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We review recent developments in the design and analysis of group-randomized tri-
als (GRTs). Regarding design, we summarize developments in estimates of intraclass
correlation, power analysis, matched designs, designs involving one group per condition,
and designs in which individuals are randomized to receive treatments in groups. Re-
garding analysis, we summarize developments in marginal and conditional models, the
sandwich estimator, model-based estimators, binary data, survival analysis, random-
ization tests, survey methods, latent variable methods and nonlinear mixed models,
time series methods, global tests for multiple endpoints, mediation effects, missing
data, trial reporting, and software.

We encourage investigators who conduct GRTs to become familiar with these devel-
opments and to collaborate with methodologists who can strengthen the design and anal-
ysis of their trials. (Am J Public Health. 2004;94:423–432)

Design and Analysis of Group-Randomized Trials: 
A Review of Recent Methodological Developments
| David M. Murray, PhD, Sherri P. Varnell, PhD, MS, and Jonathan L. Blitstein, MS

Group-randomized trials (GRTs) are compara-
tive studies designed to evaluate interventions
that operate at a group level, manipulate the
physical or social environment, or cannot be
delivered to individuals.1 Examples include
school-, worksite-, and community-based stud-
ies designed to improve the health of stu-
dents, employees, and residents, respectively.
Just as the randomized clinical trial (RCT) is
the gold standard in public health and medi-
cine when allocation of individual partici-
pants is possible, the GRT is the gold stan-
dard when allocation of identifiable groups is
necessary.

There are 4 characteristics that distinguish
the GRT from the more familiar RCT. First,
the unit of assignment is an identifiable
group; such groups are formed not at random
but rather through some physical, social, geo-
graphic, or other connection among their
members. Second, different groups are as-
signed to each condition, creating a nested or
hierarchical structure for the design and the
data. Third, the units of observation are mem-
bers of those groups nested within both their
condition and their group. Fourth, usually
only a limited number of groups are assigned
to each condition.

These characteristics create several prob-
lems in the design and analysis of GRTs.1 The
major design problem is that a limited num-
ber of often heterogeneous groups makes it
difficult for randomization to distribute poten-

tial sources of confounding evenly in any
single realization of the experiment. This in-
creases the need to use design strategies that
will limit confounding and analytic strategies
to deal with confounding when it is detected.
The major analytic problem is that there is an
expectation for a positive intraclass correla-
tion (ICC) among observations of members of
the same group.2 That ICC reflects an extra
component of variance attributable to the
group above and beyond the variance attrib-
utable to its members. This extra variation
will increase the variance of any group-level
statistic beyond what would be expected with
random assignment of members to condi-
tions. Moreover, with a limited number of
groups, the degrees of freedom available to
estimate group-level statistics are limited. Any
test that ignores either the extra variation or
the limited degrees of freedom will have a
type I error rate that is inflated, and this ef-
fect will only worsen as the ICC increases.3

Cornfield4(p101–102) warned of this danger
25 years ago when he noted that ignoring
these problems was “an exercise in self-
deception . . . and should be discouraged.”
That warning was followed by a gradual in-
crease in the number of methods papers in
this area. The first comprehensive text on the
design and analysis of GRTs appeared in
1998.1 It detailed the design considerations
for the development of GRTs, described the
major approaches to their analysis both for

Gaussian and binary data, and presented
methods for power analysis applicable to
most GRTs. We use that text as a point of de-
parture for this review and assume that read-
ers are familiar with its basic material.

Over the past 5 years, many articles have
discussed the methodological issues involved
in GRTs generally or in design papers de-
scribing new trials.5–28 The second textbook
on design and analysis of GRTs appeared in
2000.29 That text provided a good history of
GRTs and examined the role of informed con-
sent and other ethical issues. It focused on ex-
tensions of classical methods, although it also
included material on regression models for
Gaussian, binary, count, and time-to-event
data. Other textbooks on analysis methods
germane to GRTs appeared during the same
period,30–33 as well as a large number of arti-
cles on new methods relevant to the design
and analysis of GRTs. In the sections that fol-
low, we bring the reader up to date on many
of these developments.

DESIGN ISSUES

In 1998, Murray1 detailed the design con-
siderations for a GRT, whether the study was
to use a nested cohort or nested cross-
sectional design; whether the study was to
have a posttest-only design, a pretest–posttest
design, or an extended design with multiple
pretest/posttest measures; and whether the
design was to be completely randomized or
to include matching/stratification. At that
time, investigators were limited by the paucity
of ICC and other parameter estimates needed
to select an efficient design and to ensure that
the study would have adequate power (the
probability of rejecting the null hypothesis
when it is false). One of the important recent
developments has been the publication of pa-
pers providing estimates for those parameters.
Another has been the publication of impor-
tant refinements in the methods used for power
analysis. There have also been important
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TABLE 1—Recent Articles Presenting Intraclass Correlations and Related Parameter
Estimates

Groups Population Type of Endpoint(s) Source

Clinics Adolescents Tobacco, alcohol Slymen and Hovell41

Clinics Adults Preventive practices Baskerville et al.129

Clinics Adults Process and cost-effectiveness Campbell et al.130

Clinics Adults Pregnancy Piaggio et al.131

Clinics Adults Assessment and management of the elderly Smeeth and Ng132

Communities Adults Tobacco, eating patterns, alcohol, weight Gulliford et al.133

Communities Adults Heart attack delay Murray et al.42

Communities Adults, youths Eating patterns, tobacco, alcohol Feng et al.35

Schools Adolescents Tobacco, alcohol, other drug use Scheier et al.134

Schools Adolescents Eating patterns, physical activity Murray et al.135

Schools Adolescents Tobacco Murray et al.136

Schools Adolescents Alcohol Murray et al.39

Worksites Adults Wood dust exposure Lazovich et al.137

Worksites Adults Tobacco, physical activity, alcohol, weight Martinson et al.138

developments in several specific designs, in-
cluding matched designs, designs involving 1
group per condition, and designs in which in-
dividuals are randomized to receive treat-
ments in groups.

New Estimates of ICCs
Investigators planning a GRT should not

proceed absent a good estimate of the extra
variation likely to be present in their primary
analysis. To do so is to risk a substantially un-
derpowered or overpowered study. Table 1
lists articles published in the past 5 years that
have reported ICC and related parameter esti-
mates. Donner and Klar reported ICCs from a
number of other studies,29 as did Murray and
Blitstein.34 Collectively, these sources provide
estimates for a wide variety of groups, mem-
bers, and endpoints so that investigators now
have a better opportunity of finding estimates
that are well matched to the circumstances of
the trial they are planning.

Murray and Blitstein34 also reported a
pooled analysis of ICCs from worksite, school,
and community studies. They confirmed that
the adverse impact of a positive ICC can be
reduced by regression adjustment for covari-
ates1,35–38 or by taking advantage of over-
time correlation in a repeated measures anal-
ysis.1,35,39 Janega et al. (unpublished data,
2003) have shown that standard errors for
intervention effects from end-of-study analy-

ses that reflect these strategies are often dif-
ferent from the standard errors estimated
from baseline analyses. Because the ICC of
concern in any GRT is the ICC as it operates
in the primary analysis,1 these findings rein-
force the need for investigators to use esti-
mates in their power analyses that closely re-
flect the endpoints, target population, and
primary analysis planned for the trial. And
while the sources just cited will help consider-
ably in this regard, we join others who have
urged publication of such estimates as a rou-
tine part of reporting the results of GRTs.40

Power Analysis
Most of the sources that reported ICCs also

showed how they could be used to size a new
GRT, as did many of the papers cited earlier
as general reviews. We do not repeat the
standard presentation here and instead refer
readers to those sources, and especially to
chapter 9 in the Murray text,1 including the
examples offered at the end of that chapter.
Even so, a few points bear repeating here.
First, the increase in between-group variance
due to the ICC in the simplest analysis is cal-
culated as 1+(m–1)ICC, where m is the
number of members per group; as such, ig-
noring even a small ICC can underestimate
standard errors if m is large. Second, while
the magnitude of the ICC is inversely related
to the level of aggregation, it is independent

of the number of group members who pro-
vide data. For both of these reasons, more
power is available given more groups per
condition with fewer members measured per
group than given just a few groups per condi-
tion with many members measured per
group, no matter the size of the ICC.

Third, the 2 factors that largely determine
power in any GRT are the ICC and the num-
ber of groups per condition. For these rea-
sons, there is no substitute for a good esti-
mate of the ICC for the primary endpoint, the
target population, and the primary analysis
planned for the trial, and it is unusual for a
GRT to have adequate power with fewer than
8 to 10 groups per condition. Finally, the for-
mula for the standard error for the interven-
tion effect depends on the primary analysis
planned for the trial, and investigators should
take care to calculate that standard error, and
power, based on that analysis. Chapter 9 in
the Murray text1 provides formulas for many
of the common analyses, and generic formu-
las and examples are provided in recent work
conducted by Janega et al. (unpublished data,
2003).

Several variations on the standard power
analysis have appeared during the past 5
years. Slymen and Hovell presented a method
that allows the investigator to compare sam-
ple size requirements for a GRT and an RCT
based on the anticipated magnitude both of
the ICC and of any contamination.41 They
showed that for small groups, where contami-
nation was likely to be substantial, GRTs were
a natural choice, while for large groups,
where contamination was likely to be modest,
RCTs were a natural choice. Hayes and Ben-
nett presented sample size formulas for pair-
matched and pair-unmatched GRTs in terms
of coefficients of variation rather than ICCs
for investigators more familiar with the for-
mer than the latter.21 Murray et al. defined
the design effect as it operates in a random
coefficient model and presented methods for
power analyses of such models.42

Kerry and Bland compared 3 methods for
weighting group means in sample size calcula-
tions when those means are based on a vari-
able number of observations; they reported
that minimum variance weights were superior
to uniform weights, particularly when clusters
were small, and superior to cluster-size



March 2004, Vol 94, No. 3 | American Journal of Public Health Murray et al. | Peer Reviewed | Public Health Matters | 425

 PUBLIC HEALTH MATTERS 

weights, particularly when the clusters were
large.43 Lake et al. showed how power could
be improved without increasing the type I
error rate using a strategy in which sample
size is reestimated after the start of recruit-
ment using the initial data.44 This strategy has
application in situations in which many
groups are to be randomized and recruitment
of those groups is to take place over a long
period of time (e.g., some family studies). Liu
et al. provided a technical discussion of sam-
ple size and power for analytic models involv-
ing differences between means, slopes, or pro-
portions for GRTs involving repeated
observations of the same groups and mem-
bers45; less technical presentations are also
available.1,42 Raudenbush discussed sample
size in GRTs accounting for the cost of re-
cruiting members and groups and provided
formulas for optimal size with and without
covariate adjustment.46

Matched Designs
Almost half of the GRTs published in the

American Journal of Public Health and Preven-
tive Medicine during the period 1998 through
2002 involved matched designs.47 Even so,
Klar and Donner suggested that stratification
may be a better design choice to ensure bal-
ance on potential confounders.10,29,48 They
argued that stratification exacted a lower
price in terms of degrees of freedom, and cer-
tainly that is true. Klar and Donner also
pointed out that estimation of the ICC in a
matched design assumes homogeneity of ef-
fects across pairs, and they gave that as an-
other reason to avoid a matched design. Oth-
ers have argued that this assumption is often
reasonable.49

Raab and Butcher proposed an alternative
to matching50 based on a balancing criterion
calculated as a weighted sum of squared dif-
ferences between the condition means on any
proposed covariates. Groups would be di-
vided into 2 sets providing a small enough
value on their criterion, followed by random
assignment of sets to conditions. Raab and
Butcher argued that this scheme would sup-
port model-based methods because it would
fulfill the conditional independence criterion.
To support a randomization test, they pro-
posed that the criterion be calculated for all
possible allocations of groups to conditions,

that some subset of those allocations be iden-
tified as having a small enough value on the
criterion to be acceptable, and that one such
allocation be chosen at random, followed by
random assignment of sets to conditions.

One Group per Condition
GRTs with 1 group assigned to each condi-

tion have been criticized as unable to support
a valid analysis for an intervention effect, ab-
sent strong and untestable assumptions.1,29

Even so, these designs continue to appear,
both in applications submitted to National In-
stitutes of Health study sections and in arti-
cles in the peer-reviewed literature.47 Varnell
et al. recently provided additional documenta-
tion of the dangers of this design and urged
investigators to avoid it except in the case of
pilot studies.51

Individuals Randomized to Receive
Treatments in Groups

A design intermediate between a GRT and
an RCT exists in which individuals are ran-
domized to study conditions but receive their
treatment in small groups or from the same
intervention team seen by other participants.
Those shared experiences may result in corre-
lated errors, just as they do in GRTs. While
some may regard this as a type of “interven-
tion effect,” it is instead a threat to the inter-
nal validity of the trial. This concern was
raised nearly 20 years ago in the context of
designs in which endpoints were determined
jointly by patients and their providers.52 Sev-
eral recent articles have echoed that
concern.46,53–55

Most recently, Varnell et al. compared
analyses for these studies in simulations, vary-
ing the number of groups per condition, the
magnitude of the ICC, and the number of
conditions that received an intervention in
small groups while fixing the intervention ef-
fect at zero.56 Analyses that ignored the ICC
had an inflated type I error rate, with the
magnitude of the problem dependent on the
size of the ICC, the number of members per
group, and the number of conditions in which
participants received treatment in groups. A
mixed-model regression approach with the
group included as a nested random effect and
degrees of freedom based on the number of
groups carried the nominal type I error rate.
This finding confirms that allowing partici-

pants to interact with each other in small
groups does not maintain the independence
of observations required for the usual RCT
analyses.

ANALYSIS ISSUES

Murray1 identified several analytic ap-
proaches that can provide a valid analysis for
GRTs. In each, the intervention effect is de-
fined as a function of a condition-level statis-
tic (e.g., difference in means, rates, or slopes)
and assessed against the variation in the cor-
responding group-level statistic. These ap-
proaches included mixed-model analysis of
variance (ANOVA)/analysis of covariance
(ANCOVA) for designs having only 1 or 2
time intervals, random coefficient models for
designs having 3 or more time intervals, and
randomization tests as an alternative to the
model-based methods. Murray1 identified
other approaches as invalid for GRTs because
they ignored or misrepresented a source of
random variation. These included (1) analy-
ses that assessed condition variation against
individual variation and ignored the group,
(2) analyses that assessed condition variation
against individual variation and included the
group as a fixed effect, (3) analyses that as-
sessed the condition variation against sub-
group variation, and (4) analyses that as-
sessed condition variation against the wrong
type of group variation. 

Murray1 identified still other strategies as
having limited application for GRTs. Applica-
tion of fixed-effect models with post hoc cor-
rection for extra variation and limited degrees
of freedom assumes that the correction is
based on an appropriate ICC estimate, and in
1998 few estimates were available. Applica-
tion of survey-based methods or generalized
estimating equations (GEE) and the sandwich
method for standard errors requires that a
total of 40 or more groups be included in the
study, and in 1998 most GRTs did not in-
clude 40 groups.

During the past 5 years, considerable at-
tention has been focused on analytic issues
germane to GRTs, including refinements for
existing methods and development of new
methods. Much of this work has occurred out-
side the context of GRTs but has application
to GRTs, and so we include it in this review.
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Conditional versus Marginal Models
Conditional or subject-specific models are

typified by mixed-model regression57 and in-
corporate random effects to reflect the corre-
lation among observations made of members
of the same group; the observations are con-
sidered independent conditional on those ran-
dom effects. Marginal or population-averaged
models are typified by GEE58,59 and define
the marginal expectation of the dependent
variable as a function of the predictor vari-
ables and assume that the variance is a
known function of the mean; they separately
specify a correlation structure for observa-
tions made of members of the same group. In
the case of Gaussian data, interpretation of
the condition coefficient is the same in condi-
tional and marginal models; however, in the
case of binary data, the condition coefficient
from a marginal model is smaller than that
from a conditional model and has a different
interpretation. 

In the marginal model, the condition coeffi-
cient is the between-person difference in the
log odds of the outcome comparing the ef-
fects of the intervention and control condi-
tions as if they had been delivered to 2 differ-
ent individuals. In the conditional model, the
condition coefficient is the within-person
change in the log odds of the outcome com-
paring the effect of the intervention and con-
trol conditions as if they had been delivered
to the same individual. Several recent papers
have recommended conditional models for
GRTs focused on change within participants
(e.g., preintervention vs postintervention) and
marginal models for GRTs focused on differ-
ences between participants (e.g., intervention
condition vs control condition). Unfortunately,
both approaches have problems in certain bi-
nary data situations; because these issues af-
fect the remainder of our presentation, we
consider them first.

Limitations of the Sandwich Estimator
Used in Marginal Models

One of the advantages of GEE is that it
uses an estimator for variances of fixed effects
that is asymptotically robust to misspecifica-
tion of the correlation structure; the sandwich
estimator is so named because the expression
of this estimator “sandwiches” an approximate
correlation matrix inside 2 outer layers of ma-

trix algebra that otherwise define the variance
of a weighted least squares estimator. Unfor-
tunately, the sandwich estimator is biased
downward when the number of groups is
below 40, whether in GRTs60–62 or in other
designs involving correlated binary data.63–65

This problem only increases as the number of
groups becomes smaller.66–68 Many investiga-
tors working in GRTs appear to be unaware
of this limitation, in that there have been
many applications of GEE and the sandwich
estimator in GRTs involving fewer than 40
groups.47 Thornquist and Anderson reported
more than 10 years ago that this bias was cor-
rected in a GRT by inflating the variance to
reflect the uncertainty in the estimation of the
fixed effects, much as restricted maximum
likelihood (REML) estimation does relative to
full maximum likelihood (ML) estimation.
Paired with a t test and using degrees of free-
dom based on the number of groups, the size
of their corrected test was at the nominal
level.60

More recent work has also focused on the
development and evaluation of correction
procedures, though usually not in the context
of GRTs. Long and Ervin69 provided addi-
tional results for 3 corrections introduced ear-
lier by MacKinnon and White65 and reported
that a jackknife estimator (a nonparametric
method to estimate standard errors based on
repeated subsamples) was better than the al-
ternatives. Mancl and DeRouen reported a
corrected estimator that was of nominal size
even with 10 groups per condition and only
16 observations per group67; they also offered
an SAS macro. Corcoran et al.70 offered an
exact test, but it has only narrow application
to situations in which the groups represent or-
dered levels of an underlying factor such as
dose. Fay and Graubard reported that the
sandwich estimator worked well, even in
small samples, so long as the usual Wald test
was evaluated not as a χ2 value but as an F
ratio of the form F(1, d ), where d is calculated
as a function of the variance of the sandwich
estimator.71

A similar correction provided by Kauer-
mann and Carroll replaces the usual cutpoint
in the z distribution with a cutpoint that is a
function of the variance of the sandwich esti-
mator; they demonstrated its utility even
when the sample size was as small as 5.72 Pan

and Wall offered a correction much like that
of Fay and Graubard in the form of an ap-
proximate t or F test, with degrees of freedom
defined as a function of the variance of the
sandwich estimator.73 Bell and McCaffrey74

offered a correction and a Satterthwaite ap-
proach to degrees of freedom that seemed to
involve less bias and a better type I error rate
than the sandwich estimator or the corrected
estimators recommended by Long and
Ervin69 or Mancl and DeRouen.67 Preisser et
al. suggested using a model-based variance
estimator in GEE, rather than the sandwich
estimator, as another solution.75

Unfortunately, none of these corrections
appear in the standard software packages, so
they are relatively unavailable to investigators
who analyze GRTs. Absent an effective cor-
rection, the sandwich estimator will have an
inflated type I error rate in GRTs involving
fewer than 40 groups, and investigators who
use this approach continue to risk overstating
the significance of their findings.

Limitations of Model-Based Estimators
Used in Conditional Models

Rodriguez and Goldman76 reported that
multilevel analyses of binary data underesti-
mate both fixed effects and their variances
when the ICC is large (0.231 in their data)
and there are few observations per group
(e.g., family-based studies). With a smaller
ICC (0.041 in their data), underestimation is
quite modest, even with few observations per
group. Breslow and Clayton77 and Ten Have
et al.78 reported a similar problem for models
fit via penalized quasi-likelihood (PQL) esti-
mation. This led some to question the use of
conditional models for GRTs involving binary
data. That appears to be an overreaction, be-
cause most GRTs involve many observations
per group and small ICCs; under these condi-
tions, there is little bias. In fact, the simulation
study of Hannan and Murray79 indicated that
a conditional model for Gaussian data carried
the nominal type I error rate when applied to
binary data with an ICC as large as 0.05, so
long as there were at least 4 groups per con-
dition and 25 observations per group.

Methods for Binary Data
Gibbons and Hedeker proposed a random-

effects probit and logistic regression model
for data with 3 levels of nesting based on ML
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estimation using numerical integration.80

Their approach would be preferred over PQL
procedures when the number of observations
per group is quite small, but it is computation-
ally intractable with more than 5 or 6 ran-
dom effects; this is a problem common to
methods that rely on numerical integration.
Unfortunately, many models fit to longitudi-
nal data in the context of GRTs have 5 ran-
dom effects, and some stratified models have
71; such models would be difficult to fit with
these methods. Aitkin proposed a nonpara-
metric method based on ML estimation81; he
noted that this approach had been widely
viewed as computationally intensive, but his
method avoided that problem. The benefit of
the nonparametric method is that it does not
depend on correct specification of the distri-
bution of random effects. Bellamy et al. re-
ported a simulation study comparing mixed-
model regression (using the SAS GLIMMIX
macro) and GEE68 and confirmed earlier re-
ports that GEE was liberal with fewer than
40 total groups, while GLIMMIX was conser-
vative when the average cluster size was
quite small.

Several Bayesian approaches have also
been suggested. Kleinman and Ibrahim pro-
posed a semiparametric Bayesian approach to
generalized linear mixed models but provided
no simulation results to evaluate their
method.82 Ten Have and Localio83 proposed
an empirical Bayes method based on numeri-
cal integration and incorporated an adjust-
ment for the standard error; their method
performed better than PQL estimation given
many small groups (100 groups with 2 obser-
vations per group) but not as well as PQL esti-
mation with a smaller number of larger
groups (20 groups and 100 observations per
group). As such, their method may be useful
in family-based GRTs but not in school-,
worksite-, or community-based GRTs. Turner
et al. discussed a Bayesian approach involving
specification of an informative prior ICC dis-
tribution based on values taken from the liter-
ature84; as published values for ICCs become
increasingly available, their approach may
prove useful. A much simpler approach for bi-
nary data was reported by Hannan and Mur-
ray,79 who indicated that the familiar condi-
tional model for Gaussian data carried the
nominal type I error rate even when applied

to binary data with an ICC as large as 0.05,
so long as there were at least 4 groups per
condition and 25 observations per group.

Methods for Survival Analysis
Hedeker et al. proposed a discrete-time

survival model that allowed multiple random
effects, operated under either the propor-
tional hazards or proportional odds assump-
tion, and relied on ML estimation using nu-
merical integration.85 Hedeker et al. did not
provide simulation results for their method.
Donner and Klar29 described group-level
methods that could be applied to either
discrete-time or continuous-time survival data
but did not allow for adjustment for individ-
ual-level factors; importantly, the unweighted
form assumed that each group’s survival rate
was equally precise. Frailty models allow the
hazard rate to vary at random among
groups,86 but their effect estimates may be
difficult to interpret.29

Marginal survival models employ standard
Cox regression methods to estimate the effect
of the intervention and then use the sandwich
estimator to obtain standard errors for the
fixed effects87–89; their intervention effect esti-
mates are readily interpretable, but caution is
required if the total number of groups is less
than 40. Sargent described an adaptation of
the Cox model to incorporate random effects
using Bayesian methods but provided no
simulation data on the performance of the
method.90 Vaida and Xu91 described a
random-effects model for proportional haz-
ards regression similar to that of Sargent, but
they also did not provide simulation results. 

Yau92 proposed a 3-level proportional haz-
ards model estimated via REML. He reported
results from a simulation study involving only
10 groups with just 3 members per group
and 3 repeated observations for each mem-
ber; censoring varied from 30% to 60%.
Yau’s method provided unbiased estimates of
fixed effects but slightly overestimated ran-
dom effects; the overestimation of random ef-
fects was reduced with even slightly increased
group size. Other advantages were that the
baseline hazard function did not have to be
specified and estimation did not rely on nu-
merical integration. Cai et al.88 proposed a
transformation model with random effects
based on numerical integration and showed

that it was less biased than some of the ear-
lier parametric models. Lui et al. proposed
several methods for confidence interval esti-
mation for rate ratios based on the beta-
binomial distribution93; they reported that an
interval estimator based on a log transform
performed best in simulations, but their small-
est study included 20 groups per condition,
so the small sample properties of the estima-
tor are unknown. 

Bennett et al. presented a 2-stage approach
to analysis of incidence rates based on per-
son-year data,94 estimating group-specific
rates (for an unadjusted analysis) or residuals
(for an adjusted analysis) in a first stage with-
out regard to intervention status; these rates
or residuals were used in a second stage to
estimate the intervention effect and assessed
via a t statistic with degrees of freedom based
on the number of groups. Simulation studies
showed this approach had nominal size even
with as few as 3 groups per condition and
perhaps 30 members per group. While these
results are encouraging, it would be of inter-
est to see how the method performs with
smaller groups.

Randomization Tests
In a randomization test for a GRT, the data

are analyzed on the basis of the actual assign-
ment of groups to conditions and then reana-
lyzed for every other possible assignment of
groups to conditions given the design, includ-
ing any limitations in randomization due to
matching, stratification, and the like. The test
statistic observed on the basis of the actual
assignment is referenced against the distribu-
tion of such statistics calculated from the set
of all possible assignments. The 2-tailed P
value for the observed test statistic is defined
as the proportion of the possible test statistics
that are as large as or larger than the ob-
served test statistic in terms of absolute value.
Randomization tests were first used in GRTs
in the context of the Community Intervention
Trial for Smoking Cessation (COMMIT).95–97

Gail et al.98 later demonstrated that random-
ization tests carried the desired type I error
rate for the null hypothesis of no treatment
effect on average so long as the number of
groups assigned to each condition was the
same. Given balance at the group level, ran-
domization tests also carried the desired type
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I error rate for dichotomous endpoints and
for analyses that included regression adjust-
ment for a covariate, even when the regres-
sion model was not correctly specified.98

At the same time, randomization tests can
have less power than model-based tests when
the model is correct. To address that problem,
Braun and Feng99 developed a weighted ran-
domization test using the inverse of the total
variance for each group as the weight; they
showed this test to be the uniformly most
powerful randomization test for Gaussian
data. They also developed a locally most
powerful randomization test based on a more
complicated quasi-score method for non-
Gaussian data. In a series of simulation stud-
ies, Braun and Feng showed that their opti-
mal randomization test had nominal size and
better power than alternative randomization
tests or GEE, although it was still not as pow-
erful as the model-based analysis when the
model was specified correctly; additional re-
search is needed to compare Braun and
Feng’s optimal randomization test and model-
based methods under model misspecification.

Survey Methods
The clustering of data in GRTs has much in

common with the clustering of data observed
in complex surveys; as a result, analysis meth-
ods developed for complex surveys can have
application in the analysis of data from
GRTs.100,101 Since the introduction of GEE,
there has been a convergence in methods
used for survey applications and for many
nonsurvey applications involving correlated
data, including GRTs. LaVange100 showed that
parameter estimates and standard errors from
their survey logistic regression procedure
were identical to those obtained with GEE
under the assumption of working independ-
ence. LaVange also provided information on
survey analysis procedures for proportional
odds and proportional hazards regression
models, which would be applicable to GRTs.
The SUDAAN software package supports
those models (http://www.rti.org/sudaan/
home.cfm). Caution is required as with other
methods that are asymptotically valid only
when the total number of groups is below 40
unless special procedures are used to correct
for underestimation; LaVange100 discussed
this problem and proposed a correction.

Latent Variable Methods and Nonlinear
Models

Muthen102 presented a general latent vari-
able modeling approach that encompassed a
variety of techniques used in GRTs, including
mixed-model ANOVA/ANCOVA and random
coefficient models. Schulenberg and Maggs
observed that mixed models and latent vari-
able models gave identical results when set
up to test equivalent models.103 Others have
noted important differences between these
approaches103–106; however, some of these dif-
ferences may disappear with improvements in
software.

Nonlinear mixed models are a type of
mixed model in which both the fixed and ran-
dom effects have a nonlinear relationship
with the endpoint. They differ from the more
familiar generalized linear mixed models in
which the fixed and random effects are lin-
early related to a predictor and the predictor
is related to the endpoint through a nonlinear
link function. Readers are referred to David-
ian and Gilinian107 or Vonesh and Chin-
chilli108 for further information.

Interrupted Time Series
Gruenewald109 and Biglan et al.110 sug-

gested interrupted time series methods for
the evaluation of community-level interven-
tions. The classic time series analysis com-
pares data in a large geographic unit before
and after an intervention and evaluates the
intervention effect as a change from the pre-
intervention trend, level, or variance. It
draws its strength for estimating the preinter-
vention and postintervention time patterns
from many observations, thereby providing
good precision. These methods would appear
to be useful for within-community compar-
isons but, absent a reasonably large number
of communities, not for between-community
comparisons. If the number of communities
is limited, degrees of freedom for between-
community comparisons will be limited and
power will be poor; nor would asymptotically
valid tests be appropriate with limited de-
grees of freedom.

Global Tests for Multiple Endpoints
Many GRTs have more than 1 primary

endpoint, raising the issue of how to adjust
the type I error rate for multiple tests. One so-

lution is to divide the nominal type I error
rate evenly among the tests. Feng and
Thompson offered as an alternative a global
test that functions in much the same way as a
multivariate test statistic.18

Methods for Analysis of Mediation
Effects

Krull and MacKinnon described methods
for mediation analyses in GRTs using exten-
sions of methods developed for RCTs.111 Simu-
lation results indicated that the mediation esti-
mators were unbiased and that estimation of
standard errors via first-order Taylor series
approximation was preferred. MacKinnon et
al. expanded that discussion in an application
to tobacco prevention research to include a
discussion of a model with multiple
mediators.112

Missing Data
Missing data are as serious a problem in

GRTs as they are in RCTs. Fortunately, meth-
ods developed for RCTs are easily adapted to
GRTs. For example, Yi and Cook reported on
marginal methods for missing data from clus-
tered designs.113 Hunsberger et al. described
strategies for missing data in GRTs and identi-
fied a multiple imputation method that car-
ried acceptable type I and type II error rates
in simulations.114

Software
There has been substantial improvement

over the past 5 years in the software avail-
able for analysis of GRTs. Zhou et al. re-
viewed many of these programs and reported
that when they were used correctly to fit
equivalent models, they gave the same re-
sults in simulation studies.115 HLM (http://
www.ssicentral.com/hlm/hlm5all.htm) pro-
vides a flexible and powerful vehicle for a va-
riety of analyses appropriate for GRTs.32,116 It
can be used with Gaussian, binary, and Pois-
son data and can fit 2- and 3-level models.
As such, it supports both nested cross-
sectional and nested cohort designs. HLM
also supports latent variable estimation, mul-
tiple imputation, GEE, and sandwich estima-
tion for standard errors. HLM relies on
REML for Gaussian endpoints and PQL for
non-Gaussian endpoints. The Laplace ap-
proximation to ML is available for 2-level
and 3-level Bernoulli models.
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data to provide mixed-model linear, logistic,
and Poisson regression. These programs also
allow mixed-model grouped-time survival
analysis,85 mixed-model logistic or probit
analysis for ordinal endpoints,125 and mixed-
model logistic regression for nominal end-
points.124,126 

The MlwiN program (http://multilevel.ioe.
ac.uk/index.html) can be used with Gaussian,
Bernoulli, binomial, multinomial, and Poisson
distributions and can also fit ordinal logistic
models for clustered data.127 The SUDAAN
software package (http://www.rti.org/sudaan/
home.cfm) (Research Triangle Institute, Re-
search Triangle Park, NC) supports models for
analysis of survey data that are often applica-
ble to GRTs. In addition, SPSS (http://www.
spss.com) has introduced a mixed-model re-
gression program that supports several covari-
ance structures.128

None of the programs just mentioned in-
corporate a correction for the underestima-
tion bias in the sandwich estimator when the
data are binary and there are few groups per
condition. As indicated earlier, the work in
that area seems to be converging on a solu-
tion, and this may encourage the developers
to add such a correction to their procedures.

Recommendations for Trial Reporting
Investigators reporting on GRTs are en-

couraged to report their reasons for choosing
group randomization; separate eligibility crite-
ria, sampling schemes, and informed consent
procedures for groups and members; justifica-
tion for their sample size; ICC or variance
component estimates from the analysis of in-
tervention effects; and details of the analysis
methods and software used.1,16,29,40

CONCLUSION

The purpose of this article has been to re-
view the methodological developments from
the past 5 years regarding the design and
analysis of GRTs. The sheer volume of work
is quite remarkable, and while every effort
was made to provide a thorough review
based on extensive searches of electronic
databases and other sources, there are no
doubt relevant papers that we did not in-
clude. Nonetheless, this review makes clear
that there are valid methods that are readily

available and well documented for the design
and analysis of GRTs. We hope that this re-
view will help investigators familiarize them-
selves with these methods and encourage
them to collaborate with methodologists who
can use these developments to strengthen the
design and analysis of their trials. 

Certainly, the methods required for GRTs
are not as simple as those required for RCTs,
and this is unfortunate. As noted 5 years ago,
however: 

Whenever the investigator wants to evaluate
an intervention that operates at a group level,
manipulates the social or physical environ-
ment, or cannot be delivered to individuals, a
group-randomized trial design is the best com-
parative design available.1(p15)

When that text appeared in 1998, it at-
tempted to address the question of how to
conduct GRTs well. Clearly the developments
of the past 5 years have made it even easier
to conduct GRTs well, and we simply must
do a better job of taking advantage of these
developments.
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