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ABSTRACT
Estimating the genetic and environmental variances for multivariate and function-valued phenotypes

poses problems for estimation and interpretation. Even when the phenotype of interest has a large num-
ber of dimensions, most variation is typically associated with a small number of principal components (eigen-
vectors or eigenfunctions). We propose an approach that directly estimates these leading principal com-
ponents; these then give estimates for the covariance matrices (or functions). Direct estimation of the
principal components reduces the number of parameters to be estimated, uses the data efficiently, and pro-
vides the basis for new estimation algorithms. We develop these concepts for both multivariate and function-
valued phenotypes and illustrate their application in the restricted maximum-likelihood framework.

QUANTIFYING variation in multivariate pheno- ance matrix, that has an infinite number of values (Kirk-
patrick and Heckman 1989).types presents four basic difficulties. First, stan-

These considerations have motivated the widespreaddard methods require estimation of a large number of
use of data-reduction methods. The most common ofparameters. With k traits, there are k(k � 1)/2 genetic
these is principal components analysis (Morrison 1976).variances and covariances and typically an equal or
In the multivariate setting, principal components (PCs)larger number of parameters that describe environmen-
are the eigenvectors of the covariance matrix, lineartal sources of variation, measurement error, etc. Limita-
combinations of the original variables that reflect pat-tions on the sizes of data sets and correlations among
terns of covariation in the data. In the function-valuedthe variables cause the estimates to lose precision rapidly
context, the PCs are the eigenfunctions of the covarianceas the number of traits measured increases. This issue
function (Ramsay and Silverman 1997, 2002). Each ei-is a particular concern in evolutionary genetics, where
genfunction represents a family of deformations in thethe numbers of individuals measured are usually mod-
shape of the average curve for the population (Kirkpat-est. Second, computational constraints can be limiting
rick and Lofsvold 1992). In both the multivariate andwith large data sets. In dairy cattle, for example, it is not
function-valued contexts, PCs are appealing because theyunusual to have several measurements taken on each
are statistically independent (orthogonal), describe theof hundreds of thousands of individuals. A third issue
maximum amount of variation with the minimum numberinvolves numerical difficulties caused by sampling error.
of parameters, and are easy to visualize.

These can produce estimates of covariance matrices that
Quantitative geneticists have used principal compo-

are not within the parameter space and unstable esti- nents in three ways. The first is as a tool to visualize pat-
mates of individual variances and covariances (Hill and terns of genetic variation. In this mode, the genetic
Thompson 1978; Hayes and Hill 1981). A fourth prob- principal components are calculated from an estimate
lem is interpretation. Patterns of covariation involving of the full genetic covariance structure (e.g., Atchley
three or more variables are not readily obvious from and Rutledge 1980; Kirkpatrick and Lofsvold 1992).
inspecting a covariance matrix. Both the estimation and This approach suffers from the usual problems that come
the visualization problems are particularly acute in the with estimating a large number of parameters. The sec-
case of “function-valued” traits in which individuals are ond use of principal components is to define genetic
represented by curves, such as growth trajectories and parameters to be estimated. Under special conditions,
reaction norms. Here genetic variation is naturally rep- parameterizations based on principal components re-
resented by a covariance function, rather than covari- duce a multivariate problem to a series of univariate

ones (e.g., Hayes and Hill 1981; Meyer 1985). This
approach has had limited use, however, because of the
restrictive conditions it requires. A third use is to distill
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timate the genetic parameters of these PCs (e.g., Chase wide range of estimation frameworks, including likeli-
hood and Bayesian approaches. Next, we introduce anet al. 2002). Weaknesses with this approach are that fixed

effects and selection can introduce bias into the esti- algorithm for fitting PCs that makes use of their orthogo-
nality. The algorithm is again independent of the choicemates and that there is no guarantee that this is an

efficient way to estimate genetic variation. For example, of statistical framework. To make the concepts of direct
estimation concrete, we next show how it can be imple-much information is lost when the phenotypic PCs

poorly reflect patterns of genetic variation. mented using restricted maximum likelihood (REML).
We then show how the direct-estimation approach ex-This article proposes putting the cart before the horse:

we can estimate the leading principal components of tends naturally to function-valued traits. Last, we use a
numerical example to highlight some of the advantagesgenetic and environmental variation directly from the

data, without going through the intermediate step of of direct estimation. Further details about the calcula-
tions underlying the direct estimation approach areestimating the corresponding covariance matrix or co-

variance function. Several advantages follow from this given by Meyer and Kirkpatrick (2005).
direct estimation strategy. Because most genetic varia-
tion is often associated with just two or three PCs, the

REPRESENTING PHENOTYPES WITH PCspopulation can be well described with a relatively small
number of parameters. With 10 traits, for example, esti- To show how phenotypes can be represented in terms
mating the full covariance matrix involves 55 parame- of genetic and environmental principal components,
ters, while estimating the first two PCs involves only we start with the standard multivariate (MV) case with
19. Once the PCs have been estimated, corresponding k traits. Our main goal is to estimate the additive genetic
estimates for the covariance matrix (or function) can covariance matrix G, which determines the response
be easily calculated. Second, the data are used effi- to selection (Falconer and Mackay 1996). A second
ciently. The leading PCs account for the maximum interest is to estimate the environmental covariance
amount of variation possible with a linear combination matrix E.
of the trait values (Ramsay and Silverman 1997, 2002). The vector phenotypic measurements for individual
Third, the orthogonality of PCs can be exploited in i can be written as the sum
estimation algorithms (Juga and Thompson 1992). In
this article we propose a stepwise algorithm in which

yi � �i � ai � ei � εi , (1)searching for the mth PC is restricted using the results
from the first m � 1 PCs, with the result that estimation where �i is a mean vector (which includes the popula-
becomes faster with succeeding PCs. Fourth, adding tion mean and can also include effects of gender, locale,
measurements of additional traits to the analysis in- etc.), and ai is the additive genetic component (the
creases the accuracy of the estimates, rather than desta- breeding value). The vector ei represents the environ-
bilizing them by increasing the degrees of freedom. mental and nonadditive genetic effects (also referred
Fifth, the covariance structure estimated by the direct to as “permanent environmental effects” in the breeding
method is guaranteed to be positive semidefinite, which literature). Finally, the vector εi represents the residual
is not true of some other approaches (Hayes and Hill errors (or “temporary environmental effects”), caused,
1981; Kirkpatrick et al. 1990). for example, by measurement error. The residual error

The direct-estimation strategy has several additional for trait j is distributed with variance � 2
εj, and we assume

benefits when the phenotypes are function valued. By the residual errors for the different traits are indepen-
estimating a reduced number of PCs, the corresponding dent. The last three terms on the right of (1) are defined
estimate of the covariance function is smoothed, and to be mutually independent and have expectation 0,
smoothing filters out measurement error. Different in- and we follow classical quantitative genetics by assuming
dividuals can have different numbers of measurements they are multivariate-normally distributed. If some mea-
taken at different ages. Because of the decreased compu- surements for individual i are missing, then the corre-
tational load, it may become possible to use more desir- sponding elements of each vector in Equation 1 are
able but more complex basis functions (such as splines) deleted. This statistical model could be modified, for
to model the covariance function. Last, the principal example, to include a dominance component or a dif-
components for function-valued traits can be easily visu- ferent error structure.
alized, giving insight into patterns of variation on which The genetic covariance matrix G and environmental
selection can act (Kirkpatrick and Lofsvold 1992). covariance matrix E are respectively equal to the vari-

This article begins by showing how multivariate phe- ance of ai and the variance of ei across individuals sam-
notypes can be represented in terms of genetic and pled at random from the population. These covariance
environmental PCs, how these PCs relate to the corre- matrices can in turn be written as
sponding covariance matrices, and how simplified esti-
mates of the covariance matrices can be found using a G � �

k

i�1

�Ai �T
Ai, E � �

k

i�1

�Ei �T
Ei , (2)

reduced number of PCs. This idea can be applied to a
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where �Ai is the ith eigenvector of the additive genetic variance matrices can be well approximated by truncat-
ing the sums in Equations 2 after the first mA terms forcovariance matrix G, and �Ei is the ith eigenvector of the

environmental covariance matrix E. The eigenvectors of G and the first mE terms for E, where often mA and mE

may be as small as 2 or 3. We discuss how to determineG are mutually orthogonal, as are those of E. Equations
2 follow immediately from the well-known spectral rep- appropriate values for those cutoffs below.

This then is the essence of the direct estimation ap-resentation of symmetric matrices (Strang 1976).
Often eigenvectors are defined to have unit length proach: fitting a small number of principal components

(that is, the eigenvectors that appear in Equation 2)(or norm), in which case each term in the summations
of Equations 2 is modified to include an additional that adequately describe the variation in the population.

An important point is that our parameterization auto-factor, the eigenvalues. When written in the form of
Equations 2, however, the eigenvalues are absorbed into matically ensures that the estimated covariance matrix

will be positive semidefinite. That is, there can be nothe vectors �. The length (norm) of each eigenvector
is now equal to the square root of the corresponding negative eigenvalues for a covariance function written

in the form of Equation 2. This immediately eliminateseigenvalue. This parameterization is allowed because an
eigenvector is determined only to within a multiplicative a source of bias that plagues other approaches for esti-

mating genetic parameters (Hayes and Hill 1981).constant (Strang 1976). Further, doing this simplifies
the calculations described below and is therefore conve- The simple idea underlying our direct estimation ap-

proach can be applied in a wide range of frameworksnient. We follow the convention that the eigenvectors
are ordered in size from largest to smallest in length. for statistical inference. Later we show how it can be im-

plemented using restricted maximum likelihood. But firstThe eigenvectors �A and �E are the genetic and environ-
mental PCs, respectively. We use the terms eigenvector we outline an algorithm that can be used to fit the PCs.
and principal component interchangeably. These PCs
are the key to our analysis. An individual’s breeding

AN ALGORITHM TO SEARCH FOR PCs
values and environmental deviations for the measured
traits can always be expressed as weighted sums of the Here we discuss a three-step algorithm for fitting PCs

that takes advantage of their orthogonality. Briefly, thegenetic and environmental PCs:
algorithm is to estimate the first genetic and first envi-

ai � �
k

j�1

�ij �Aj , ei � �
k

j�1

�ij �Ej . (3) ronmental PCs. We then search for the estimates of the
second and subsequent PCs, restricting the search to

The vector �i � {�i1, �i2, . . . , �ik}T is made up of the the parameter space that is orthogonal to the PCs that
breeding values of individual i for the genetic principal have already been estimated. Once an adequate number
components. The value of �ij says how much genetic PC of PCs have been estimated, we finish with a final optimi-
j contributes to the phenotype of individual i. The vector zation in which the estimated PCs are rotated and their
�i � {�i1, �i2, . . . , �ik}T plays the same role for environ- lengths are perturbed. We emphasize that this algorithm
mental PC j . Equation 3 is general: because the eigen- is not a mandatory part of the direct estimation approach:
vectors span the phenotypic space, we are guaranteed the PCs can be fitted with other search algorithms.
that the vectors a and e can always be written in this To estimate parameter values, we need to adopt a
form (Strang 1976). framework for statistical inference. In the following sec-

The additive genetic variance corresponding to ge- tion we show how the direct estimation approach can
netic PC i is given by the square of its length (or norm), be implemented with restricted maximum likelihood,

but the idea could be applied with other paradigms
�Ai � �

k

j�1

�2
Aij , (4) such as Bayesian inference. In this section we use the

generic phrase “optimizing the fit,” which in the likeli-
hood framework means finding the parameter valuewhere �Aij is the jth element of �Ai. This quantity is an

eigenvalue of the genetic covariance matrix G. The ei- that maximizes the likelihood.
Figure 1 sketches the algorithm in graphical form.genvalues �Ei for the environmental covariance matrix

E are defined in an analogous way on the basis of the Step 1 is to estimate the leading genetic and environ-
mental principal components. With k traits, we searchenvironmental PCs, the �Ei’s.

By rewriting an individual’s breeding value and envi- a k-dimensional space for the first genetic PC, �A1, and
for the first environmental PC, �E1. The search contin-ronmental deviation in terms of the genetic and environ-

mental PCs, we have just reparameterized Equation 1, ues until we converge on estimates of �A1 and �E1 that
optimize the fit (Figure 1B).swapping one set of variables for another. The central

idea of our scheme is to simplify the estimation problem We can stop at that point or continue by estimating
additional PCs. If we choose to go on, step 2 begins byby reducing the number of terms in the sums of Equa-

tions 2 and 3 and therefore the number of parameters searching for the second genetic PC (Figure 1C). We
exploit the orthogonality property of PCs by restrictingto be estimated. Eigenvalues typically decline rapidly in

size. Consequently, the genetic and environmental co- the search to the space of (k � 1) dimensions that is
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step 2, the fit of each successive principal component
is conditioned on the PCs that have already been esti-
mated. That does not guarantee that the fit is optimized
when all the PCs are allowed to vary simultaneously. We
do, however, hope to be close to the global optimum at
the end of step 2. We therefore perform small rotations
on the estimated sets of genetic and environmental PCs
and small perturbations on their lengths, now seeking
to maximize the fit globally (Figure 1D). These “Givens
rotations” are a natural perturbation because they pre-
serve the orthogonality of the principal components
(Juga and Thompson 1992; Pinheiro and Bates 1996).

A rotation is defined by an angle and a pair of axes
that determine its equatorial plane. Consider a trial set
of m(m � 1)/2 rotation angles � � {	12, 	13, . . . , 	1m,
	23, . . .}, where 	ij is the rotation involving the axes de-
fined by PCs i and j. Given a set {�i} of m eigenvectors
estimated under step 2, we calculate a new set {�i
} that
results from the rotation using

�
i �



�

m�1

j�1
�
m

k�j�1

Mjk(	jk)



�i , (6)

Figure 1.—Schematic of the search algorithm when fitting
m � 2 principal components to k � 3 traits. (A) A scatterplot for i � 1, 2, . . . , m. The quantity in square brackets is
of the data in three dimensions, with the 95% confidence a matrix that rotates all of the principal components.ellipses projected onto the bounding planes. (B) Step 1 fits

Mij(	ij) is a Givens rotation matrix for principal compo-the first PC with some error. (C) Step 2 fits a second PC in
nents i and j. It is based on an m-dimensional identitya direction that is confined to be orthogonal to the first PC.

The result again has some error. (D) Step 3 rotates the two matrix with the following changes: the stth element is
PCs and perturbs their lengths until the overall fit is optimized. cos(	ij) if s � t � i or if s � t � j, sin(	ij) if s � i � t �

j or if s � j � t � i, and �sin(	ij) if t � i � s � j or if
t � j � s � i. For example, with m � 4 principal compo-orthogonal to the first PC, which speeds the search.
nents, the matrix that rotates PCs 1 and 3 through anLikewise, we can choose to search for a second environ-
angle 	13 ismental eigenvector. The process is repeated, in each

iteration decreasing by 1 the number of dimensions that
must be searched. We are finally left with a set of mA

genetic PCs and mE environmental PCs. M13(	13) �







Cos[	13] 0 Sin[	13] 0
0 1 0 0

�Sin[	13] 0 Cos[	13] 0
0 0 0 1







.
The search gets easier with each PC because the num-

ber of dimensions of the space in which we search gets
smaller. Say that we want to estimate genetic PC i, �Ai, Step 3 also requires perturbing the lengths of thehaving already estimated PCs 1 to i � 1. We need fit

PCs. That is done by multiplying PC i by 1 � �i, whereonly k � i � 1 of its k elements because the remaining
the perturbation �i that optimizes the fit will often bei � 1 elements are determined by the constraint that
much smaller than 1. In total, step 3 involves searchingthis next PC must be orthogonal to the previous ones.
among mA(mA � 1)/2 axes of rotation for the geneticSpecifically, let elements 1 to k � i � 1 of �Ai be the
PCs, mE(mE � 1)/2 axes for the environmental PCs, mAelements to be estimated. A bit of algebra based on the
perturbations on the lengths of the genetic PCs, and mEorthogonality constraint then shows that the remaining
perturbations on the lengths of the environmental PCs.elements k � i � 2 to k are given by

Figure 1 shows the result of this algorithm in an ideal
case where the first two of three PCs are estimated per-
fectly. Even with the perfect fit there is variation in the







qi,k�i�2

qi,k�i�3

�
qi,k







�







q1,k�i�2 q1,k�i�3 … q1,k

q2,k�i�2 q2,k�i�3 … q2,k

� � � �
qi�1,k�i�2 qi�1,k�i�3 … qi�1,k







�1






�k�i�1
j�1 q1,jqi,j

�k�i�1
j�1 q2,jqi,j

�

�k�i�1
j�1 qk,jqi,j







, third dimension, which is not accounted for by the two
PCs. In a real application, further error is introduced
because the PCs themselves will not be estimated per-

(5) fectly. Below we present an example with simulated data
and further discuss these two sources of error.where for compactness we use qi,j to denote the j th ele-

How many parameters have been estimated in thement of PC �Ai.
Step 3 is a final optimization step. When iterating end? Fitting m genetic principal components for k traits
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is a problem that involves (mk � m(m � 1)/2) genetic environmental effects, respectively. The matrix �A is
block-diagonal, where block i is a matrix whose columnsparameters. If m 
 k, the estimation problem increases

approximately linearly with both m and k. This compares are the first mA genetic PCs. (If any measurements are
missing for individual i, then the corresponding rowsvery favorably with estimating the unrestricted covari-

ance matrix. That entails k(k � 1)/2 parameters, a prob- of this submatrix are deleted.) The matrix �E is formed
in the same way using the environmental PCs.lem that increases roughly as the square of k.

How do we decide when to stop fitting additional The likelihood L of a set of parameter values can be
written in a variety of ways (reviewed by Meyer 1991).principal components? The residual error decreases

with each new principal component that is added. But For the model of Equation 7, a useful form is
it does so at the expense of increasing the number of

�2 log L � const � mAlog|A |� log|R |� log|C |� yT Py ,parameters in the statistical model: with m PCs already
(8)fitted, estimating another PC adds k � m parameters.

Several methods are available to determine if the im- where | · | denotes a matrix determinant; minimizing this
provement is significant, including the likelihood-ratio quantity maximizes the likelihood L. The first term on
test (Edwards 1972) and the Akaike information crite- the right is a constant that does not depend on the
rion (AIC; Akaike 1973). parameters being estimated. The second term is a func-

tion of A, which is the (numerator) relationship matrix
whose ij th element is twice the coefficient of coancestryESTIMATING PCs WITH REML
between individuals i and j (e.g., 1/2 for parents and

To this point we have focused on an algorithm for offspring, 1/4 for half-sibs, etc.). This term is constant
searching parameter space, but not discussed how to when the number of genetic PCs being fit is fixed and
evaluate the estimates. REML is a framework that offers so needs to be considered only when comparing models
a flexible and powerful approach (Patterson and with different degrees of fit (i.e., different values of mA).
Thompson 1971). Among its strengths are that arbitrary In the third term of (8), R is the kT � kT covariance
pedigrees can be used, bias from fixed effects (gender, matrix for the residual errors ε. It is block-diagonal,
age, environment, etc.) and selection is decreased, and with block Ri the diagonal matrix whose j th element is
missing data can be accommodated. Here we follow the � 2

εj , but with rows and columns that correspond to miss-
argument of Meyer (1998) to show how REML can be ing measurements (if any) deleted. In the fourth term,
applied to the direct estimation of genetic principal the matrix C is
components. A more detailed analysis of the statistical
issues is given by Meyer and Kirkpatrick (2005). Read-
ers interested in a more general perspective on the use C �







XT R�1 X XT R�1 �A XT R�1 �E

�T
A R�1 X �T

A R�1 �A � A�1 � ImA
�T

A R�1 �E

�T
E R�1 X �T

E R�1 �A �T
E R�1�E � IN � ImE







,
of likelihood and REML to estimate genetic parameters
can consult Harville (1977) and Lynch and Walsh
(1998, Chaps. 26 and 27). (9)

We want to estimate the covariance matrices G and
where � is the Kronecker (or direct) matrix productE, which we do by estimating the genetic PCs (the �Ai) (Searle 1982), and Ii is the identity matrix with dimen-and environmental PCs (the �Ei). Fitting the model will
sions i.also give us estimates of the residual error variances

The last term on the right side of Equation 8 involves(the � 2
εi). Our approach is based on the general linear

the matrixmodel, or “animal model,” of quantitative genetics
(Lynch and Walsh 1998, Chap. 26). Using Equations P � V�1 � V�1X(XTV�1X)�XTV�1 , (10)
1 and 3, the data for all of the individuals can be written

where � is a generalized matrix inverse (Searle 1982).as the mixed model:
V � Var[y] is a block-structured matrix whose ijth block

y � X� � �A� � �E� � ε . (7) describes the expected covariance in measurements be-
tween individuals i and j,On the left is the vector y of kT observations, formed by

concatenating the corresponding vectors for individu- Vij � Aij�Ai� T
Aj � �ij�Ei� T

Ei � �ijRi , (11)
als. On the right, the vectors � (the breeding values for
the genetic PCs), � (the deviations for the environmen- where �ij � 1 if i � j and is 0 otherwise.

Equations 8–11 tell us how to calculate the restrictedtal PCs), and ε (the residual errors) are formed in the
same way. The first term on the right side is the vector likelihood L. REML estimates for the parameters (the

genetic and environmental PCs and the residual error)of mean effects, which is the product of the design
matrix X and the vector � of unknown fixed effects. are those values that maximize L. In practice, the esti-

mates are found numerically. Evaluating the equationsREML is based on a transformation that removes the
fixed effects from the analysis. The second and third is computationally challenging because they are nonlin-

ear and involve the inverses and determinants of largeterms on the right of (7) represent the genetic and
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matrices. In animal breeding applications, for example, is simple: G(x1, x2) and E(x1, x2) are just the additive genetic
and environmental covariances for the trait between agesit is not unusual for the calculations to involve solving

millions of simultaneous equations (Misztal et al. 2000; x1 and x2. Like the genetic covariance matrix G for multi-
variate traits, the covariance function G determines how FVSchaeffer 2004). Great effort has gone into developing

efficient algorithms, however, with the result that it is traits respond to selection (Kirkpatrick and Heckman
1989; Gomulkiewicz and Beder 1996). The relationsnow feasible to find REML estimates for even very large

data sets. Meyer and Kirkpatrick (2005) discuss some between the covariance functions and the eigenfunc-
tions are given by the analogs of Equations 2:of the numerical issues involved with the direct-estima-

tion approach in more detail.
G(x1, x2) � �

mA

i�1

�Ai(x1)�Ai(x2), E(x1, x2) � �
mE

i�1

�Ei(x1)�Ei(x2).

(13)FUNCTION-VALUED TRAITS
In general, decomposing a covariance function into

As mentioned in the Introduction, traits like growth a sum of eigenfunctions requires an infinite number of
trajectories and reaction norms are function valued (FV). terms, in which case the limits of the sums in (13) and
Because the value of the character is a function of a (14) are infinity. In practice, however, experience shows
continuous control variable (such as age or temperature), that most genetic and phenotypic variation is associated
we can view these traits as consisting of an infinite num- with the first two or three PCs (e.g., Kirkpatrick et al.
ber of dimensions. The natural way to describe variation 1990, 1994; Kirkpatrick and Lofsvold 1992). Thus
in such traits is with a covariance function whose value our approach once again is to approximate the covari-
gives the covariance of the character between any pair ance structure by truncating the sums, using values of
of values for the control variable (Kirkpatrick and Heck- mA and mE that are as small as possible but that still give
man 1989). Because function-valued traits have higher an adequate description of the population.
dimensionality than multivariate traits, the need to find The new issue raised by function-valued traits is how
efficient descriptions of variation for FV traits is even to represent the eigenfunctions. If we do not place any
more acute. The concepts developed above for multivar- constraint on their form, estimating each of them would
iate phenotypes extend in a natural way to the FV setting involve searching an infinite-dimensional space. Fortu-
with only minor changes. In what follows, we talk about nately, biological covariance functions and their eigen-
age as the control variable, as when studying growth curves, functions tend to be smooth. That means that the eigen-
but the control variable could as well be an environmental functions can be approximated in a simple way. The
variable (e.g., temperature) or a spatial coordinate. key is to write each of them as a weighted sum of a set

We begin the discussion of function-valued traits by of basis functions, {φj(·)}:
showing how they can be represented using principal
components in a way that is completely analogous with �Aj(x) � �

kA

i�1

φi(x)CAij , �Ej(x) � �
kE

i�1

φi(x)CEij (14)
the multivariate case. We then show how the genetic
parameters can be estimated using the search algorithm (Kirkpatrick and Heckman 1989). When suitable basis
and via REML. functions are chosen, experience shows that very good

Representing FV traits with PCs: Measurements are approximations to the eigenfunctions are often achieved
taken on each individual at a set of ages, and the number with a small number of terms, say three or four.
of measurements and the ages may differ between indi- A very broad range of basis functions could be used
viduals. The additive genetic and environmental contri- to represent the eigenfunctions. The computations are
butions to the jth measurement for individual i can be simplified, however, if we use orthogonal functions that
written with a minor modification of Equation 3, have been scaled to have unit norm over the range of

the control variable x, and we assume that the {φi } have
aij � �

mA

l�1

�il �Al(xij), eij � �
mE

l�1

�il �El(xij), (12) those properties in what follows. One natural choice for
the basis functions is Legendre polynomials (see Kirk-
patrick et al. 1990; Meyer 1998). Estimates for thewhere xij is the age at which that measurement was taken.
eigenfunctions are then polynomials of degree k � 1.Comparing these expressions with (3), we see that the
An alternative possibility for the basis function is splines.genetic and environmental eigenvectors, �A and �E, have

The additive genetic variances for the genetic princi-been replaced by the genetic and environmental eigen-
pal components can be written in terms of the weightsfunctions, �A(·) and �E(·). These eigenfunctions act as
that appear in Equation 14:the principal components of the FV setting. Like their

multivariate analogs, they can be used to describe varia-
�Ai � �

kA

j�1

C 2
Aij (15)tion in a population.

The genetic and covariance matrices of the multivari-
ate setting are replaced by genetic and environmental co- (Kirkpatrick and Heckman 1989). Comparing Equa-

tion 15 with Equation 4, we see that the eigenvalues forvariance functions, G(·, ·) and E(·, ·). Their interpretation
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an FV trait are determined by the vector of weights CAi sions in which to search. To do that, we use the algorithm
described earlier. Specifically, replace �Ai in Equation 5in the same way they are by the genetic eigenvector �Ai

in the MV setting. with CAi, and replace �Ei with CEi, where CAi and CEi are
respectively the ith columns of the matrices CA and CE.Our approximation for function-valued traits there-

fore works on two levels. First, the covariance functions We finish with step 3, the final optimization that rotates
and perturbs the lengths of the vectors that composeare approximated by reconstructing them using only the

first m principal components (eigenfunctions). Second, the columns of CA and CE, just as in the multivariate case.
Estimation with REML: With a function-valued trait,the principal components themselves are approximated

by functions with only k degrees of freedom (for exam- the aim is to estimate the covariance functions G(·, ·)
and E(·, ·). The approach is again based on estimatingple, polynomials of degree k � 1). We might find, for ex-

ample, that the data are well described by two principal the genetic and environmental PCs, which are now the
eigenfunctions �Ai(·) and �Ei(·). Fitting the model alsocomponents (m � 2), each of which is a cubic (k � 4).

We can now describe an individual’s breeding value gives estimates of the residual error variances.
The calculations described earlier for the MV settingin terms of genetic principal components. Putting to-

gether Equations 12 and 14, we see that ai, the vector carry over to FV traits with only trivial changes. In Equa-
tions 7–11, the matrix �Ai is replaced by �iCA, and theof individual i’s breeding values for the trait at the ages

at which it was measured, can be written in terms of �i, matrix �Ei is replaced by �iCE. The last thing needed is
a model for the residual error. The residual error matrixits vector of its breeding values for the genetic principal

components, for individual i is diagonal with elements [Ri]jj � �2
ε(xij),

where � 2
ε(x) is the residual (temporary environmental)

ai � �iCA�i , (16)
error at age x. A reasonable approach is to assume that
this function can be represented by a smooth functionwhere [�i]jk � φk(xij). CA is the kA � mA matrix of coeffi-

cients that appear in Equation 14. [This matrix is related like a polynomial or spline, in which case the coefficients
of that function are included among the parameters weto the coefficient matrix CG of Kirkpatrick et al. (1990)

via CG � CA CT
A.] Similarly, the environmental compo- seek to estimate (see Meyer 2001).

nent of the phenotype can be written ei � �iCE�i . Be-
cause we have chosen to represent these components in

AN EXAMPLEturn as sums of orthogonal basis functions, the columns
of CA are mutually orthogonal, as are the columns of CE. This section illustrates the direct estimation approach

We have now succeeded in representing a finite num- and our algorithm for fitting PCs. The numerical exam-
ber of phenotypic observations in terms of sums of or- ple uses likelihood to estimate the PCs and the covari-
thogonal basis functions. Estimates of the covariance ance function of a function-valued trait. For simplicity,
functions are found by optimizing the fit of the coeffi- we use a phenotypic example in which the aim is simply
cient matrices CA and CE, using the statistical framework to estimate the phenotypic covariance function using full
of our choice. Those matrices then give us estimates for maximum likelihood. Meyer and Kirkpatrick (2005)
the PCs (Equation 14), their eigenvalues (Equation 15), analyze a genetic example using restricted maximum
and the covariance functions (Equation 13). As in the MV likelihood.
case, the covariance function is guaranteed to be posi- The simulated data: The covariance function is taken
tive-definite. In the next two subsections we show how from the numerical example from Kirkpatrick et al.
optimizing the estimates can be accomplished using our (1990), which in turn is based on a study of growth in
search algorithm and the REML estimation framework. mice by Riska et al. (1984). The covariance function is

Searching for the PCs of an FV trait: The algorithm
P(a1, a2) � 5655 � 4256(a1 � a2) � 642(a 2

1 � a 2
2)described earlier in the MV setting now carries over di-

rectly if we visualize the columns of the coefficient ma- � 3462a1a2 � 530(a1a 2
2 � a 2

1a2) � 81.6a 2
1a 2

2
trices CA and CE as the analogs of the eigenvectors �A and (17)
�E (respectively) from the multivariate case. In brief, we

for 2 � a1, a2 � 4. The function is shown in Figure 2.search sequentially for the vectors that make up the col-
Because this function is quadratic, it has only threeumns of CA and CE in just the same way that we searched
nonzero PCs, which are shown in Figure 3. They arein the multivariate setting for the eigenvectors �A and

�E. Step 1 involves searching for the mA elements of the
�1 � 43.87 � 45.89a � 7.269a 2,

first column of CA and the mE elements of the first column
�2 � 57.15 � 33.39a � 4.64a 2,of CE that optimize the fit. These give estimates of the

first genetic and environmental PCs (eigenfunctions).
�3 � 21.53 � 15.52a � 2.688a 2 . (18)

In step 2, we search sequentially for additional columns
of CA and CE, which give estimates of subsequent PCs. (These differ from the corresponding equations in

Kirkpatrick et al. 1990, p. 984, because here age is onWe can exploit the fact that the columns of these matri-
ces must be orthogonal to reduce the number of dimen- the original scale of [2, 4], and the norms of the PCs
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Figure 2.—The covariance function used in the numerical
example.

are defined to be equal to the square root of the corre-
sponding eigenvalues.) The eigenvalues are �1 � 1361,
�2 � 24.54, and �3 � 1.535.

The aim is to estimate the phenotypic covariance
function P by fitting m � 1, 2, and 3 principal compo-
nents. For each replicate, we simulated a population of
100 individuals, each measured at k � 5 equally spaced
ages. The covariance matrix for the traits was deter-
mined by evaluating Equation 17 on a 5 � 5 lattice of
points. An individual’s phenotype was simulated as a
vector of five measurements sampled from the corre-
sponding multivariate normal distribution with mean
zero. To each of these measurements we added an i.i.d. Figure 3.—The three principal components (eigenfunc-
“temporary environmental error” (or measurement er- tions) of the covariance function for the numerical example.

The actual PCs are the thick solid curves, and typical estimatesror) term with variance � 2
ε � 625, which corresponds

are shown as dashed curves.to between 43 and 59% of the total variance, depending
on the point in the covariance function. We fit one,
two, and three PCs to each sample of 100 individuals via

We evaluated the accuracy with which the individual
full likelihood (because the model has no fixed effects).

principal components were estimated in two ways. A PC
The likelihood was maximized using the derivative-free

is a vector quantified by a direction and a length (or
simplex algorithm (Nelder and Mead 1965). For each

norm). (This holds equally for function-valued traits,
degree of fit (that is, value of m), we calculated the cor-

where the “direction” is reflected by the shape of the
responding estimate for the covariance function using

PC, or eigenfunction.) A natural measure of the error
Equation 13. We also estimated the full 5 � 5 covariance

in the estimated direction is the angle between the esti-
matrix, which is equivalent to a multivariate analysis

mate and the true PC. For the multivariate case, that is
that ignores the ordering of the ages at which the mea-
surements were taken. This procedure was repeated for

	i � arccos




�T
i �̂i

|�| |�̂|



, (20)10,000 replicates.

Measuring the accuracy of the estimates: We evaluated
our estimation approach in several ways. Our first mea- where | · | denotes norms of vectors. [This relation fol-
sure is the average proportional error in the overall lows from the fact that the inner product of two vectors
estimate of the covariance function reconstructed from with unit norm is equal to the cosine of the angle be-
the PCs, tween them (Strang 1976).] For the function-valued

case, the analogous expression is
ε(P) � ��

xmax

xmin

|P̂(x1, x2) � P(x1, x2)|
P(x1, x2)

dx1dx2/(xmax � xmin)2,

	i � arccos ��
xmax

xmin

�i(x)(�̂)i(x)dx/���
xmax

xmin

�2
i (x)dx���xmax

xmin

�̂2
i (x)dx�	(19)

where the hat denotes an estimate, and the ages range
from xmin � 2 to xmax � 4. We calculated the integrals � arccos





CT
i Ĉi

|Ci | |Ĉi |



, (21)

numerically.
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where Ci is the vector of coefficients for PC i that appears
in Equations 14 and 15. If the direction (or shape, in
the FV context) of an estimated PC is perfectly aligned
with the population value, then 	 is the ideal 0�, while
if the estimate is a perfect failure (that is, the estimate
is orthogonal to the true PC), then 	 � 90�.

Our second measure for the accuracy with which the
PCs were estimated is the relative error in an estimate
of eigenvalue i (which is the square of the norm, or
length, of PC i):

ε(�i) � |�̂i � �i |/�i . (22)

This measure is zero when the magnitude of the eigen-
value is estimated perfectly and otherwise is positive.
We quantified the bias in estimate of the eigenvalue as

bias(�i) � (�̂i � �i)/�i . (23)

This measure is zero when the eigenvalue is estimated
with no bias, is negative when it is underestimated on aver-
age, and is positive when it is overestimated on average.

Finally, we quantified the relative error in the esti-
mates of the temporary environmental variance using
a statistic analogous to what we used for the eigenvalues:

ε(� 2
ε) � | �̂ 2

ε � � 2
ε |/� 2

ε . (24)

Results: Table 1 shows the simulation results. The
direct estimation approach does well in estimating the
overall covariance function: on average, the covariances
are estimated with an error of 15%. This is encouraging
in view of the facts that the data sets consisted of only
100 individuals and the variance contributed by mea-
surement error was roughly as large as that of the mea-
surements themselves.

A striking result is that the accuracy in estimating the
covariance function when two or three PCs are fit is no
better than when just one PC is estimated: neither ε(	1)
nor ε(�1) changed substantially when different numbers
of PCs were fit. The reason becomes clear when we look
at the estimation errors for the PCs (Figure 3). The first
PC is consistently well estimated. The average error in
estimating its shape is trivial: ε(	1) � 2.7�. The error in es-
timating the first eigenvalue, ε(�1), is greater: on average
the estimate is off by 14%. The bias for that eigenvalue,
however, is extremely small. On average it is underesti-
mated, but by �1% of its true value. This contrasts with
standard multivariate methods, which can produce sub-
stantial upward biases in estimates of the leading eigen-
value (Hayes and Hill 1981).

The situation is quite different for the second and
subsequent PCs. The shape (direction) of the second
PC is poorly estimated, with an error of 28�, and esti-
mates for the second eigenvalue are on average 83–90%
away from their true values. The third eigenfunction
fares even worse: the error in the shape is 29�, and the
average error in the estimate of �3 is 190%. But because
these PCs contribute so little to the total variation, these
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DISCUSSIONerrors have almost no impact on the accuracy of the
overall estimate of the covariance function. The point of departure for this article is the simple

How do the results depend on the number of mea- observation that covariance matrices and covariance
surements taken on each individual? Not surprisingly, functions can be estimated directly in terms of a small
the accuracy of the estimate for the leading PC improves number of principal components. Several benefits flow
as the number of ages measured increases. As a result, from this strategy. The data are used efficiently in the
the entire covariance function is better estimated. Com- sense that the maximum amount of variation is ex-
paring results for five ages (Table 1) with those for nine plained with the smallest number of parameters. This
ages (not shown), the estimation error in the overall co- reduction should speed calculations and lead to greater
variance function decreases by 11%. The error in esti- numerical stability of the estimates. The covariance ma-
mating the leading eigenvalue declines by 10%, and the trix (or function) estimated by the direct method is guar-
error in the estimate of the direction of PC1 by 18%. anteed to be positive semidefinite. Last, estimation biases
These improvements may seem modest, given that the for the leading eigenvalues, which have long been recog-
amount of data is almost doubled. But this situation is nized as a problem in classical estimation approaches, ap-
far better than what we would see with a conventional pear to be reduced substantially. These last two points ob-
multivariate analysis. There, the accuracy of the estimates viate the need for heuristic corrections to estimates of
can actually decline because the number of parameters covariance matrices, for example, the “bending” method
being estimated increases so rapidly with the number proposed by Hayes and Hill (1981). Some of the advan-
of traits measured (Sales and Hill 1976a,b). tages of working with genetic PCs have been recognized

It is also interesting to compare these results with a previously (Misztal et al. 2000; Nobre et al. 2002), but it
standard multivariate analysis of the same data. In effect, seems they have not yet been exploited systematically.
the MV approach discards all information about the We have seen that the orthogonality of PCs can be
ages at which the measurements were taken. The aver- exploited in an algorithm to estimate the covariance
age relative error in estimating the 5 � 5 covariance structure. Pinheiro and Bates (1996) compared the
matrix is 20%, which is worse than the error when we efficiency of the Givens rotations (which is the third
estimate only a single PC but make use of the function- component of our algorithm) with four other parame-
valued nature of the data (15%; see Table 1). The rela- terizations used for estimating covariance matrices from
tive error in the estimate of the first eigenvalue is very phenotypic data. They found that other parameteriza-
similar for the standard MV approach and our new tions are often faster, largely because of the computa-
approach [ε(�1) � 0.14 for both], but the MV approach tional expense of the calculations involving the rota-
also estimates the direction of the leading principal tions. In large genetic analyses, however, this may not be
component with greater error than the FV approach a concern because calculating the likelihood itself will
does (5.5� vs. 2.7�). These results reinforce the impres- typically be a much larger part of the problem. A sepa-
sion that combining the FV and the direct estimation rate issue is whether likelihood surfaces for genetic pa-
approaches makes efficient use of the data. rameters under our parameterization are conducive to

Bias in estimates of the leading eigenvalues is reduced numerical search. Meyer and Kirkpatrick (2005) ana-
by the new method. We used the simulated data to es- lyzed a genetic example and found that the direct esti-
timate the leading eigenvalue using the standard MV mation approach seems to be quite efficient in that con-
approach, that is, by calculating the eigenvalues from text also. Extensive simulations will be needed, however,
the estimated covariance matrix. The estimate is typi- to determine the robustness of the approach in general.
cally biased upward, as expected from the arguments of One potentially useful application of the direct PC
Hayes and Hill (1981), on average by 3.8%. But when approach is in studies of the evolution of the additive
the direct estimation method is used, bias is much re- genetic variance-covariance structure, a topic of emerg-
duced. Depending on the number of PCs estimated, ing interest in evolutionary genetics. A variety of statisti-
bias under the direct estimation method is between cal tools have been developed to compare covariance
three and nine times smaller than that under the classic matrices (reviewed by Houle et al. 2002; Steppan et al.
MV approach. 2002). Among them are methods that focus on differ-

In sum, these limited simulations suggest that the di- ences in principal components between populations.
rect estimation approach is efficient at estimating the These methods are particularly powerful because PCs
pattern of variation in a population. It is encouraging have straightforward interpretations and because one can
that the estimate of the first principal component is test sets of nested hypotheses about how the PCs have
quite accurate, independent of the degree of fit, and changed (Flury 1988; Phillips and Arnold 1999). It is
almost free of bias. Meyer and Kirkpatrick (2005) possible to wed the direct PC approach to these meth-
report similarly promising results for a genetic example. ods. One could, for example, test the correspondence
We will not know how general and robust these findings between the first few PCs of two populations. These
are, however, until the method has been applied in a analyses would benefit from the reduced biases and

increased accuracy of estimates that our direct PC ap-variety of settings.
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proach contributes. Further work is needed on several some applications. Evolutionary biologists would like to
know the degree to which patterns of genetic variationissues, for example, to determine how the choice of the

number of PCs estimated affects these analyses. may constrain the potential for adaptation (Maynard
Smith et al. 1985). Function-valued traits are a particu-The direct PC approach may be most useful with

function-valued traits. The additive genetic covariance larly interesting context in which to study this problem
because there are in principle an infinite number offunction plays a central role in determining how FV

traits respond to natural and artificial selection (Kirk- dimensions to which organisms must adapt (Kirkpat-
rick and Lofsvold 1992). Our approach of extractingpatrick and Heckman 1989; Kirkpatrick 1993;

Gomulkiewicz and Beder 1996; Kirkpatrick and only the major PCs is poorly suited to this kind of prob-
lem because it will often discard information about phe-Bataillon 1999). Consequently, estimation and analy-

sis of covariance functions is rapidly expanding in both notypic dimensions for which there is a small but non-
zero amount of genetic variation. By neglecting theseevolutionary genetics and applied animal breeding (Jaf-

frézic and Pletcher 2000; Misztal et al. 2000; King- dimensions, we might be falsely led to believe there is
no heritable variation available for adaptation when insolver et al. 2001; Schaeffer 2004). Estimates of covari-

ance functions are sensitive to error, however, and so fact there is.
Some kinds of traits do not fall into either the multi-there is substantial interest in developing methods that

are fast, make efficient use of the data, and are numeri- variate or function-valued cases we discussed above. We
might be interested in a set of several traits that changecally stable (Jaffrézic and Pletcher 2000; van der

Werf 2002). with age, for example, or in a trait that varies as a func-
tion of more than one continuous control variable (forTwo major families of methods to estimate covariance

functions are currently in use. The first, which is nonpar- example, age and environment). The direct estimation
approach can be extended to these more complex kindsametric in spirit, represents the covariance function in

terms of flexible basis functions such as polynomials. of phenotypes. This is an attractive idea because the
number of parameters to be estimated is otherwise veryThe earliest approach fit polynomials to a covariance

matrix that had been previously estimated for a fixed set large (Schaeffer 2004).
There has recently been much interest in function-of ages (Kirkpatrick et al. 1990, 1994). An important

advance was the introduction of the method of random valued traits among statisticians working in areas out-
side of quantitative genetics. Rice and Silverman (1991)regression, which escapes the need for the covariance

matrix by fitting a set of basis functions to the observa- introduced a nonparametric approach in which obser-
vations on individuals were fit with splines, and the PCstions for each individual (Schaeffer and Dekkers

1994; Meyer and Hill 1997; Meyer 1998). Random were derived from them. Their approach has been ex-
panded and generalized in several respects (Ramsay andregression has been widely implemented using poly-

nomials as the basis functions (Schaeffer 2004), but Silverman 1997, 2002). Some of the developments par-
allel those made independently in quantitative genet-other basis functions such as splines have also been

used (White et al. 1999; Torres 2001). Splines are ics, for example, the use of random regressions (James
et al. 2000). There are, however, basic differences be-numerically better behaved than polynomials, but have

the drawback that they require fitting a larger number tween these phenotypic analyses and those in quantita-
tive genetics. Major goals of quantitative genetics areof parameters and so can become unwieldy with very

large data sets. to partition variation into heritable and nonheritable
components and to estimate the breeding values of indi-The second family of methods begins with the as-

sumption that the covariance function takes a simple viduals. Those goals motivate the standard assumption
of quantitative genetics that variance components areparametric form (e.g., Pletcher and Geyer 1999; Jaf-

frézic et al. 2003). This constraint reduces the number normally distributed. In contrast, many phenotypic ap-
plications can afford to take more general nonparamet-of parameters and so makes the results less sensitive to

estimation error (Jaffrézic and Pletcher 2000). A ric approaches (Ramsay and Silverman 1997, 2002).
Nevertheless, the direct PC approach developed heredrawback of this approach is that there is often no strong

biological justification for any particular functional may also find uses in the analysis of phenotypic data.
form. If an inappropriate choice is made, then estimates This work was supported by grant BFGEN.100 of Meat and Livestock
of genetic parameters will be biased. Australia (to K.M.) and grants DEB-9973221 and EF-0328594 from the

National Science Foundation and NER/A/S/2002/00857 from theThe direct estimation method proposed in this article
Natural Environment Research Council (to M.K.).may have some of the advantages of both families of

methods. It makes no prior assumption about the form
of the covariance function, but involves many fewer
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