely linked markers were very seldom included in the
Diversity in Barley, edited by R. von Bothmer, T. van Hintum,

stepwise regression models, because of the nature of H. Knüpffer and K. Sato. Elsevier Science, Amsterdam.
Forster, B. P., R. P. Ellis, W. T. B. Thomas, A. C. Newton, R.this subset selection procedure. The predictions from
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librium. The Plant Cell 15: 1502–1506.on different loci. In contrast, the regression model
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correlated with the trait did not take into account link- sis. Academic Press, London.
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