
Copyright  2004 by the Genetics Society of America
DOI: 10.1534/genetics.103.024745

Population Genetics of Polymorphism and Divergence for Diploid Selection
Models With Arbitrary Dominance

Scott Williamson,1 Adi Fledel-Alon and Carlos D. Bustamante

Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, New York 14853

Manuscript received November 19, 2003
Accepted for publication May 15, 2004

ABSTRACT
We develop a Poisson random-field model of polymorphism and divergence that allows arbitrary domi-

nance relations in a diploid context. This model provides a maximum-likelihood framework for estimating
both selection and dominance parameters of new mutations using information on the frequency spectrum
of sequence polymorphisms. This is the first DNA sequence-based estimator of the dominance parameter.
Our model also leads to a likelihood-ratio test for distinguishing nongenic from genic selection; simulations
indicate that this test is quite powerful when a large number of segregating sites are available. We also
use simulations to explore the bias in selection parameter estimates caused by unacknowledged dominance
relations. When inference is based on the frequency spectrum of polymorphisms, genic selection estimates
of the selection parameter can be very strongly biased even for minor deviations from the genic selection
model. Surprisingly, however, when inference is based on polymorphism and divergence (McDonald-
Kreitman) data, genic selection estimates of the selection parameter are nearly unbiased, even for com-
pletely dominant or recessive mutations. Further, we find that weak overdominant selection can increase,
rather than decrease, the substitution rate relative to levels of polymorphism. This nonintuitive result has
major implications for the interpretation of several popular tests of neutrality.

CHARACTERIZING the various forces that shape Hartl (1992) made some fairly restrictive assumptions
regarding population processes. They assumed equalpatterns of genetic polymorphism within and be-
mutational fitness effects, random mating, genic selec-tween species is the central goal of population genetics
tion (i.e., no dominance), independence among sites(Lewontin 1974). To that end, statistical inference us-
(i.e., free recombination), and a stationary populationing Poisson random field (PRF) models (Sawyer and
size. Recently, an effort has been made to relax theseHartl 1992; Hartl et al. 1994; Bustamante et al. 2001)
assumptions one by one. Bustamante et al. (2003) re-provides powerful likelihood and Bayesian methods for
laxed the assumption of equal mutational effects byquantifying some of these forces, such as mutation and
assuming that the fitness effects of different classes ofdirectional selection. Because PRF models assume high
new mutations are drawn from some underlying distri-levels of recombination between sites, they are particu-
bution. Using this method, it is possible to estimate thelarly well suited to the analysis of polymorphism and
distribution of mutational effects using DNA sequencedivergence at multiple loci distributed across a genome.
data; the exact form of this distribution is critical to aFor example, using a set of sequences from 12 genes in
general understanding of microevolution. Wakeley (2003)Arabidopsis and 34 genes in Drosophila, Bustamante et
relaxed the assumption of random mating by applyingal. (2002) demonstrated that amino acid substitutions
an island model of population structure (Wright 1931).in Drosophila tended to be more advantageous than
He found that, depending on the sampling regimeamino acid substitutions in Arabidopsis, which they at-
among demes, population structure can strongly biastributed to the very high rate of selfing in Arabidopsis.
estimates of mutation rates and divergence times ob-PRF models also provide extremely efficient methods
tained using the basic PRF model if sampling amongfor the simulation of polymorphism and divergence data
demes is not accounted for. Surprisingly, however, heunder the assumption of free recombination, and it has
found that the estimate of the scaled selection parame-been used in this respect to estimate the power of several
ter is largely unaffected by island-model populationstatistical tests of neutrality (Akashi 1999).
structure.In developing the original PRF model, Sawyer and

In this article, we relax the assumption of genic selec-
tion. We generalize the original PRF model to account
for arbitrary diploid selection models. Our generalized
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nance parameter, h. This is the first DNA sequenced-
f(q; �, h) �

e4�hq�2�(1�2h)q2

q(1 � q)
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q e�4�h��2�(1�2h)�2d�
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e�4�h��2�(1�2h)�2d�

, (1)based estimator of the dominance parameter, and simu-
lations reveal that it performs very well when large num-
bers of segregating sites are available. We also use our where q is the frequency of the derived nucleotide, and
generalized PRF model to investigate the impact of dom- � � 2Ns. Note that this expression is equivalent to Grif-
inance on polymorphism and divergence data. Two sur- fiths’ (2003) expression (32) for the distribution of
prising results emerge from this analysis. First, we find allele frequencies under stationarity, which was derived
that dominance relations generally have very little im- in a different manner. This can be demonstrated by
pact on ratios of polymorphism to divergence. There- substituting �(x) � 4�(h � (1 � 2h)x)x(1 � x) and
fore, statistical inferences based on these ratios (Sawyer �2(x) � x(1 � x) into expressions (12), (13), (14), and
and Hartl 1992) are robust to a violation of the assump- (32) in Griffiths (2003).
tion of genic selection. Second, we find that weak and Expanding to multiple sites, if each site is indepen-
moderate overdominant selection can sometimes de- dent, then the mutant allele frequency at each site is a
crease the ratio of polymorphism to divergence relative random draw from the above distribution, with the rela-
to a neutral standard. This result is contrary to intuition. tive density of the distribution proportional to the muta-
One might expect that balancing selection (overdomi- tion rate (Sawyer and Hartl 1992). To estimate the
nance is a special case of balancing selection) would parameters of the above distribution, consider polymor-
always increase, rather than decrease, the ratio of poly- phism data in the form of a site frequency spectrum. If
morphism to divergence because balancing selection outgroup sequence data are available so that ancestral
actively maintains polymorphism. and derived nucleotides can be distinguished, then the

A wealth of theory exists relating how different types site frequency spectrum is a vector, x, where each entry,
of dominance relations affect patterns of polymorphism xi, is a count of the number of sites at which the derived
and divergence (e.g., Cherry 2003, 2004; Griffiths nucleotide is represented i times in a sample of size n,
2003; Roze and Rousset 2003; Whitlock 2003). No- for i � 1, 2, . . . , n � 1. For a given allele frequency,
ticeably absent, however, are any methods of statistical q, at a given site, the probability of choosing i derived
inference for distinguishing nongenic from genic selec- nucleotides in a sample of n individuals is given by a
tion, so the role of dominance has been relatively under- binomial distribution with mean nq. Thus, the expecta-
studied by empirical population geneticists. The domi- tion of each of the xi is �F(n, i; �, h), where
nance parameter has important implications for a number
of evolutionary phenomena, such as inbreeding depres- F(n, i; �, h) � �

1

0
�ni � qi(1 � q)n�i f(q; �, h)dq, (2)

sion (Lynch and Walsh 1998, Chap. 10), the mainte-
nance of genetic variation by mutation-selection-drift � � 4N�, and � is the per-generation mutation rate in
balance (Charlesworth and Hughes 2000), and ge- the entire region sampled. Further, if a Poisson number
netic load (Crow 1993). The methods we present here of mutations enter the population each generation,
open up the possibility of using large DNA sequence then each of the xi will be Poisson distributed (Ewens
and single-nucleotide polymorphism (SNP) data sets 1974; Sawyer and Hartl 1992). With the full probabil-
to investigate how dominance affects variation at the ity distribution of each entry of the site frequency spec-
molecular level. trum, the model parameters �, h, and � can be estimated

using maximum-likelihood methods.
Kimura (1964) also derived the fixation rate under

THEORY the dominance model. Measuring time in 2N genera-
tions, the instantaneous fixation rate at stationarity isFor a given site, consider the case of irreversible muta-

tion from an ancestral nucleotide A1 to a derived nucleo- u(�, h) � ��1

0
e�4�h��2�(1�2h)�2d ��

�1

. (3)
tide A2, occurring at rate �. When this mutation process
is applied across many sites, it corresponds to the infi- Note that u(�, h) is equal to the stationary distribution
nite-sites mutation model (Kimura 1968, 1971; Watt- (1), evaluated at q � 1. PRF theory predicts that the
erson 1975). Let 1, 1 � 2sh, and 1 � 2s be the relative number of fixations over an arbitrary length of time, 	,
fitnesses of the genotypes A1A1, A1A2, and A2A2, respec- will be Poisson distributed with mean
tively. With random mating, this model is formally equiv-
alent to models of frequency-dependent selection where D(	, �, �, h) �

	�

2
u(�, h). (4)

fitness is linearly related to allele frequency (e.g.,
Cherry 2004). Under the usual assumptions of the

For example, if two species diverged tdiv generations ago,Wright-Fisher model (random mating, constant popula-
and both species have the same population size N, thention size, nonoverlapping generations), Wright (1938)
the expected number of fixed differences observed in

derived the quasi-stationary distribution of allele fre-
a sample from the two species is

quency for the above diploid selection scheme. Kimura
(1964) later derived a more concise form, D(4Nt div , �, �, h) � �F(n1, n1 ; �, h) � �F(n2, n2 ; �, h), (5)
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Figure 1.—The stationary dis-
tribution of allele frequencies
(top row) and the expected site-
frequency spectrum (bottom row)
for various values of the domi-
nance parameter, h, and the selec-
tion parameter, �. The left-hand
column depicts the case of nega-
tive selection (� � �10), and the
right-hand column depicts the
case of positive selection (� � 10).
The expected site-frequency spec-
tra were generated with n � 15
and the scaled mutation parame-
ter was set at � � 20.

where n1 and n2 are the sample sizes in the two popula- Maximum-likelihood estimation conditioning on the
number of segregating sites: Because S � �n�1

i�1 xi , andtions.
The effects of various types of nonadditive allelic in- because each of the xi are Poisson distributed, the joint

teractions on the stationary distribution of allele fre- probability of the xi conditional on S is given by the
quency are shown in Figure 1. Also shown are the ex- multinomial distribution with n � 1 frequency classes,
pected site frequency spectra for different combinations and the probability of each class is
of the selection (�) and dominance (h) parameters.
Note that h � 0.5 corresponds to genic selection. For �F(n, i; �, h)

�n�1
j�1 �F(n, j; �, h)

. (6)
negative selection (� 
 0), the density of the stationary
distribution, and hence the expected number of segre-

The denominator of the expression (5) is the expecta-gating sites in the site frequency spectrum, is negatively
tion of S. Also note that the mutation parameter willrelated to h. This result is straightforward: the more
cancel. The log-likelihood of a given site frequency spec-recessive the deleterious nucleotide is, the more likely
trum is thenit is to drift to observable frequencies. For positive selec-

tion (� � 0), the effect of dominance on the stationary
�(�, h|x) � ln(n!) � �

n�1

i�1

ln(xi !) � �
n�1

i�1

xi ln� F(n, i; �, h)

�n�1
j�1 F(n, j; �, h)� .distribution is more subtle. For high allele frequencies,

the density of the stationary distribution is positively (7)
related to h. This is due to the fact that, once a dominant,

Maximum-likelihood estimates of � and h can be ob-advantageous mutation has attained high frequency
tained by finding the maximum of (7) using standard(e.g., q � 0.9), the sojourn time to fixation will be rela-
optimization techniques. We investigate the samplingtively long because the ancestral homozygote genotype
properties of these MLEs using both asymptotic-likeli-will be rare. More surprisingly, at very low frequencies

the dominance parameter does not strongly affect the hood theory and stochastic simulations.
density of the stationary distribution. One might expect Asymptotic-likelihood theory predicts that, for large
to observe a relative excess of recessive, advantageous sample sizes (in our case the number of segregating
mutations at low frequencies because additive and domi- sites), the joint sampling distribution of our MLEs will
nant mutations attain high frequency much faster. How- be multinormally distributed (Kendall and Stuart
ever, this force is apparently counterbalanced by the 1973), with means given by the underlying true values
greater probability of stochastic loss of the recessive of � and h and a variance-covariance matrix given by
mutations. In the case of heterozygote advantage (h � the inverse of the Fisher information matrix I :
1 for � � 0, or h 
 0 for � 
 0), there is sometimes an
interior mode in the stationary distribution. This mode
is centered on the deterministic prediction for the stable
equilibrium allele frequency (Fisher 1922, 1930; Hal- I � �E
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dane 1926; Wright 1931), which, using our parameter-
ization, occurs at q̃ � (h � 1)/(2h � 1).
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Thus the direct way to predict the sampling variance
and covariance is to calculate the second derivatives of

�2Fi

�h2
� �

1

0
�ni � q i(1 � q)n�1 �2

�h2
f(q; �, h)dq. (13c)

the log-likelihood function and evaluate their expecta-
tions. Let Fi be shorthand for F(n, i; �, h). The first The expressions for the second derivatives of f are also
derivatives of the log-likelihood function in � and h are given in the appendix. To arrive at the entries of the

Fisher information matrix, we evaluate the expectations��

��
� �

n�1

i�1

xi �1Fi

�Fi

��
�

1

�n�1
j�1 Fj

�
n�1

j�1

�Fj

��� (9a) of second derivatives of �, noting that the T terms do
not depend on xi,

��

�h
� �
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i�1

xi �1Fi
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�h
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�n�1
j�1 Fj

�
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j�1
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�h � ; (9b)
I11 � �E ��2�

��2� � � �
n�1

i�1

E[xi]T��(n, i; �, h) (14a)

exchanging the order of integration and the derivative,
I12 � I21 � �E � �2�

���h� � � �
n�1

i�1

E[xi]T�h(n, i; �, h) (14b)we have

�Fi

��
� �

1

0
�ni �q i(1 � q)n�1 �

��
f(q; �, h)dq (10a) I22 � �E ��2�

�h2� � � �
n�1

i�1

E[xi]Thh(n, i; �, h), (14c)

where E[xi] � SFi/�n�1
j�1 Fj . The inverse of I is�Fi

�h
� �

1

0
�ni �q i(1 � q)n�1 �

�h
f(q; �, h)dq, (10b)

V �
1

I11I22 � I 2
12

� I22 �I12

�I12 I11
� . (15)where the first derivatives of f are given in the appendix.

The second derivatives of the log-likelihood function
are Therefore, the sampling variances and covariances of

the MLEs for the selection parameter, �, and the domi-
nance parameter, h, are�2�

��2
� �

n�1

i�1

xiT��(n, i; �, h) (11a)

Var(�̂) � V11 � ����
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(12c) When investigating the sampling properties of the
MLEs, we utilize assumed underlying “true” values of �

and
and h in evaluating E[xi] and the various T- - terms. In
practice, one may approximate the sampling variances�2Fi

��2
� �

1

0
�ni � q i(1 � q)n�1 �2

��2
f(q; �, h)dq (13a) and covariance of the parameter estimates by substitut-

ing the MLEs into expressions (16).
Sampling properties of �̂ and ĥ: The asymptotic joint�2Fi

���h
� �

1

0
�ni � q i(1 � q)n�1 �2

���h
f(q; �, h)dq (13b)

sampling distribution of �̂ and ĥ is shown in Figure 2
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Figure 2.—The asymp-
totic and simulated joint
sampling distributions for
maximum-likelihood esti-
mates of the selection (�̂)
and dominance (ĥ) parame-
ters. The white lines indi-
cate the underlying true val-
ues. Each plot ranges 
3
asymptotic standard devia-
tions from the true values in
each axis (�̂ and ĥ), and tick
marks are drawn at 
2 as-
ymptotic standard devia-
tions from the means. The
plots were generated with
S � 10,000 and n � 25. Sim-
ulations for partially domi-
nant, strongly deleterious
mutations (� � �20, h �
0.8) are not shown due to
the computational difficulty
of optimizing the likelihood
function in this region of
the parameter space.

for a reasonable sample size (n � 25), a large number confidence interval on ĥ is 0.8 
 4.11, and the 95%
confidence interval on �̂ is �10 
 98.71. In this situa-of segregating sites (S � 10,000), and several underlying

true values of � and h. Also shown are the simulated tion, one will have virtually no power to make inferences
or to reject null hypotheses such as � � 0 (neutrality)joint sampling distributions (see below for details of

the simulations). In general, the estimation procedure or h � 0.5 (genic selection). Fortunately, though, quan-
titative genetic analyses (e.g., Simmons and Crow 1977;seems to perform exceptionally well when data are gath-

ered from a large number of segregating sites: The Crow and Simmons 1983; Willis 1999; Kelly 2003)
suggest that strongly deleterious mutations tend to beentries of the variance-covariance matrix are small, and

simulated MLEs cluster tightly around true values. Also, recessive. Also, biochemical models (Kacser and Burns
1981) suggest that mutations of large effect will tend tothe agreement between the asymptotic prediction for

the joint sampling distribution of our MLEs and the be recessive. To summarize, the one situation where
our estimator performs poorly is thought to occur rarelysimulated distribution is generally quite good. These

results indicate that it is possible to estimate dominance in natural populations.
Thus far we have reported results for a large numberparameters from DNA polymorphism data alone. The

main exception to this result is the case of strongly of segregating sites, with the presumption that the
method would be applied at the genomic level to largedeleterious (� 
 �5) and at least partially dominant

(h � 0.5) mutations. In this region of the parameter SNP data sets, and we have found that the estimation
procedure works surprisingly well in this situation forspace, the sampling variances and covariance of �̂ and

ĥ become extremely large. For instance, for � � �20 most parameter combinations. For smaller data sets (S 

100), our ability to simultaneously estimate the selectionand h � 0.8, the asymptotic prediction for the 95%
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(6). Using this simulated data, the likelihood function
(7) was evaluated using the extended midpoint numeri-
cal integration algorithm (Press et al. 1988, Chap. 4)
and then maximized using the Fletcher-Reeves-Polak-
Ribiere optimization routine (Press et al. 1988, Chap.
10). The likelihoods from the two different models were
then compared using the LRT statistic. This procedure
was repeated 1000 times for each parameter combina-
tion, using the 190-node Computational Biology Service
Unit cluster at the Cornell Theory Center (www.tc.cor
nell.edu).

Statistical power, i.e., the proportion of tests that reject
the null hypothesis, is shown in Figure 4 as a function
of the dominance parameter h. Results are not reported
for dominant, strongly deleterious mutations (� � 20
and h � 0.5) because the large sampling variances of
the MLEs in this region of the parameter space made it
difficult to optimize the likelihood function. In general,
given enough segregating sites, the LRT is extremely
powerful in detecting deviations from the genic selec-
tion model, even for very weak selection (|�| 
 5) and
incomplete dominance (0 
 h 
 1, h � 0.5). This
indicates that the “signature” of nongenic selection is
evident from patterns of DNA sequence polymorphism,
and it is indeed possible to identify nongenic selection
and estimate dominance parameters. Figure 4 also
shows that, above n � 25, the sample size makes very

Figure 3.—The asymptotic standard deviation of the maxi-
little difference in one’s ability to detect departuresmum-likelihood estimates for the selection (�̂) and domi-
from genic selection. However, an increase in the ob-nance (ĥ) parameters as a function of the observed number

of segregating sites. Solid lines represent underlying true val- served number of segregating sites can make a substan-
ues of � � �10 and h � 0.2, and dotted lines represent the tial difference in statistical power. Despite the positive
case of � � 10 and h � 0.8. n � 25 for all curves. relationship between power and the number of segre-

gating sites, we do observe appreciable power even for
a small number of segregating sites in some situations.
For example, if advantageous mutations are completelyand dominance parameters is greatly diminished. Not-

ing that E[xi] � S, we see that the sampling variance dominant or completely recessive, statistical power is
high even for S � 100.and covariance terms in expressions (15) are inversely

proportional to S. This hyperbolic dependence on S is In estimating statistical power, we have made the as-
ymptotic assumption that our LRT statistic is chi-squarereflected in Figure 3, which shows the standard devia-

tion of the MLEs as a function of S. distributed. To assess the validity of this assumption, we
conducted several simulations under the null hypothesisPower to detect nonadditive allelic interactions: The

two-parameter model with selection and dominance can of genic selection. If the asymptotic assumption is ap-
propriate, then the 95% quantile of our simulated LRTbe compared to the one-parameter basic PRF model

(Sawyer and Hartl 1992) by employing a likelihood- statistics should closely approximate the 95% (P � 0.05)
critical value of the chi-square distribution with 1 d.f.ratio test (LRT). Here, genic selection (h � 0.5) is the

null hypothesis and the LRT statistic, 2(�(�̂, ĥ|x) � �(�̂o, The 95% quantiles of our simulated LRTs are shown
in Table 1 for several combinations of the selection1⁄2|x)), is expected to be chi-square distributed with 1

d.f. under the asymptotic assumption (�̂o denotes the parameter, sample size, and number of segregating sites.
In general, the simulated critical values are very closemaximum-likelihood estimate of the selection parame-

ter under the assumption of genic selection). We con- to the chi-square critical value. Also, the simulated distri-
bution of the LRT statistic closely conforms to the chi-ducted stochastic simulations to determine the statistical

power (probability of rejecting genic selection) this test square distribution with 1 d.f. Some example distribu-
tions are shown in Figure 5.has in detecting deviations from strictly genic selection.

The simulation procedure is straightforward. First, to Bias in estimating selection parameters: To assess the
bias caused by estimating selection in the presence ofsimulate data, we conducted S pseudo-random draws

from a multinomial distribution with n � 1 classes, unacknowledged dominance relations, we simulated
data for various degrees of dominance and then esti-where the probability of each class is given by expression
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Figure 4.—Statistical power
(fraction of tests that reject the
null hypothesis) of the likelihood-
ratio test to reject genic selection,
shown as a function of the domi-
nance parameter, h. Power was eval-
uated by simulating 1000 indepen-
dent data sets for each parameter
combination and then applying the
likelihood-ratio test for each data set.

mated the selection parameter assuming the one-param- apply the genic-selection model to data in the form of
a site-frequency spectrum. A simple chi-square good-eter genic-selection model. The relative bias due to un-

acknowledged dominance relations is shown in Figure ness-of-fit test is appropriate for this purpose. Under
genic selection, the following statistic should be chi-6. Dominance can have a major impact on the genic-

selection estimate of the selection parameter, especially square distributed with n � 3 d.f.,
for the case of strong positive selection. If new mutations

2(�g(x) � �(�̂o, 1⁄2|x)), (17)are advantageous but recessive, then the genic-selection
model substantially underestimates the selection pa- where
rameter, to the point that one sometimes incorrectly
identifies negative, rather than positive, selection. If new

�g(x) � ln(n!) � �
n�1

i�1

ln(xi !) � �
n�1

i�1

xi ln�xi

S� . (18)mutations are advantageous and dominant, then the
genic-selection model yields large to extreme overesti-

In our simulations, this goodness-of-fit test leads usmates of the selection parameter, even for slightly domi-
to convincingly reject the genic-selection model in casesnant mutations (0.5 
 h 
 0.7). Our genic-selection
where the genic-selection estimate of the selection pa-estimates of the selection parameter were sometimes
rameter is strongly biased. For example, for � � 20 andpushed to the upper limit (� � 100) of the range of
h � 0.7, the average MLE of � under the genic-selectionpossible selection parameters that we allowed in our
model is �̂o � 66.9. In this case, the average goodness-simulations. In general, the genic-selection model for
of-fit statistic over 1000 simulations has a P-valuethe site-frequency spectrum does not reliably character-

10�100.ize nongenic, positive selection. For the case of negative

McDonald-Kreitman polymorphism and divergence data:selection, the bias introduced by dominance relations
The McDonald-Kreitman test of neutrality (McDonaldis less extreme, but still substantial. In general, if new
and Kreitman 1991) contrasts the ratios of polymor-mutations are deleterious and at least partially recessive,
phism to divergence across different classes of muta-then one tends to overestimate the selection parameter.
tions. If one of the classes (e.g., synonymous sites) isThe opposite pattern is observed if new mutations are
thought to evolve neutrally for a priori reasons, this classdeleterious and partially dominant; i.e., one tends to
can be used as a “neutral standard,” and the ratio ofunderestimate the selection parameter.
polymorphism to divergence from the potentially se-Given the sometimes extreme bias in the genic-selec-
lected class (e.g., nonsynonymous sites) can be com-tion estimate of the selection parameter, we require

some criteria to determine when it is appropriate to pared to this standard to detect the action of selection.
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TABLE 1

Simulated critical values for the likelihood-ratio test (LRT) of
genic selection for different values of the selection parameter,

sample size, and observed number of segregating sites

95% critical Fraction rejected
� n S value assuming � 2

(1)

�4 25 100 3.54 0.04
1,000 4.23 0.061

10,000 4.06 0.056
50 100 3.81 0.049

1,000 4.04 0.054
10,000 3.78 0.048

4 25 100 3.64 0.045
1,000 3.89 0.052

10,000 3.86 0.051
50 100 3.78 0.048

1,000 3.83 0.050
10,000 4.15 0.065

20 25 100 3.86 0.051
1,000 3.94 0.053

10,000 3.42 0.033
50 100 3.52 0.039

1,000 3.91 0.051
10,000 3.65 0.044

Asymptotic likelihood theory predicts that the 95% critical
value is 3.84. Also shown is the null rejection rate at P � 0.05
under the asymptotic assumption that the LRT statistic is chi-
square distributed. Figure 5.—The simulated null distribution of the likeli-

hood-ratio test statistic for nongenic selection. The null hy-
pothesis is no dominance (h � 0.5). The solid line is the
asymptotic prediction for the null distribution. Null distribu-
tions are shown for (a) weak negative selection with � � �4Because the McDonald-Kreitman test is based on an
and (b) weak positive selection with � � 4.observed standard for neutral evolution in the particular

population in question, it is fairly robust to demographic
deviations from the equilibrium neutral model, such as
population subdivision or fluctuating population size parameters. These estimates, derived using the method
(McDonald and Kreitman 1991; Akashi 1999; Niel- of moments, are equivalent to the maximum-likelihood
sen 2001). Therefore, results of a McDonald-Kreitman estimates (Sawyer and Hartl 1992). Note that it is not
test are often easier to interpret than those of many possible to estimate additional parameters, such as the
other neutrality tests, such as Tajima’s (1989) D-test and dominance parameter, from these types of data because,
Fu and Li’s (1993) series of tests, which are sensitive to under genic selection, there are four equations and four
demographic, as well as selective, forces (e.g., Golding unknown parameters: the nonsynonymous and synony-
1997). mous nonlethal mutation rates, the divergence time,

The original McDonald-Kreitman test (McDonald and the selection parameter. Therefore, without prior
and Kreitman 1991) was devised as a 2 � 2 contingency knowledge of some of the parameters, McDonald-Kreit-
table analysis. As an alternative, Sawyer and Hartl man data contain no additional information regarding
(1992) developed a maximum-likelihood framework for dominance.
analyzing polymorphism and divergence, which allows Even though it is not possible to estimate dominance
the estimation of selection, mutation, and divergence parameters from McDonald-Kreitman data, we can still
time parameters, as well as hypothesis testing. Let Sn, Ss, investigate how dominance relations affect parameter
Dn, and Ds be the observed numbers of nonsynonymous estimates obtained using McDonald-Kreitman data un-
polymorphisms, synonymous polymorphisms, nonsyn- der the assumption of genic selection. This is important
onymous fixed differences, and synonymous fixed dif- because, even though the McDonald-Kreitman test and
ferences, respectively (hereafter referred to as McDon- Sawyer and Hartl’s parametric methods are thought to
ald-Kreitman data). With the usual assumptions of the be robust to deviations from an ideal population model
PRF model (see above), one can obtain parameter esti- (e.g., nonrandom mating, nonstationary population
mates by setting the observed values to their expecta- size), it is not known how sensitive this approach is to

deviations from the assumed form of selection. Usingtions under the PRF model and then solving for the
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Figure 6.—Genic selection esti-
mates of the selection parameter, �,
obtained by simulating site-frequency
spectra with varying degrees of domi-
nance relations. Dashed lines indicate
the true value of � in the simulation;
deviations from this line indicate bias.
Error bars indicate 95% confidence
limits on the maximum-likelihood esti-
mate, and points marked with a star
indicate that the mean maximum-like-
lihood estimate was �100, the maxi-
mum value allowed by our simulations.
Simulations were performed with n �
25, conditional on the observed num-
ber of segregating sites at S � 10,000.

fixed values for the mutation rate and divergence time parameter. For instance, in the case of positive selection,
(the divergence time is usually estimated from synony- an increase in the dominance parameter causes both an
mous sites, and the mutation rate does not need to increase in the level of polymorphism and an increase in
be estimated to estimate the selection parameter), we the fixation rate (Figure 8). If these effects roughly
simulated nonsynonymous polymorphism and diver- cancel out in a ratio of polymorphism to divergence,
gence data for several values of the selection and domi- then Sawyer and Hartl’s method would be insensitive
nance parameters and then estimated the selection pa- to nongenic selection. The ratio of the expected num-
rameter under genic selection. For each iteration, the ber of polymorphisms to the expected number of fixed
number of nonsynonymous segregating sites was drawn differences is shown in Figure 9 for several different
from a Poisson distribution with mean values of dominance parameter, h. Dominance relations

have very little impact on the ratio of polymorphism to
��

1

0
(1 � qn � (1 � q)n)f(q; �, h)dq (19)

divergence, which explains why we observe so little bias
in the genic-selection estimate. Wakeley (2003) re-and the number of nonsynonymous fixed differences
cently demonstrated that, when applied to McDonald-was drawn from a Poisson distribution with mean
Kreitman data, Sawyer and Hartl’s method is robust to

D(	, �, �, h) � �F(n, n; �, h). (20) the assumption of random mating by applying an island
model of population structure. Using simulations, Wein-Given these simulated data, we estimated the selection
reich and Rand (2000) demonstrated that McDonald-parameter, �, under genic selection by numerically solv-
Kreitman ratios—and, consequently, Sawyer and Hartl’sing Equation 22 in Sawyer and Hartl (1992).
estimate of the selection parameter—are not sensitive toThe bias in Sawyer and Hartl’s (1992) estimate of
dominance relations for a limited range of the dominancethe selection parameter is shown in Figure 7 as a func-
parameter (0 � h � 1 in our notation, 0 � h � 2 in theirtion of the degree of dominance. Surprisingly, domi-
notation). Our results indicate that this is also true ofnance relations, including the case of weak overdomi-
weakly overdominant and underdominant mutations.nance, have very little impact on estimates of � obtained

The effect of heterozygote advantage (h � 1 for � �assuming genic selection. This is due to the fact that
0, or h 
 0 for � 
 0) on McDonald-Kreitman datadominance has a similar effect on both polymorphism
deserves special attention. Heterozygote advantage is aand divergence. Conditional on the scaled divergence
special case of balancing selection, and its effect ontime, 	, which is generally estimated from synonymous
polymorphism and divergence approximates the effectsites, Sawyer and Hartl’s estimate of the selection param-
of several other types of balancing selection (Wrighteter depends solely on the ratio of nonsynonymous poly-
and Dobzhansky 1948; Denniston and Crow 1990;morphism to divergence. Therefore, if dominance has
Takahata and Nei 1990). One might expect that bal-a similar effect on polymorphism and divergence, then

it will not appreciably affect estimates of the selection ancing selection should cause an increase in the ratio of
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Figure 8.—The substitution rate, u(�, h), as a function of
the strength of selection, � � 2Ns, for different values of the
dominance parameter, h. Because the neutral substitution rate
is 1, this plot also predicts the ratio of nonsynonymous to
synonymous fixed differences, i.e., the dN/dS ratio.

tage is fairly weak (h � 1.3, � � 0 in Figure 9). As the
strength of heterozygote advantage increases (i.e., � and
h increase) and allele frequencies are more tightly main-
tained at intermediate frequencies, this trend reverses
because the level of polymorphism increases faster than
the fixation rate (h � 2, � � 6 in Figure 9). However,
we submit that McDonald-Kreitman tables provide infor-
mation regarding balancing selection that is ambiguous
at best—if heterozygote advantage is weak or moderate,
then significant results could be interpreted as positive
directional selection rather than balancing selection.

DISCUSSION

Dominance plays a very important role in a number
of evolutionary phenomena at the heart of population
genetics. For instance, a central controversy in evolu-
tionary genetics has been the dispute over whether a
balance between deleterious mutations and purifying
selection can account for the bulk of genetic variation in
fitness-related traits (e.g., Lewontin 1974). AlternativeFigure 7.—Genic selection estimates of the selection pa-
explanations suggest that selection actively maintainsrameter, �, obtained by simulating polymorphism and diver-
genetic variation via frequency-dependent selection,gence data with varying degrees of dominance relations.

Dashed lines indicate the true value of � in the simulation. variation in selection intensity over time and space, het-
Note that, for � � �5, the estimate �̂ is biased even in the erozygote advantage, or other higher-order processes.
case of genic selection because we conditioned on observing Theoretical models of deleterious mutation/purifyingat least one segregating site and one fixed difference in the

selection balance depend primarily on the deleterioussample. For each simulation, the divergence time, 	, was fixed
mutation rate and the product of the selection andat 	 � 10, n � 25, and � � 50. Error bars indicate the 95%

confidence limits of �̂. dominance parameters (e.g., Charlesworth and Hughes
2000). Therefore, assessing the validity of the deleteri-
ous mutation hypothesis will require characterizing

nonsynonymous polymorphism to divergence because both selection and dominance at the level of the entire
balancing selection actively maintains polymorphisms. genome.
In our results from the case of heterozygote advantage, In the fields of molecular population genetics and
we have assumed the best-case scenario for detecting molecular evolution, there has been a growing consen-
balancing selection: every new mutation is independent sus that weak negative selection plays an important role
and subject to heterozygote advantage, yet we see that in evolution (e.g., Ohta 1992). Virtually all of the argu-
the ratio of polymorphism to divergence is actually ments in support of this finding are based on the as-
sometimes less than the neutral standard. This occurs sumption of genic selection. However, if moderately or
when the derived homozygote is more fit than the ances- strongly deleterious mutations tend to be recessive, they

could “appear” to be weakly selected on the basis oftral homozygote and the degree of heterozygote advan-
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there is an urgent need to quantify patterns of nongenic
selection at the molecular level.

In this article we have made the somewhat artificial
assumption that all new mutations have the same fitness
effect. An obvious extension to this method is to allow
variable fitness and dominance effects by assuming that
the effects of each new mutation are drawn from some
bivariate distribution and then integrating over all possi-
ble fitness and dominance effects to arrive at predictions
for the stationary distribution of allele frequency. This
approach is computationally challenging because it re-

Figure 9.—The log-transformed ratio of the expected num- quires numerically evaluating complicated four-dimen-
ber of polymorphisms to the expected number of fixed differ- sional integrals during each evaluation of the likelihoodences as a function of the selection parameter, �, for several

function. We have also assumed high levels of recombi-different values of the dominance parameter, h. The ratio is
nation between sites. This assumption may be appro-plotted relative to the ratio under neutrality (E[Sn]/E[Dn] �

1 at � � 0). priate for SNPs distributed across a genome, but it does
not apply to small regions with limited or no recombina-
tion such as single protein-coding genes or animal mito-

their frequency profile. For instance, we have shown chondrial genomes. It may be possible to address this
that nongenic selection can strongly bias estimates of problem using a composite-likelihood approach (Hud-
the selection parameter that are based on the site-fre- son 2001).
quency spectrum. To address whether the apparent sig-
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of evidence suggest that dominance plays an important
role in shaping polymorphism and divergence in fitness-
related traits. The first line of evidence is the simple
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APPENDIX

To evaluate the first and second derivatives of the stationary distribution, f, we apply the product rule from calculus
several times and exchange the order of integration and derivation when necessary. The first derivatives in � and
h are then
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where

u(q; �, h) � e4�hq�2�(1�2h)q2 (A2a)

v(q; �, h) � e�4�hq�2�(1�2h)q2. (A2b)

And the second derivatives are
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(A3a)

(A3b)

(A3c)




