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ABSTRACT
Most of the available SNP data have eluded valid population genetic analysis because most population

genetical methods do not correctly accommodate the special discovery process used to identify SNPs.
Most of the available SNP data have allele frequency distributions that are biased by the ascertainment
protocol. We here show how this problem can be corrected by obtaining maximum-likelihood estimates
of the true allele frequency distribution. In simple cases, the ML estimate of the true allele frequency
distribution can be obtained analytically, but in other cases computational methods based on numerical
optimization or the EM algorithm must be used. We illustrate the new correction method by analyzing some
previously published SNP data from the SNP Consortium. Appropriate treatment of SNP ascertainment is
vital to our ability to make correct inferences from the data of the International HapMap Project.

THE large-scale single-nucleotide polymorphism therefore, not applicable to this type of SNP data. Fortu-
nately, it is in many cases possible to correct for the(SNP) genotyping projects have generated much

interest in population genetic analysis of human poly- ascertainment bias (e.g., Wakeley et al. 2001; Nielsen
and Signorovitch 2003; Polanski and Kimmel 2003).morphism. SNPs may be used for the estimation of de-

mographic parameters, such as population growth rates, For example, Nielsen and Signorovitch (2003) showed
how the Hudson (2001) composite-likelihood estimatoradmixture proportions, migration rates, and population

divergence times (e.g., Wakeley et al. 2001; Cavalli- of the population recombination rate can be modified
to provide approximately unbiased estimates.Sforza and Feldman 2003). In addition, SNPs may be

used in studies of the effect of natural selection, for In this article we focus on methods for estimating the
true frequency spectrum from a sample of SNP data.example, for mapping the genomic location of selective

sweeps (e.g., Sunyaev et al. 2000; Akey et al. 2002; Sabeti The frequency spectrum is a reduction of the data in
which all SNPs are categorized according to the sampleet al. 2002). With the availability of thousands of typed

SNPs in multiple human ethnic groups, there is some allele frequency of the SNP. Assuming no back muta-
tions and assuming that the ancestral state of the SNPhope that many questions regarding the human genetic

ancestry might soon be resolved. However, the analysis is known, there are n � 1 possible allele frequencies in
a sample of n chromosomes: x � 1, x � 2, . . . , x �of the SNP data is complicated by the SNP discovery

protocols applied in the large SNP genotyping projects. n � 1. If the ancestral state is not known, the labeling
of alleles is arbitrary, and allele frequencies of type xTypically, SNPs are originally identified from the genetic

material of a small group of individuals, often called are identical to allele frequencies of type n � x. Conse-
quently, there are only [n/2] possible folded configura-the discovery panel. Thereafter, the SNPs found in this

small panel are typed in a larger sample, typically with tions, where [n/2] is n/2 truncated to the nearest inte-
ger. Under the assumption that SNPs are independentan ethnic composition similar to that of the discovery

panel (e.g., Taillon-Miller et al. 1998; Wang et al. and identically distributed (iid), all the information in
the data, for example, regarding demographic parame-1998; Picoult-Newberg et al. 1999; Altshuler et al.

2000). Basing the SNP discovery protocol on initial iden- ters, is contained in the frequency spectrum. The iid
assumption is valid if the SNPs are located far apart andtification in a small panel, in contrast to direct sequenc-

ing, will bias the composition of the sample to contain if the evolutionary processes are identical in all regions.
If parameters of the evolutionary process vary amongmore high-frequency alleles (e.g., Nielsen 2000). Most

standard population genetic tools for data analysis are, regions, the relevant information in the data is then
instead contained in the collection of frequency spectra
in different regions.

The objective of this article is to show how the true1Corresponding author: Center for Bioinformatics, Universitetsparken
15, 2100 Kbh Ø, Denmark. E-mail: rasmus@binf.ku.dk frequency spectrum can be estimated from ascertained
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SNP data. We focus on the frequency spectrum for three Signorovitch (2003), and Polanski and Kimmel
(2003).reasons. First, the methods used to correct the frequency

spectrum are conceptually identical to the methods Case 1—basic model: Let us first consider the case
in which all SNPs have been ascertained in an alignmentused to correct estimators of any other parameters. We

derive formulas for correcting the frequency spectrum of different sequences of fixed depth (d) and where
this ascertainment sample is a subset of the final samplethat can be applied more or less directly in studies aimed

at estimating other parameters. Second, in some cases of size n. The depth is the sample size of the ascertain-
ment sample. The ascertainment condition is that thethe frequency spectrum in itself is of interest, for exam-
locus was variable in the ascertainment sample. Then theple, for identifying genomic regions with aberrant fre-
probability of ascertainment given an observed allelequency spectra, possibly due to selection. Third, by cor-
frequency of xi is one minus the probability of samplingrecting the frequency spectrum for the ascertainment
all d ascertainment gene copies exclusively among eitherbias, while taking into account the inflation of the vari-
the xi alleles of one type or the n � xi alleles of theance due to the estimation procedure, other parame-
other type. Also Pr(Xi � xi |P) � pxi and Pr(Asci |Xi �ters, such as demographic parameters, can be estimated.
xi) � Pr(Asci |Xi � x i , P), soWe show that in simple, but realistic cases, an analyti-

cal formula can be used to provide maximum-likelihood
Pr(Xi � x i , Asci |P) � pxi

Pr(Asci |Xi � x i),estimates of the true frequency spectrum. In the more
general cases, fast numerical optimization algorithms where
can be used to estimate the true frequency spectrum. We
use these new methods to analyze a previously published

Pr(Asci |Xi � x i) � 1 �
�xi

d � � �n�x i

d �
�nd �

(2)SNP data set from The SNP Consortium (TSC; e.g.,
Matise et al. 2003).

and
THEORY AND METHODS

Pr(Asci |P) � �
n�1

j�1

pj Pr(Asci |Xi � j).
We illustrate the methods discussed here on the un-

folded frequency spectrum, but the results can trivially
Here and in the following ( i

j ) � 0 if j � i or j � 0. Webe extended to the folded frequency spectrum. Let pi

be the frequency of SNPs with mutant allele frequency find the maximum-likelihood estimate by solving a set
of equations obtained by setting the partial derivativesi in a sample that has not been subject to any ascertain-
of the log-likelihood function with respect to the param-ment bias. Given observed counts of SNP alleles in a
eters equal to zero and solving for the parameters. Be-sample, we seek the reconstituted frequency spectrum,
cause of the constraint of �n

i �1pi � 1 we introduce adefined here as the maximum-likelihood estimate of
Lagrange multiplier. After verifying that a global maxi-P � (p1, p2, . . . , pn�1), where n is the sample size
mum has been found, we find that the maximum-likeli-of chromosomes. We assume that some ascertainment
hood estimate of P is simply given bycondition has been imposed such that only loci fulfilling

this condition have been included in the final data set.
For example, an ascertainment condition could be that p̂k �

nk

Pr(Asc|X � k)��n�1

j �1

nj

Pr(Asc|X � j )�
�1

,
all included SNPs are variable, or that all SNPs were
variable in some panel originally used to screen for

k � 1, 2, . . . , n � 1, (3)SNPs. The likelihood function for P is then given by
where nj is the observed number of loci with allele fre-

L(P) � �
S

i �1

Pr(X i � xi |P; Asci ) � �
S

i �1

Pr(X i � xi , Asci |P)
Pr(Asci |P)

, quency j. An example is given in Figure 1. Ten thousand
independent SNP sites were simulated under an infinite-(1)
sites model in a sample of size n � 20. Note that when
d � 5, the true and the observed frequency spectrawhere S is the number of SNP loci in the sample, Xi is

the allele frequency in locus i, and Asci is generic nota- differ dramatically. In particular, in the observed data
there is an excess of loci with intermediate frequencytion for the event that the ascertainment condition is

met in locus i. Note that we have here assumed indepen- alleles. Also note how the maximum-likelihood correc-
tion method accurately recovers the true frequencydence among loci. In the following we show how this

likelihood function can be maximized with respect to spectrum.
In some cases, the SNP selection criterion used in theP for a number of different ascertainment (SNP discov-

ery) protocols. Methods for correcting likelihood esti- SNP discovery process might include a cutoff in the SNP
frequency. Such cases can easily be incorporated intomators of demographic parameters have previously

been discussed by Kuhner et al. (2000), Nielsen (2000), the current scheme. If the cutoff is set at a value C, then
the likelihood function is just modified usingWakeley et al. (2001), Akey et al. (2003), Nielsen and
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Figure 1.—The frequency spectrum in a sample of n �
20 gene copies and 10,000 SNPs assuming d � 5 and the
ascertainment scheme in Equation 1. The data were simulated
assuming the standard neutral coalescent model and indepen-

Figure 2.—The true and estimated frequency spectra as-dence among sites.
suming n � 20 and d � 2, 3, 5, and 10 with equal probability
for 10,000 SNPs. Three different corrections schemes are as-
sumed: d known for each locus (light blue), d unknown for
each locus but the true distribution of d known (white), andPr(Asci |Xi � x i) �

�n�C
j �C �xi

j ��n�xi

d�j �
�nd �

, (4) d unknown for each locus but the distribution of d inferred
from the distribution in the typed SNP data (pink).

and the maximum-likelihood estimate of P can be ob-
tained by substituting this expression into Equation 3.

the distribution, assuming di is known for all loci. ThisCase 2—variation in d : This case is similar to case 1,
procedure accurately recovers the true frequency spec-but we assume the discovery depth (d) varies among
trum. Two different correction schemes based on Equa-loci. Consider first the case where information regard-
tion 5 are then considered. In the first case it is assumeding d in each locus has been lost, but information is
that the true distribution of ascertainment sample sizesavailable regarding the distribution of d among loci,
is known. Using this distribution, the correct frequencyf(d). Then the likelihood function must be modified by
spectrum is again recovered. In the second procedure,summing over all possible (unknown) alignment depths
the observed distribution of ascertainment sample sizeswhen calculating the ascertainment probability,
is used in combination with Equation 5. The observed
distribution is obtained by simply counting the number

Pr(Asci |Xi � xi) � �
dmax

d�2

f(d)�1 �
��xi

d ���n�xi

d ��
�nd � � , (5) of typed SNPs for which d � 2, 3, . . . , etc. Using this

procedure leads to a small bias and a deficiency of rare
alleles. The reason is that the observed distribution ofwhere dmax is the maximum value d can take. The maxi-
ascertainment sample sizes is in itself biased, becausemum-likelihood estimate of P is then given by Equation
samples in which no SNPs occurred have been elimi-3, replacing the definition of Pr(Asci |Xi � x i) by Equa-
nated.tion 5.

So far we have assumed that the ascertainment sampleIn the case where information regarding d is available
consists of an alignment of different sequences. How-for each locus, but d varies among loci, the likelihood
ever, in more realistic cases the ascertainment samplefunction is given by Equation 2, replacing d with di,
has been obtained by sampling with replacement from awhere di is the value of d in SNP locus i. Numerical
panel of chromosomes of size m. For example, Nationaloptimization of this likelihood function (Equation 2) is
Human Genome Research Institute sponsored a SNPnecessary, but can be done very fast and efficiently using
discovery effort in which a SNP discovery panel of m �standard algorithms.
24 individuals was used by many groups to find SNPs.An example is shown in Figure 2. Ten thousand inde-
In the reduced representation shotgun scheme (Alt-pendent SNPs were simulated assuming n � 20 and a
shuler et al. 2000), multiple overlapping sequences weremixture of ascertainment sample sizes of d � 2, 3, 5,
aligned for SNP discovery. In these overlaps, not all 24and 10 with equal probability. Again, the simulated data
individuals were represented, and some individuals werehave an excess of loci with alleles of intermediate fre-
represented by more than one read. In this case, wequency compared to the true distribution. Three differ-
need to distinguish between the observed depth of theent correction schemes are considered. First, the likeli-

hood function based on Equation 2 is used to correct alignment (Ai) in locus i and the true number of differ-
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ent sequences in the alignment in locus i (di). Consider,
for example, the case in which the alignment depth was
known for each locus. Then

Pr(Asci |X i � x i , A i � a) � �
m

d�1

Pr(Asci |X i � x i , di � d )Pr(d i � d|A i � a),

and

Pr(di � d |Ai � a) � S(a, d)d !�md � m�a, (6)

where S(a, d) is a Stirling number of the second kind.
The combinatorial expression in Equation 6 gives the
probability of sampling exactly d different chromosomes
when sampling a chromosomes, with replacement, from
a panel of m chromosomes. ma is the number of possible
(ordered) ways we can sample a chromosomes with re-
placement from a panel of m chromosomes. S(a, d)
d !(m

d ) is the number of ways we can sample, with replace-
ment, a chromosomes among a panel of m chromo-
somes such that there are exactly d different chromo-
somes in the sample. There are (m

d ) different sets of
chromosomes of size d to sample and S(a, d) ways to
partition the a draws into d nonempty sets, which again
can be ordered in d! different ways.

How important is it to model sampling with replace-
ment, in contrast to assuming sampling without replace-
ment (d � a) as previously assumed? In general, the
effect is not large. For example, most of the available
data from TSC (http://snp.cshl.org/) have values of a �
5, but m � 20 (see data analysis). In such cases correc-

Figure 3.—The true and estimated frequency spectra as-tion with or without replacement gives almost identical
suming n � 20 and a � 5 and m � 7 for 10,000 SNPs, in aresults, because E(di |Ai � a) is close to a ; e.g., if m �
SNP discovery process where ascertainment sequences have

20, then E(di |Ai � 4) � 3.71. We also explore cases been sampled with replacement from the panel sequences (a)
where d is not much smaller than m and for the purpose and without replacement (b).
of illustration show the case of a � 5 and m � 7 in
Figure 3. In this case, Pr(d i � 5|Ai � 5) � 0.15, and
we would expect relatively large differences between tainment sample is not available, this introduces quite
sampling with and without replacement. However, the a bit more complexity. In the following, we illustrate
difference between correcting with and without replace- how case 1 can be expanded to include this type of
ment is very minor compared to the effect of not correct- ascertainment scheme. The basic idea is to calculate the
ing for the ascertainment bias. Corrections performed likelihood function by summing over all the possible
without taking into account the possibility that the same values of the allele frequency in the unobserved ascer-
sequence has been sampled more than once from the tainment sample. First, redefine Pr(Xi � x i , Asci |P) in
panel sequences may perform reasonably well as long an alignment of depth d as
as a � m. Most of the TSC data can probably be modeled
reasonably well without taking sampling with replace-

Pr(Xi � x i , Asci |P) � �
xi�d�1

j�xi�1

pj Pr(Xi � x i |Yi � Xi � j),ment into account.
Case 3—allele frequencies in the ascertainment sam- (7)

ple unknown: In many cases the ascertainment sample
may not have been included in the final typed sample. where Yi is the unknown allele frequency in the ascer-
In this case we redefine the ascertainment condition as tainment sample of size d and P � (p2, p3, . . . , pn�d�2).
variability in the ascertainment sample and variability in the Also,
typed sample, since invariable loci in the typed sample in
most cases will be discarded (Figure 4). If the informa-

Pr(Xi � x i |Yi � Xi � j) �
� j
xi

��n�d�j
n�xi

�
�n�d

n �
. (8)tion regarding the allele frequency in the ascertainment

sample has been preserved, the previous methods can
easily be adapted to deal with this case. However, if the
information regarding allele frequencies in the ascer- Similarly, redefine
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for the study on the basis of prior knowledge that they
are variable sites and of their position in the genome.
Recently, the criterion that has been selected for ascer-
tainment is the “double-hit” scheme, meaning that both
allelic states were observed in two separate studies
(www.hapmap.org).

Assume that we know the panel depth for both ascer-
tainment experiments and that the discovery panel is
part of the sample used to obtain the frequency spec-
trum (as in case 1). Further assume that the two discov-
ery samples were drawn from the same population. Let
Asc1i refer to a SNP satisfying ascertainment condition
1 [i.e., it was discovered in an alignment of sequences
of depth d(1)] and Asc2i implies that the SNP was discov-
ered in another alignment of sequences of depth d(2).Figure 4.—The true and estimated frequency spectra as-
Similarly to case 1, assume that the ascertainment sam-suming n � 20 and d � 5 for 10,000 SNPs in which the

ascertainment sample is disjoint from (not a subset of) the ples are subsets of the typed sample and further assume
typed sample. Two different corrections are performed, one that the intersection between these two subsets is empty.
in which it is correctly assumed that the ascertainment sample Then,is disjoint from the typed sample (light blue), estimated using
the EM algorithm described in the appendix, and one in which Pr(Asc1i , Asc2i |Xi � xi)it was incorrectly assumed that the ascertainment sample was
a subset of the typed sample. For fair comparison, all distribu-
tions are calculated conditionally on 1 � x � 19.

�
�� � xi

xi�j�k,j,k �� n � xi

n�xi�d(1)�d(2)�j�k, d(1)�j, d(2)�k �
� n
n�d(1)�d(2),d(1),d(2)�

, (11)

where Xi is the frequency of the mutant allele in the ithPr(Asci |P) � �
xi�d�1

j�2

pj Pr(Asci |Xi � Yi � j), (9)
locus of a sample of size n � d(1) � d(2) and � � {( j,
k)|0 � j � d(1), 0 � k � d(2)}. The maximum-likelihoodwhere
estimate of P � (p2, p3, . . . , pn�2} is then simply given

Pr(Asci |Xi � Yi � j) by Equation 3 using (Asc1, Asc2) as the ascertainment
condition. Unknown allele frequencies in the ascertain-
ment sample and varying ascertainment sample size can� 1 �

� j
n� � �n�d�j

n � � � j
d � � �n�d�j

d � � Id �j � In�j

�n�d
n �

,
also be incorporated in this ascertainment scheme.

An example of this ascertainment scheme is shown(10)
in Figure 5. Note the magnitude of the ascertainment
bias under this selection scheme. In a sample of sizeif 1 � j � n � d � 1 and 0 otherwise. Note that the

model is now parameterized in terms of the allele fre- n � 20, SNPs with allele frequencies in the range of
4/20–10/20 are now the most common SNPs. Again,quencies in a pooled sample of size n � d. Because both

the ascertainment sample and the typed sample are the maximum-likelihood correction accurately recovers
the true allele frequencies; however, incorrectly assum-required to be variable for a locus to be ascertained,

only p2, p3, . . . , pn�d�2 can be estimated. The frequency ing a single-hit correction and d � 2 does not fully
recover the true frequency spectrum. Clearly, under theof singletons in the sample cannot be consistently esti-

mated without making more model assumptions, be- double-hit ascertainment scheme ascertainment correc-
tions based on a single-hit scheme are not appropriate.cause the pooled sample contains no singletons.

The likelihood function is now of an algebraic form Hypothesis testing and confidence intervals: The pre-
vious discussion has illustrated how the frequency spec-where the maximum likelihood cannot easily be ob-

tained analytically. Instead, we can develop a fast EM trum can be corrected for a variety of different ascertain-
ment schemes. However, it has not addressed thealgorithm for maximizing the likelihood function. When

d varies among loci, the EM algorithm is no longer easily fundamental problem of how to apply estimates of the
frequency spectrum for further population genetic anal-applicable and other numerical optimization methods

must be used. The appendix describes the EM algo- ysis. It is important to stress that ascertainment-cor-
rected frequency spectra cannot be directly applied inrithm and the necessary alterations of the likelihood

function when d varies among loci. further data analysis without taking the uncertainty in
the parameter estimates into account. Fortunately, it isCase 4—the “double-hit” ascertainment scheme: The

International HapMap project is the largest SNP geno- relatively easy to obtain measures of statistical uncer-
tainty in these models. For example, consider ascertain-typing project ever conceived—currently planned to in-

clude a minimum of 600,000 SNPs genotyped in 270 ment schemes where the likelihood function has the
same functional form as in case 1. Then the approximateindividuals. Prior to this genotyping, SNPs are selected
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Figure 6.—The observed distribution of alignment depths
for 1308 SNPs from The SNP Consortium.

Figure 5.—The true and estimated frequency spectra as-
suming n � 20, d(1) � 2, and d(2) � 5 for 10,000 SNPs for the
double-hit ascertainment scheme. Two different corrections for each bootstrap sample estimate the reconstitutedare performed, one in which it is correctly assumed that the

frequency spectrum. By taking into account the in-double-hit ascertainment scheme has been used (light blue)
creased variance due to the estimation of the frequencyand one in which it was erroneously assumed that the data

were obtained using a single-hit ascertainment scheme with spectrum, such a bootstrap would accurately represent
d � 2. the true variance in the estimates. However, it should

be noted that when numerical optimization is necessary,
such a bootstrap approach can be quite computationally
intensive.variances of the estimates can be obtained using asymp-

Hypothesis testing can be performed using similartotic likelihood theory. The observed Fisher informa-
methods. For example, we might be interested in testingtion matrix IP � {Iij} for 0 � i � n � 1 is given by the
if the frequency spectrum conforms to a specific modelnegative of the matrix of second derivatives of the log-
such as the standard neutral equilibrium model, i.e.,likelihood function,
Kingman’s (1982) coalescent model. In this model

pi �
1/i

�n�1
j�1 1/j

, 0 � i � n. (14)Iij �










nn�1

p̂2
n�1

�
S(Pr(Asc|X � i) � Pr(Asc|X � n � 1))(Pr(Asc|X � j) � Pr(Asc|X � n � 1))

(�n�1
v�1 p̂vPr(Asc|X � v))2

,

i � j

nn�1

p̂2
n�1

�
ni

p̂2
i

�
S(Pr(Asc|X � i) � Pr(Asc|X � n � 1))2

(�n�1
v�1 p̂vPr(Asc|X � v))2

,

i � j (12) We may now calculate a likelihood-ratio test statistic
as Log(L(P̂)/L(Pc)), where Pc is the value of P underand the approximate variance-covariance matrix can be
Kingman’s coalescent. Two times this statistic is asymp-found as I�1

P , which can be obtained analytically, but is
totically � 2

n�2 distributed. However, for most data sets,messy. For models in which the ascertainment scheme
the observations in the categories of the high-frequency-varies among loci, the observed Fisher information ma-
derived alleles will be so low that the asymptotic resulttrix is given by
may not apply. In such cases, the distribution of the test
statistic must be evaluated by simulations.

Iij �










nn�1

p̂2
n�1

� �
S

k�1

(Pr(Asck|Xk � i) � Pr(Asck|Xk � n � 1))(Pr(Asck|Xk � j ) � Pr(Asck|Xk � n � 1))
(�n�1

v�1 p̂vPr(Asck|Xk � v))2
,

i � j

nn�1

p̂2
n�1

�
ni

p̂2
i

� �
S

k�1

(Pr(Asck|Xk � i ) � Pr(Asck|Xk � n � 1))2

(�n�1
v�1 p̂vPr(Asck|Xk � v))2

.

i � j (13) DATA ANALYSIS

To illustrate the utility of the method we analyzedAfter obtaining the variance-covariance matrix, confi-
dence intervals for the parameters can be obtained us- 1308 SNPs from The SNP Consortium (e.g., Matise et

al. 2003; Thorisson and Stein 2003), for which chim-ing standard methods. Likewise, approximate confi-
dence intervals for any function that has been calculated panzee outgroup information was available (allowing

consideration of the full rather than the folded fre-on the basis of the frequency spectrum (e.g., an estima-
tor of growth rates or other demographic parameters) quency spectrum). The typed sample consisted of 90

individuals, and the discovery (ascertainment) panelcan be obtained, if this function is differentiable. The
approximate variance of the function is obtained by consists of 24 individuals, except for some cases in which

m � d � 2. We assume that the sets of typed and ascer-applying the delta method (see, e.g., Casella and Berger
1990, p. 326). tainment individuals are disjoint. The distribution of

alignment depths for the 1308 SNPs is shown in Figure 6.An alternative would be to bootstrap the SNPs, and
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both the ascertainment and the typed sample. Note that
the observed distribution is quite uniform compared to
the distribution expected under neutrality. There is a
deficiency of rare new mutants and an excess of com-
mon alleles. In contrast, the corrected frequency spec-
trum shows an excess of rare alleles, as is observed in
much of the available human data obtained by direct
sequencing (Stephens et al. 2001). The excess of rare
alleles may most likely be caused by population growth
and/or by selection against slightly deleterious muta-
tions.

We tested the fit of Kingman’s coalescent model to
this data using the previously described likelihood-ratio
test. The observed value of the test statistic was 100.3.
To evaluate the distribution of this test statistic, 100 data

Figure 7.—The observed, expected, and estimated fre- sets of 1308 independent SNPs were simulated under
quency spectra for a data set from The SNP Consortium con- Kingman’s coalescent (i.e., from Equation 14), while
taining 90 individuals for 1308 SNPs. Note the logarithmic

imposing the same ascertainment conditions as ob-scale on the y-axis. Error bars show plus or minus two times
served in the real data. The simulated distribution isthe standard deviation estimated from the observed Fisher

information. shown in Figure 8. In this case the data do not fit King-
man’s coalescent, due to an excess of rare derived al-
leles.

The vast majority of SNPs are obtained from alignment
depths of only two sequences and only 32 SNPs have DISCUSSION
alignment depths �5. No SNPs have alignment depths

In this article we present a set of methods for correct-�10. Because the alignment depths in general are much
ing the frequency spectrum in ascertained SNP data.smaller than the panel size, except for the case of m �
The methods are nonparametric in the sense that theyd � 2, we model the ascertainment process using Equa-
make no assumptions regarding the processes that gen-tions 6–9, ignoring the possibility that the same se-
erate the data. There is no need for a prior distributionquence occurs twice in an alignment. However, we do
of allele frequencies or a population genetical model.take variation in d among loci into account.
Inferences regarding population level processes can beThe estimated and observed frequency spectra for
based on the reconstituted frequency spectrum. Whenthese data are shown in Figure 7. Approximate 95%
doing so, methods for taking uncertainty in the estimateconfidence intervals were obtained as plus or minus two
of the frequency into account should be used. Thistimes the standard deviation. Standard deviations were
can be done either by using the bootstrap or by usingapproximated as the square root of the asymptotic vari-
asymptotic likelihood theory.ances obtained using Equation 13. The frequency of

Given the simplicity of implementation of these meth-singletons cannot be estimated consistently using this
approach, because of the assumption of variability in ods, and the growing prevalence of SNPs ascertained

Figure 8.—The distribution of the likelihood-
ratio test statistic of fit to the standard neutral
model. The observed value is calculated from The
SNP Consortium data containing 90 individuals
for 1308 SNPs.
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nucleotide polymorphism identification strategies on estimates ofthrough a small panel, we emphasize the importance
linkage disequilibrium. Mol. Biol. Evol. 20: 232–242.

of considering and correcting ascertainment in the anal- Altshuler, D., V. J. Pollar, C. R. Cowles, W. J. Van Etten, J.
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APPENDIX

The basic idea in the EM algorithm is to augment the data with some additional hypothetical unobserved data.
In the E-step of the EM algorithm the expected value of this augmented log-likelihood function is calculated,
conditional on a current guess of the parameter values. In the M-step, this expectation is maximized with respect
to the parameters, leading to a new set of parameter values. This algorithm will under general conditions converge
to a (local) optimum when the two steps of the algorithm are iterated. We augment the data with the unknown
allele frequencies in the ascertainment sample, Y � (Y1, Y2, . . . , YS). The full-data likelihood becomes
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L(P; Y) � �
S

i�1

Pr(Xi � x i , Yi � yi |P; Asci) � �
S

i�1

Pr(Xi � xi , Yi � yi , Asci |P)
Pr(Asci |P)

, (A1)

where

Pr(Xi � x i , Yi � yi , Asci |P) � I(0�yi�d)I(0�xi�n) px i�yi

�y i � xi

xi
��n � d � (x i � y i )

n � xi
�

�n � d
n �

. (A2)

At the r th iteration of the algorithm the E-step consists of finding

E {log L(P; Z, Y)|X, P r } � �
S

i�1
�
m

j�xi�1

E[I(Xi�xi,Yi�j�xi )|X, P r; Asci]log Pr(Xi � xi , Yi � j � xi |P; Asci), (A3)

where

E[I(Xi�xi ,Yi�j�xi)|X, P r; Asci] �
Pr(Xi � xi, Yi � yi, Asci |P r)

�d�1
y�1Pr(Xi � xi , Yi � yi , Asci |P r)

. (A4)

The M-step of the algorithm can be completed by noting that Equation A3 can be optimized with respect to P using
Equation 3. The algorithm then proceeds as follows:

1. Set r � 0 and p 0
k � (n � d � 3)�1, k � 2, 3, . . . , n � d � 2.

2. Set p̂ki � E[I(Xi�Yi�j )|X, P r; Asci], k � 2, 3, . . . , n � d � 2.
3. Set

p r�1
k � �

S

i �1

p̂ki

Pr(Asci |Xi � Yi � k)��S

i�1
�

n�d�2

j�2

p̂ji

Pr(Asci |Xi � Yi � j)�
�1

, k � 2, 3, . . . , n � d � 2.

4. Repeat steps 2 and 3 until convergence.

After convergence at the r th step of the algorithm, the reconstituted frequency spectrum in a sample of size n �
d is then given by p r�1

j , j � 2, . . . , n � d � 2. The reconstituted frequency spectrum in a sample of size n is then
given by

p̂i �
hi

1 � h o � h 1 � hn � hn�1

, i � 2, . . . , n � 2, (A5)

where

hi � �
n�d �2

j�max{i,2}

pr�1
j

�ji ��
n � d � j

n � i �
�n � d

n �
. (A6)

When the ascertainment sample is not contained in the observed sample and d varies among loci similarly to case
2, the EM-algorithm can no longer be applied, but standard numerical optimization algorithms must be used instead.
However, this is the case relevant to data analysis of much of the available SNP data such as the data from TSC.
First, redefine Pr(Xi � x i, Asci |P) in an alignment of depth di as

Pr(Xi � x i , Asci |P) � �
xi�di�1

j�xi�1

pj Pr(Asci , Xi � x i |Yi � Xi � Zi � j), (A7)

where Yi is the unknown allele frequency in the ascertainment sample, Zi is the allele frequency in a hypothetical
sample of size ndmax � n � di, ndmax � n � maxj {dj }, m � maxj {xj � dj} � 2, and P � (p2, p3, . . . , pm). Also

Pr(Asci , Xi � x i |Yi � Xi � Zi � j) � Pr(Xi � x i|Yi � Xi � Zi � j) 	 Pr(Asci |Yi � Zi � j � xi), (A8)

Pr(Xi � xi |Yi � Xi � Zi � j) �
� j
xi

��ndmax � j
n � xi

�
�ndmax

n �
, (A9)

and
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Pr(Asci |Yi � Zi � j � xi) � 1 �
�ndmax � n � j � xi

di
� � �j � xi

di
�

�ndmax � n
di

�
. (A10)

Similarly, redefine

Pr(Asci |P) � �
di�n�2

j�2

pjPr(Asci |Xi � Yi � Zi � j), (A11)

where

Pr(Asci |Xi � Yi � Zi � j) � 1 �
� j
di

� � �ndmax � j
di

�
�ndmax

di
�

�
� j
n � � �ndmax � j

n �
�ndmax

n �
�

� ndmax � j
n, di , ndmax � j � n � di

� � � j
0, di , j � di

�� ndmax � j
n, 0, ndmax � n � j �

� ndmax

n, di , ndmax � n � di
�

�
� j
n, 0, j � n�� ndmax � j

0, di, ndmax � j � di
� � � j

n, di , j � n � di
�

� ndmax

n, di , ndmax � n � di
�

. (A12)

The likelihood function can then be optimized using standard algorithms. In this case we used a version of the
BFGS algorithm (e.g., Press et al. 1992, pp. 425–430) modified to include constraints on the parameters.


