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ABSTRACT
We present a Bayesian statistical inference approach for simultaneously estimating mutation rate, popula-

tion sizes, and migration rates in an island-structured population, using temporal and spatial sequence
data. Markov chain Monte Carlo is used to collect samples from the posterior probability distribution.
We demonstrate that this chain implementation successfully reaches equilibrium and recovers truth for
simulated data. A real HIV DNA sequence data set with two demes, semen and blood, is used as an ex-
ample to demonstrate the method by fitting asymmetric migration rates and different population sizes.
This data set exhibits a bimodal joint posterior distribution, with modes favoring different preferred
migration directions. This full data set was subsequently split temporally for further analysis. Qualitative
behavior of one subset was similar to the bimodal distribution observed with the full data set. The temporally
split data showed significant differences in the posterior distributions and estimates of parameter values
over time.

DRUMMOND et al. (2002, 2003a) treat joint esti- MEP. Serial samples taken from a single patient over a
mation of mutation rate, population size, and sam- period of years show rapid accumulation of mutations

ple genealogies from time-stamped serially sampled se- in the viral genome and the generation of a large num-
quence data, using a Bayesian approach and Markov ber of genetic variants. HIV forms distinct subpopula-
chain Monte Carlo (MCMC). In this article we extend tions in different body tissues, for example, in the brain
this method to fit an island migration model (Noto- and in the blood (Wong et al. 1997; Poss et al. 1998;
hara 1990). We focus on the case of two populations. Wang et al. 2001; Zhang et al. 2002). Serially sampled
We model asymmetric migration rates and unequal pop- sequence data, labeled by subpopulation, are therefore
ulation sizes using serial samples of sequences. available. With HIV, the presence of different tissue com-

Software tools for estimating migration parameters partments may signal the availability of reservoirs of
from DNA sequence data exist. These include Migrate virus that can hamper the effectiveness of antiviral ther-
(Beerli and Felsenstein 1999, 2001), GenTree (Bahlo apy (Nickle et al. 2003). It is therefore important to
and Griffiths 2000), and MDIV (Nielsen and Wake- understand the pattern of HIV compartmentalization in
ley 2001). These methods use MCMC to obtain maxi- the body and the timing of these “colonization” events.
mum-likelihood estimates of migration rates and popu- Our method differs from the methods employed by
lation sizes, but apply only to sequences obtained at a Bahlo and Griffiths (2000) and Beerli and Felsen-
single time. As a consequence these methods estimate stein (2001). Because we work with time-stamped se-
the composite parameter � � 2N� (here N is the effec- quence data, and MEPs, we can estimate population,
tive population size and � the mutation rate). migration, and mutation parameters simultaneously

We focus on measurably evolving populations (MEPs; and separately (Rodrigo and Felsenstein 1999; Drum-
Drummond et al. 2003b). Sequences of a given locus mond and Rodrigo 2000). We use a Bayesian frame-
are sampled from individuals in a population on several work rather than a maximum-likelihood approach. This
sampling occasions. By definition, MEPs show a statisti-

allows scientists using this approach to incorporate prior
cally significant increase in the number of substitutions

information as they deem appropriate. Such prior infor-over the sampling interval (Drummond et al. 2003b).
mation may include knowledge about the means andThe human immunodeficiency virus (HIV) type I is a
variance of mutation rates or the most plausible direc-
tion of migration. Physically irrelevant parameter ranges,
such as populations of size very much smaller than one,

1Corresponding author: School of Biological Sciences, Computational must be ruled out explicitly. This imposes an additionaland Evolutionary Biology Lab, University of Auckland, Private Bag 92019,
Auckland, New Zealand 1020. E-mail: a.rodrigo@auckland.ac.nz discipline on the inference.
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Our work may be thought of as a methodologically and out-degree two and one (the root, label R say) has
straightforward but technically demanding extension of in-degree zero and out-degree two, plus an indetermi-
Drummond et al. (2002, 2003a) to handle the island mi- nate number, m say, of migration nodes (label set M)
gration model. We apply our algorithms to a set of simu- of in-degree one and out-degree one. Let A � C �M
lation studies. This tests software and identifies quanti- denote the set of all ancestral (i.e., nonleaf) node labels
ties poorly resolved by the data. We compare our results and V � L�A denote the set of all node labels. Tree
with results obtained by other authors. We then treat a edges �r, s � are directed toward the present. Let E de-
real HIV data set, drawn from blood and semen samples, note the set of all edges in the tree graph and V�R �
from a single patient taken at four time points over the V \{R } the set of all node labels excluding the root.
period of 3 years. The data are rich in features of inter- Individuals corresponding to leaf nodes are sampled
est. We use them to illustrate the way the tools we have from the demes. Deme labels are recorded. Because
provided may be used to explore such data sets. We are the observation process is conditioned on the scientist’s
unwilling, however, to make too many strong inferences sampling of individuals over demes, the number of indi-
about HIV biology on the basis of our analyses, because viduals sampled from a deme need not reflect the deme
the complexities of HIV evolution present constant chal- size. For r � L, suppose individual r was sampled from
lenges to such analyses. In particular, our analyses ig- deme ir � D at calendar time t r. The event represented
nore selection, recombination, and changes in popula- by node r � A occurred at calendar time t r . Nodes are
tion size, all of which will have significant impact on labeled from r � 1 to r � m � 2n � 1 in order of in-
the results. creasing age and by least child label in case of ties, so

The outline is as follows: in island-model genealo- that r � s ⇒ t r � t s and �r, s � implies t r � t s . For any
gies and mutation we describe the island model of set X � V let t X � (t X , r � X), with entries ordered by
migration and its likelihood for serially sampled se- increasing r. Let t � t V . Let |X | denote the number of
quences. In bayesian inference, we determine a pos- elements in set X.
terior distribution for the parameters of interest. The Let � equal the mean number of units of calendar
MCMC integration tools we used to sample and summa- time per generation. We do not estimate �; instead we
rize that distribution are described in markov chain present results for a nominal �. For example, for the
monte carlo for migration genealogies and code HIV data set in hiv patient data, t r is measured in
implementation and verification. In selected re- days before an arbitrary zero and we set � � 1 day.
sults from simulated data, we present the results of The demographic process realizing migration-coales-
the simulation studies and finally hiv patient data is cent tree graphs is defined as follows. An ancestral lin-
devoted to real HIV sequences obtained from two tissue

eage is associated with each sampled individual and
compartments in a single patient over a number of time

carries a label indicating deme membership. As timepoints. MCMC details are given in the appendix.
increases into the past, each lineage in deme i migrates
independently of all other lineages at rate 	ij to deme

ISLAND-MODEL GENEALOGIES j. Each pair of lineages in deme i coalesces at instanta-
neous rate 1/
i , where 
i � Ni �. The process terminatesWe now describe the probability density for a Fisher-
when the number of lineages equals one. With eachWright population model (Fisher 1930; Wright 1931)
event we associate a node, r � A, and with each lineageusing the Kingman coalescent (Kingman 1982a,b) ex-
between events an edge �r, s � � E. For each s � V�R ,tended to include migration (Hudson 1990; Notohara
let is give the deme on edge �r, s �. Let J � (i 1 . . . im�2n�2)1990) and nonisochronous (i.e., serial or time stamped)
be the set of all deme edge labels and JL and JA, respec-leaf tips. For an analysis of the properties of the isochrone
tively, the sets of deme labels for edges {�r, s � � E, s �model, see Hudson (1990) and Notohara (1990) and L } and {�r, s � � E, s � A } attached to leaf and ancestralreferences therein.
nodes. Let � � (	1,2 . . . 	p�1,p) and � � (
1 . . . 
p). AThe island model of migration is a model of p popula-
visual representation can be seen by skipping ahead totions, or demes. For j � D, D � {1, 2 . . . , p }, deme j is
Figure 4, where the leaf deme membership is showna panmictic population of Nj haploid individuals. Time
with either a dashed line for one deme or a solid lineincreases into the past and is measured in calendar
for the other deme. Migration nodes (events) are whereunits. Let 	ij denote the per capita migration rate from
the line changes deme (line type); otherwise it is a tra-deme i to j (time increases into the past, so in forward
ditional coalescent genealogy.time the individual is moving from j to i).

The free and conditioned parameters of a migrationThe migration process we describe below is a process
genealogy g are (E, JA, tA) given (JL, tL). Because thethat realizes migration-coalescent genealogies under
data JL and tL are known and fixed throughout thethe island model of migration. A migration-coalescent
analysis, and leaf labels are determined from the label-genealogy g is a rooted and directed binary tree graph
time ordering, we write g � (E, J, t) and keep in mindwith four node types: n leaf nodes (with label set L) of
that some of the parameters in g are fixed. The parame-in-degree one and out-degree zero, n � 1 coalescent

nodes (label set C) of which n � 2 have in-degree one ter set J is subject to constraints determined from the



2409Estimating Structured Population Parameters and Mutation Rates

leaf demes. When there are just two demes, the deme �
i�D�j

Nj	ij � �
i��D�j

Ni�	ji�,
labels JA are uniquely determined from the event topol-
ogy E by propagating the demes from the leaves to the aggregate population evolves as one panmictic pop-
the root (switch deme at each migration event). Let � ulation of size �j�DNj .
denote the set of all admissible migration genealogies
g, which can be realized by the migration-coalescent
process above, for given JL and tL . � is the union over MUTATION
m of sets �m containing all migration genealogies with

Mutation rate, �, is inferred with our method by incor-m migration events. Note that the Euclidean dimension
porating the traditional mutation model. We use theof the space �m is m � n � 1 (one dimension for each
finite sites mutation model, with neutral selection andtime variable t r , r � A) and as a consequence, � is a
general time reversible (GTR) substitution process ofunion of spaces of unequal dimension.
Felsenstein (1981) and Rodriguez et al. (1990). TheWe now write the joint density f(g |�, �) for a migra-
substitution process is a continuous-time Markov pro-tion tree (the corresponding distribution is given in
cess with states {A, C, G, T }, a 4 
 1 vector of equilibriumappendix a). Consider the interval of time �r � t r�1 �
probabilities �, and a 4 
 4 rate matrix Q normalizedt r between consecutive nodes on the tree. There are
to generate one substitution per unit calender timem � 2n � 2 such intervals on a tree g � �m, one interval
(��d�dQdd � 1). The substitution and migration pro-above each node r � V�R (for isochronous leaves, �r �
cesses are independent.0 for r � 1, 2 . . . n � 1). For i � D and r � V�R, let kir Each leaf node r � L has associated with it nucleotidedenote the number of lineages in deme i in interval r.
sequence data Dr � (Dr,1, Dr,2, Dr,3, . . . , Dr,L) of length L

For i � D, let D�i � D \{i } denote the set of demes
with Dr,a � {A, C, G, T, φ } for a � 1, 2, . . . , L . Gaps,

omitting deme i. For each r � V�R, the interval (t r , t r�1] indicated by φ, are treated as unobserved sites. Let DLcontributes a factor be the n 
 L matrix of sequences on the leaves.
The likelihood P(DL |g, �) is defined and computed

exp �� �
i�D

�kir(kir � 1)
2
i

� kir �
j�D�i

	ij��r � in the usual way, using node-to-node transition probabil-
ities (Felsenstein 1981). For these purposes migration
nodes may be ignored and we consider the topology in theto the density, along with a second factor equal to 1/
i
traditional sense. We calculate the likelihood P(DL |g, �)or 	ij as the event type at time t r�1 is coalescent in deme
in the usual manner using pruning (Felsenstein 1981).i or (i → j ) migration. An interval terminated by a leaf

(when r � 1 � L) ends in a nonevent, and the second
factor is one. Let mij denote the total number of (i → j )

BAYESIAN INFERENCEmigrations, i.e., mij � |{r � M; ir � j , i ř � i }| with ř the
child node of migration node r in g. Let ci denote the In this section we set out Bayesian inference for �
total number of coalescent events in deme i, ci � |{r � the mutation rate, the vector � of Ni �-values, and the
C ; i ř1 � i, i ř2 � i }| with ř 1 and ř 2 the child nodes of co- vector � of migration rates. The migration genealogy g
alescent node r in g . The overall density is may be of direct interest also. The joint posterior density

of these variables
f(g |�, �) � exp �� �

r�V�R
�

i�D
�kir(kir � 1)

2
i

� kir �
j�D�i

	ij ��r ��
i�D

1

cii

�
j�D�i

	mijij .
h(�, �, �, g |DL) � zP(DL |g, �)f(g |�, �)p(�, �, �) (1)

We note a few distributional details relevant to the is given in terms of the likelihood function P, the migra-
MCMC over migration genealogies. Technically, f(g |�, tion genealogy prior f, a prior p on �, � and �, and z,
�) is the density of a distribution f(g |�, �)dg . If g has an unknown and intractable normalization constant.
m migration events then dg � � r�Adt r is the element Here h is the density of a distribution h(�, �, �, g)
of volume in �m . Migration and coalescent events are d�d�d�dg with d� � d�1,2d�1,3 . . . d�p�1,p and d� � d
1

distinguished by their position on the tree and we take d
2 . . .d
p .
counting measure over topologies and J - labels condi- Subjective, informative priors are a fundamental part
tioned on leaf properties. The density given above is of Bayesian inference. However, we want to set out a
normalized, 	� f(g |�, �)dg � 1. new parameter estimation scheme for a new data-model

The migration coalescent generalizes the Kingman pair (namely serial sequence data in an island migration
coalescent. Free movement or strong migration (Nagy- model). Informative priors can hide certain difficulties
laki 1980; Notohara 1993) is signaled by 	ij � 1/
j . users will face when they apply Monte Carlo Bayesian in-
Model populations with high migration rates can still be ference. First, MCMC convergence is more easily achieved
structured, as migration imbalance determines a source as the sampled probability density is more concentrated
and sink population structure. If in addition, for each in its space of states. For example, the bimodality that
deme j � D, the local immigrant and emigrant popula- makes the HIV data of hiv patient data such a chal-

lenge to MCMC, and such a good pedogogical example,tion fluxes balance,
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can be removed by adding prior information. Second, generation time), while still providing the upper bound
on migration rate needed for posterior normalization.diffuse priors that are actually improper can lead to

improper posteriors and meaningless results. In the last The upper bound (or upper tail) imposed on 
i , i �
D, by the prior plays an important role in the inference.paragraphs of this section and in hiv patient data we

explain how an improper posterior could but does not Migration genealogies containing no coalescent events
in deme i � D [so ci � 0 in f(g |�, �)] make up a setarise in our case. Improper priors put mass on physically

irrelevant parameter values. Should not a prior worth Si � � of nonzero posterior probability pi , say. Now, for
each g � Si there is ε(g, i) so that f(g |�, �) � ε(g, i)the name rule out such states? Certainly. However, sup-

pose that is achieved via a simple cutoff in parameter for all 
i � 0. In other words, for each demographic
parameter 
i there is a component of the posterior inspace. We want to know whether results are sensitive to

the choice of cutoff. If the posterior is improper without which the distribution of 
i at large values is controlled
only through the prior p(�, �, �). These physically irrel-the cutoff then parameter estimates will be strongly

influenced by the choice of cutoff. We should take par- evant parameter values, corresponding to populations
of negligible size, must be ruled out explicitly. It followsticular care in choosing the cutoff and make a sensitivity

analysis. Just this scenario arises in hiv patient data. that if, for example, the 
i priors are untruncated uni-
form (or otherwise nonintegrable) priors on 
i � 0,Third, when we form parameter estimates using Bayes-

ian inference we should test each data set with several the posterior cannot be proper. An example of this
posterior sensitivity to prior bounds is discussed in detailpriors and make many entire MCMC analyses of each

data set, not just one. What is the range of inferential at the end of hiv patient data. A lower bound on 	ij

plays a similar role for Jefferys priors (of the form 1/Xoutcomes that result from approaching these data with
different subjective prejudices? How do conclusions for parameter X). In that case the problem arises where

tree states with no migration events in one directionchange as we move from an informative to a more dif-
fuse prior? Fourth, priors that seem to be noninforma- mij � 0 have nonzero probability, the likelihood is

bounded away from zero as 	ij → 0, and the posterior hastive can turn out to be strongly informative for some
hypotheses. For example, an improper prior on geneal- the form 1/	ij at small 	ij . Again, unphysical parameter

values must be ruled out explicitly.ogies assigns equal probability density to all rooted trees
with n leaves. This prior is noninformative for compari-
son of unique tree topologies. However, the marginal

MARKOV CHAIN MONTE CARLO FORprior density of the root time tR in this prior is t n�2
R . This

MIGRATION GENEALOGIES
prior is very strongly informative for root time. Diffuse
priors bring special problems. We choose examples in The posterior density h is summarized using sam-

ples drawn from h via Metropolis Hastings Markov chainwhich those problems are present so that we can show
how to deal with them. We regard our explanations of Monte Carlo (MCMC; Metropolis et al. 1953; Hast-

ings 1970). The constant z does not need to be evalu-how to deal with these problems as an integral part of
our exposition of the methodology itself. ated. The main challenges we encountered are the clas-

sic obstacles of MCMC-Bayesian inference, the bimodalityNote that we are estimating rates for mutation, migra-
tion, and coalescence simultaneously from a single data apparent in some parameters, and a posterior distribu-

tion that is very close to being improper. We discussset. Drummond et al. (2002) have shown that mutation
rate � and population size 
i � Ni � parameters may these issues below. In appendix a we describe a Metrop-

olis-Hastings algorithm that determines a Markov chainbe separated when sequenced individuals are sampled
serially over a timescale long enough to see mutational Xn , n � 0, 1, 2, . . . , with unique equilibrium distribution

coinciding with the posterior distribution. The argu-change. This is feasible for populations, such as HIV,
that are measurably evolving. Drummond et al. (2003a) ments � � (�, �, �, g) of the posterior density function

h make up the state vector. The MCMC acceptancegive conditions for the estimation problem to be well
defined in the absence of migration. This issue needs probability we write in Equation A1 is a slightly simpli-

fied form of the Metropolis-Hastings-Green acceptanceto be considered when priors are improper. We bound

i �, i � D, �, and 	ij above and below. (Note that we probability of Green (1995). The number of migration

events in the state � is randomly variable, and as abound the traditional parameter N��, but this implies
a bound on 
.) In this setting any density of bounded consequence the tree-component g of the MCMC state

must jump between subspaces g � �m , which are, asrange determines a proper posterior. Note that panmic-
tic populations lead to migration rates 	ij large com- we note above, of unequal dimension. The Metropolis-

Hastings-Green generalization of the usual Metropolis-pared to 1/
j. Bounds must allow such parameter values
or the panmictic condition will be eliminated by the Hastings algorithm treats this feature.

The MCMC operators used to transform the state areprior. We bound 	ij above so that the number of migra-
tions per generation does not exceed one, 	ij � � 1, re- called “moves.” We implemented �10 distinct move types.

At each MCMC step we choose one of these moves ac-lying on a fixed estimate for �. This allows 	ij as large as
about Nj/
j (depending on the accuracy of the estimated cording to some random schedule and apply it to the
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Tricks of this kind are discussed in detail in Drummond
et al. (2002).

Moves that are simple may give adequate mixing per
CPU second if they can be evaluated quickly. Such
moves may be relatively easy to implement accurately.
We found that we were able to treat at least some prob-
lems of practical interest with the simple moves listed
in appendix a. Operations on migration nodes are fast,
as no likelihood change is involved.

In the experiments reported in selected results from
simulated data and hiv patient data, we restrict atten-
tion to populations spread over just two demes, so that
p � 2 and D � {1, 2}. The first real two-deme data set
we looked at was rich in features of potential method-
ological and biological interest, so we have chosen to
display our work in this setting. In the two-deme prob-
lem, the deme type i s � D of each edge �r, s � is deter-
mined uniquely from JL, the leaf deme values. The
MCMC moves in appendix a treat p � 2. There are two
simplifications to the MCMC moves for p � 2. First, the
migration birth/death operation (A3) is not required
(the MCMC parameters are fixed so that it is selected
with probability zero at the proposal step). Second,Figure 1.—Two basic migration moves used in our MCMC
there is a deme-selection step in the pair-birth moveimplementation. (A) Two migration nodes or events are either

deleted or added to a single edge. (B) The migration event that is uniform at random from the set of demes that
is “moved” through a coalescent node. might admissibly occupy the new position. It will be

seen that this set has just one member in the binary
case, so the admissible deme is selected with probability

state. See appendix a for details. We omit detailed de- one.
scriptions of moves specified in Drummond et al. (2002). Suppose we iterate the MCMC J steps, collecting sam-
Where a tree-topology change is proposed, it is necessary ples �s every S steps for a total N � J/S samples. A MCMC
to check that the candidate state is legal (identical deme realization of this kind is called a “run.” We estimate
label for all edges in E attached to every coalescent node). f̂ � N�1�s f(�s). It is important to have reliable estimates
Our candidate generation ignores deme labels. Any can- of var{ f̂ } to debug MCMC, that is, to determine whether
didate state that was not a legal migration-coalescent the difference between f̂ and Eh{ f(�)} is significant. We
genealogy was rejected and the MCMC was counterin- follow Geyer (1992). The uncertainty in our estimate
cremented. Such rejections are computed rapidly and f̂ depends on the integrated autocorrelation time �f .
appear to give good mixing per CPU cycle, even in the Since var{( f̂ )} � �fvar{( f )}/N, �f can be interpreted as
case of many demes (four). Addition and deletion of the number of correlated MCMC samples f(�s) with the
migration nodes were implemented using a pair-birth/ same variance-reducing effect as one independent sam-
death operation (A4) and a pair-split/merge operation ple. We estimate �f from the lag a autocorrelation func-
(A5). These moves are illustrated in Figure 1. These tion �a � cov( f(�s), f(�s�a))/var(�s) using the mono-
operators give irreducibility over migration node num- tone sequence estimator described in Geyer (1992).
ber and position for two demes. With the migration We report the effective sample size (ESS) N/�f for a
birth/death operation (A3) these moves allow the few statistics computed from our MCMC runs to give a
MCMC to visit any migration history of a given coales- quality check on the MCMC. Efficiency comparisons can
cent tree with three or more demes. A set of now stan- be decided from estimated integrated autocorrelation
dard coalescent tree operators (Drummond et al. 2002) times. Let c denote the mean number of CPU seconds
gives irreducibility over �. Mixing over the parameters per update. The program with the smallest c�f - value is
�, �, and � of the mutation and demography models generating iid-equivalent samples f(�s) most rapidly.
is achieved via scaling moves, that is, by taking random It is necessary to check that the MCMC has reached
multiples. This is just random-walk MCMC carried out equilibrium and that the variance estimates discussed in
on a log scale. The two advantages of scaling MCMC the preceding paragraph are reliable. We make multiple
are, first, that the size of the change is automatically at independent MCMC runs r � 1, 2, . . . , R, from starting
the scale of the parameter and, second, that the poste- conditions drawn independently from the �-prior. We
rior distribution is insensitive to certain scaling transfor- evaluate a f̂r for each run and check that the between-

run variance of f̂ is predicted by its in-run variance.mations (so t/
 is invariant under t → �t , 
 → �
).



2412 G. Ewing, G. Nicholls and A. Rodrigo

TABLE 1

Means of the modes, standard deviation of the modes, and coverage estimators for relevant parameters
of 25 simulated data sets each

s/ca True 
, 	 
 �
 % coverage 	 �	 % coverage � �� % coverage

c 0.05, 2 0.05124 0.008339 92 2.278 1.579 100 — — —
c 0.05, 200 0.04976 0.007293 100 248.7 135.44 100 — — —
s 0.05, 2 0.04937 0.008226 92 1.832 1.270 100 0.9723 0.06115 100
s 0.05, 200 0.04832 0.006364 92 194.7 98.9 96 0.972 0.05112 96
N1, 	1 → 2, s 0.1, 1 0.1006 0.02805 90 1.078 1.039 100 1.013 0.4470 100
N2, 	2 → 1, s 0.2, 10 0.2054 0.04405 90 11.04 3.343 100
N1, 	1 → 2, s 0.2, 1 0.2111 0.05082 92 1.509 1.939 96 0.9935 0.05762 92
N2, 	2 → 1, s 0.1, 10 0.1001 0.02510 100 12.13 4.559 100

Where serial sequences are used, � is included. All run lengths were three million states while some runs were longer; see
the text for details. The last four rows show the asymmetric simulations.

a Serial samples (s); contemporary samples (c).

When we report results in selected results from sim- plicity of exposition and to connect with earlier work, we
ulated data and hiv patient data, we superimpose take two identical demes. We suppose that the migration
histograms of f(�) computed from the R independent rates either way and population sizes are known a priori
runs. We inspect traces, f(�s) as a function of s, for any to be equal. In the next section we treat a more general
visual evidence of a trend. We perform a number of estimation problem. We set 	1,2 � 	2,1 � 	 and 
1 �
further checks as described in Geyer (1992). 
2 � 
. We make two pairs of studies, corresponding to

parameter estimation in the weak (	 � 2, 
 � 0.05, 	 �
1/
) and strong (	 � 200, 
 � 0.05, 	 � 1/
) migration

CODE IMPLEMENTATION AND VERIFICATION regimens. The MCMC sampling problem becomes
harder as the posterior mean 	 increases, as the meanThe program was written in the JAVA programming
and variance of the number of migration events (aboutlanguage. JAVA was chosen primarily because of its por-
300 in our strong migration example) increases. In eachtability and object-oriented features. MCMC is computa-
migration regime we consider serial and isochronoustionally very intensive, so some effort went into tuning
leaf data. We consider isochronous leaf data to allowperformance. However, correctness and ease of debug-
readers to compare our results with previous studies, inging were prioritized ahead of performance.
particular, Beerli and Felsenstein (1999). For serialA number of tests were used to verify and debug the
data we estimate 	, 
, �, and g. For isochronous data,code. Naturally we checked that we could recover pa-

 and � are confounded. In that setting we conditionrameter values from synthetic data, for a wide range of
on knowledge of � and estimate 	, 
, and g. We triedparameter values. Our set of MCMC moves includes
Jeffreys priors and uniform priors for 	, 
, and � withmoves that are not needed for irreducibility. We check
conservative upper bounds. Results presented are forthat the simulated posterior density does not change as
Jeffreys priors, but were in any case very similar.we vary the proportions in which moves are used. We

In each of the four studies we generate 25 migration-used the MCMC to simulate the prior density f(g |�,
�) for migration-coalescent trees. Independent samples coalescent trees. Each tree has 50 leaves, with 25 individ-
from this density can be obtained by backward simula- uals in each deme. On each tree we simulate synthetic
tion of the migration-coalescent process. A number of sequence data using a GTR model with fixed relative
statistics [for example, tR � max(t) and m � |M |] were rate matrix (Shankarappa et al. 1999; normalized to
checked in this way and were found to have excellent unit mean total substitution rate). This rate matrix is
agreement. appropriate for HIV and is used in the study of real

HIV data presented in the next section. All sequences
were 1000 bp long and the mutation rate � was set equal

SELECTED RESULTS FROM SIMULATED DATA to one. For the serial data the 50 leaves were split into
two groups of 25, offset in time by 0.1 time units (sinceThe results of 150 simulated data sets are summarized
data are synthesized with � � 1, these time units happenin Table 1. The first set of simulation studies (top of
to be substitutions per site). The earlier sample set wasthe table) is for symmetric migration rates and popula-
made up of 12 sequences from subpopulation 1 and 13tion sizes, where this restriction was relaxed for the
from subpopulation 2. The MCMC runs were 3 millionsecond set of simulation studies. The details of each are
states long. The worst mixing (by far) was observed fornow discussed.

Symmetric migration and population sizes: For sim- serial data with 	 � 200, where there are a large number
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isochronous and serial leaf data are shown in Figure 3.
The isochronous data give migration rate estimates that
are both less precise and more strongly skewed than
migration rate estimates derived from serial data.

Asymmetric migration rates and population sizes: Two
simulated studies relaxed the original constraint of sym-
metric population size and migration rates. A total of
60 taxa were used, and the true values tested are 	1 �
1, 	2 � 10 and 
1 � 0.1, 
2 � 0.2 while for the second
set the population size parameters were reversed to 
1 �Figure 2.—A typical marginal density plot for simulated
0.2, 
2 � 0.1. In all other aspects the simulation setupdata for 	. In this example 
 � 0.05 and 	 � 2.
was the same as that for the symmetric case above except
as noted below.

of migration events on the tree, and � and 
 are esti- The reason for the increase in taxa was to obtain in-
mated separately. For this group of 25 synthetic data formative confidence interval estimates; otherwise they
sets, each MCMC run was monitored for convergence, would often be very like the prior. Table 1, bottom,
and terminated when appropriate, rather than run as gives the results for the two-parameter sets and shows
a batch for a predetermined number of updates. Run good recovery of the truth. Generally the convergence
times varied between 2 and 10 hr with run lengths up to and variance are less favorable for this case and longer
8 million updates. ESS values depend on the particular runs were required (�5 million); otherwise the qualita-
realization of synthetic data, varying between 25 and tive behavior is similar to that described above.
200 for � and 10 and 100 for 	.

Results are summarized in Table 1, top. For each
HIV PATIENT DATAstudy we report the proportion of the 25 trials in which

the true parameter values were inside the 95% highest In this section we present an analysis of a real data
posterior density (HPD) confidence set. We uncover set. We have chosen HIV sequence data from a single
the truth as we had hoped. Figure 2 shows the marginal patient. Four sets of samples were collected from two
posterior density for migration of a typical MCMC run. viral demes (blood and semen) over a period of 3 years
It is a skewed unimodal distribution. For this reason we yielding 31 blood (b-deme) and 25 semen (s-deme)
used a mode estimator on the marginal posterior den- sequences of length 638. The distribution of leaf demes
sity. There is a slight bias, of the same kind observed across time can be seen from the line type at the leaf
by Beerli and Felsenstein (1999) in studies of the tips in Figure 4.
likelihood for isochronous data. Mode estimation was In the following analysis we use a GTR substitution
accomplished by noting that the local density is inversely model with the same fixed rate matrix used for the
proportional to the spread of a fixed number of adjacent synthetic data. We do not assume, as we did above, that
point samples. We note that the mode is generally a the two populations are behaving in the same way. The
much better point estimator of the true value than mean migration rates and population sizes are all distinct. We
estimators used in other articles. Contour plots of 95% have D � {blood, semen}, p � 2, and parameters � �

(	s,b, 	b,s), � � (
s, 
b), �, and g.migration parameters of representative samples from

Figure 3.—Approximate 95% HPD confidence contour plots for representative synthetic data runs. True values are 
 � 0.05
and 	 � 2 indicated by crosshairs. (A) For serial samples; (B) for isochronous samples. Note reduced variance at B.
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Uncertainty of this kind can be removed, if further prior
knowledge is available; as noted in the Introduction,
with appropriate information, we may weight the asym-
metry of rates in favor of one or the other direction of
migration. On the other hand, the MCMC might be
failing us. Perhaps there is no real bimodality and the
MCMC is not in equilibrium. We consider also the possi-
bility that the model is wrong. In particular the popula-
tion sizes and per capita migration rates may change
with time. Also the blood deme may in fact be multiple
unobserved demes, which we discuss below in more
detail.

Figure 4 gives typical genealogies for the respective
modes. At the top is a tree from the s → b (	b,s � 	s,b)
mode. There are in forward time many migration events,
most of which are s → b and close to the leaves (so 	b,s

is large). At the bottom is a tree from the b → s mode
Figure 4.—Typical trees realized by MCMC simulation of (	s,b � 	b,s). There are fewer migration events, most of

the full data set. (—) Blood deme; (- - -) semen. (Top) Trees which are b → s. There are no important changes in
from the s → b mode; (bottom) b → s mode. the topology of coalescent events between modes.

Trees in the b → s mode have fewer migration events
than those in the s → b mode. In the s → b mode, theWe began by making some exploratory runs on the
proximity of many s-deme leaves to the root supportscomplete data set, varying priors and start-state and
an s-deme for the root. Coalescent branches terminatingpseudo-random number initialization between runs.
in b-deme leaves are typically much longer than thoseThe key feature is bimodality in migration rate parame-
terminating in s-deme leaves. This feature is particularlyters. The Markov chain state � � (�, �, �, g) flips be-
marked in the topmost b-clade associated with the lasttween two different interpretations of the data.
two time stages in the data set (compare it with theFigure 5A shows the behavior of the parameter 	s,b along
s-clade for those two stages). Because so much of thea 200 million update segment of a 540 million update
total branch length is close to b-deme leaves, the s → brun. In this run the �, � and � priors were flat and
events needed to convert the s-deme at the root arebounded at conservative values. The 	s,b-parameter is
most probably located close to the leaves. This statementjumping between two quite different values. All parame-
has been checked by analyzing the simple but relatedters jump in concert with 	s,b. This posterior distribution
problem of estimating the relative rates of a two-statehas two well-defined peaks. This is visible in a contour plot
mutation process on a fixed tree. Extending the leafof the joint posterior 	s,b, 	b,s |D distribution, Figure 5B.
branches raises the likelihood of asymmetric rate esti-What is the origin of the bimodality? The simplest
mates. This kind of reconstruction (many migrationpossibility is that the data tell us that the migration is

asymmetric, but leave the favored direction in doubt. events close to leaves) was never seen in synthetic data

Figure 5.—Some plots for the full HIV data set. (A) Plot of 	s→b for the full HIV data set showing 400 million of the total 540
million updates. Flat bounded priors were used. (B) The migration contour plot from the same data clearly showing the
bimodality.
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Figure 6.—Autocorrelation function �s (defined in markov
chain monte carlo for migration genealogies) for � for
the new data set. The x-axis is sample number (multiply by
10,000 to get updates). This plot indicates (i.e., good) typical

Figure 7.—Marginal posterior density for � in old (right-mixing.
hand peak) and new (left-hand peak) data sets. Note the
decrease in mutation rate with time.

on simulated trees. It is seen in synthetic data generated
on trees, like those in Figure 4, simulated from the ple sizes in the hundreds are obtained from overnight
posterior of this HIV data set. It seems likely that the runs and we were able to make a more thorough study.
bimodality is related to the long branches attached to For each of these data sets we made 20 runs with random
the blood-deme leaves. starting states and 500 million updates per run, sam-

Why are the branches attached to the blood deme pling every 10,000 states. Of the 20 runs, 10 used flat
stretched in this way? We may be seeing a model viola- priors and 10 used scale invariant Jeffreys priors. Conser-
tion. The blood deme may be a composite of several vative hard upper bounds were imposed in all cases.
unobserved demes. The likely consequence of multiple, Figure 6 shows the estimated autocorrelation function
hidden demes is to lengthen the time to coalescence computed from the MCMC output for � in the new
of any two lineages, i.e., to lengthen the branch lengths. data set with flat priors and was typical. These statistics
As we note above, the apparent relationship between yielded a worst-case parameter ESS of 1300, the smallest
bimodality and long branches may therefore be a reflec- effective sample size over all runs.
tion of the fact that we have not sampled from these Selected marginal posterior plots are shown in Fig-
hidden demes. Other aspects of HIV evolution can also ures 7 and 8. Marginal posterior densities are consistent
account for long branches; for instance, both popula- between runs, which supports other evidence that the
tion growth and recombination have the characteristic MCMC runs have equilibrated. The time to equilibrium
effect of producing long terminal lineages, consistent was a tiny fraction of the run length. The bimodality
with the patterns we observe here. present in the full data set is visible in Figure 10, the

In the remainder of this section we rule out the possi- new data set, which tends to support the view that it
bility that the bimodality is a consequence of software
artifacts and insufficient mixing of the Monte Carlo
chain. In these bimodal runs, the MCMC state is moving
between two classes of migration genealogies that differ
by the number and position of a large number of nodes
(�60). The intermediate states have low probability. It
is the bimodality of this data set rather than its size that
puts it at the limit of what we can study with this software
on current hardware. The states make sense as alterna-
tive explanations of the given leaf deme types. This
basic consistency, with positive results for the MCMC
convergence checks described in markov chain monte
carlo for migration genealogies, convinces us that
the bimodality is real and that the MCMC is delivering
states representative of the posterior.

We search now for evidence of time dependence in
� and �. We separate the data into two sets. The “new”
(“old”) data set contains sequences from all individuals Figure 8.—Marginal 	s→b in the old data set. The higher
sampled at the two “last” (“first”) time stages. The MCMC peak was obtained using Jeffreys priors and the lower one

using flat priors.mixes far more rapidly on these data sets. Effective sam-
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Figure 9.—Instances of trees from the new data
set MCMC chain showing bimodality similar in
character to the full data set. Analysis of the old
data set does not show bimodality.

represents a real ambiguity in the data, rather than an that the Jeffreys prior does pull in the upper tail of
the 
s-distribution fairly sharply. This sensitivity of theartifact of time-varying demography. When the migra-

tion genealogies associated with the two modal classes upper tail of the 
i-distribution to the choice of prior
can be understood as follows. Bounds can be set toof the new data set are examined, we see the same quali-

tative behavior as for the full data set, which is shown conservative values without particular care if the MCMC
output is studied carefully. Where MCMC runs actuallyin Figure 9.

Comparison of the two data sets does reveal signifi- visit bounds, we have a possible signal that the data
are adding little to the information in the prior. Thecant differences in parameter values. Referring to Fig-

ure 7, the mutation rate is higher in the old data set. parameter 
s � visits its upper bound (at Ns �� � 0.5);
since � 
 0.2 
 10�5 this bound acts around 
s � 0.5/We have used a constant nominal generation time �

equal to 1 day. The mutation rate depends on genera- 0.2 
 10�5 � 25,000. This is visible in Figure 11A, where

s exceeds the plotted range. This is just what we expecttion time, which in turn is dependent on the type of

cell infected: broadly, HIV-infected cells can be classi- from the discussion in bayesian inference concerning
migration genealogies with no coalescent events in afied into three categories—productively infected cells,

long-lived cells, or latently infected cells (Perelson et al. given deme [the c i parameter of f(g |�, �) is zero with
posterior probability pi] for the flat prior used for that1996). Each of these categories has different generation

times, the shortest being productively infected cells (on run. If pi is very small, the MCMC 
i-trace will not visit
the tail of the posterior density made up of states associ-the order of 2 days) and the longest being latently in-

fected cells (on the order of several years). It is conceiv- ated with ci � 0, even though (for the flat prior) that
tail does not die to zero as 
i → ∞. For the full HIV dataable that as infection progresses, the relative propor-

tions of these infected cells change in the tissues set this is the case. The posterior mean 
-values will
diverge as the prior upper bound is sent to infinity butsampled, thus leading to a change in observed mutation

rates. Migration is strongly s → b in the early part of the problem is not visible in the MCMC because the
corresponding pi - values are negligible. However, in thethe infection, but only weakly asymmetric in the later

stages, possibly reflecting a higher rate of early coloniza- new component of the data set, both ps and p b are
sufficiently large. The long tail in the 
s-distribution fortion events, before the saturation of available target cells

in semen (Figure 10). the flat prior in Figure 11B and the spiky excursions to
the upper bound at 
s�� � 0.5 are instances of theFigure 11B illustrates the general point that the switch

from flat to Jeffreys priors has little consequence for phenomenon. Care needs to be taken to ensure that
the upper tail of the prior 
i , i � D, distributions reallymarginal posterior densities. In Figure 11B we see

Figure 10.—Contour plots of migration rates for temporally split data sets. (A) The new data set (note the bimodality). (B)
The old data set.
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Figure 11.—New data set plots for 
s. (A) One MCMC trace and (B) multiple marginal plots. The higher peak in B was ob-
tained using Jeffreys priors and the other using flat priors. Despite the appearance of bad mixing, we note the excellent agreement
between chains in B.

represent prior knowledge. No Bayesian inference that distributions were successfully recovered from both time
“sets” and were shown to be reasonably insensitive tois completely noninformative of 
i can be made. Where

the MCMC does not reveal the true tail behavior, as in priors.
Parameters, in particular the mutation rate, vary fromthe full data runs, the best we can do is assert that we

have enough evidence to know what we would see if we the earlier to the later data set. This is particularly impor-
tant, because it demonstrates the need to take accountwaited long enough.
of the fact that the values of some or all evolutionary
parameters may change over time. With MEPs it be-

DISCUSSION
comes possible to model these changes explicitly (see,
for instance, Drummond et al. 2001). In fact, allowingWe have shown that we can simultaneously recover

mutation rate, population sizes, migration rates, and evolutionary parameters to change over time permits
us to model some biologically interesting phenomena.genealogical information from temporal and spatially

sampled sequence data within a Bayesian framework For instance, if we allow migration rates to change from
zero to nonzero values as one moves backward in time,using MCMC. This nontrivial problem involving a space

of varying dimension has been shown to converge in we can simulate vicariant biogeographic events that may
precede speciation. Alternatively, with ancient DNApractical time frames with complex data sets of moder-

ate size. samples obtained from glacial refugia, one may be able
to model both the onset of glaciation and the conse-Simulation results demonstrated that recovery of the

true parameters is consistent and repeatable with rapid quent restriction to gene flow, followed by the period
of subsequent recolonization. Modeling these types ofconvergence for low (	 � 1/
) migration rates. The case

of large migration (	 � 1/
) convergence is slow due to changes, while potentially challenging from a MCMC
perspective, poses no theoretical obstacle.the large number of migration events on the genealogy,

frequently exceeding 500. However, the fact that we have not incorporated
changes into the present model also makes us waryA real HIV data set was also analyzed to further dem-

onstrate the method. It was found that the joint poste- about making too many inferences on the basis of our
analysis of the real HIV data set. In particular, it isrior density was bimodal on exploratory runs. This bi-

modality could be understood as a consequence of the reasonable to assume that as infection of a new compart-
coalescent tree shape, which the sampled sequences de- ment proceeds, population size in that compartment
termine. The very long leaf branches attached to blood- will increase. We have not factored such increases into
deme individuals raise the likelihood for an interpre- our analyses. Nor have we taken account of positive
tation that would otherwise have low probability, an selection acting on the HIV genome. The complexity of
interpretation putting many s → b migration events on HIV evolution challenges simple models of inference.
those long branches. As a consequence, the data do not For this reason, we view such models as stepping stones
distinguish the preferred direction of migration. This to reality.
conclusion was supported by results obtained when the We thank Jim Mullins, and others in his laboratory including Yang
data set was split temporally. The same qualitative behav- Wang and Jerry Learn, for helpful interactions. We also thank John
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mented. Otherwise, the terminal nodes of g�r̂,r � must all
Q(��, �) �

r(k�)
r(k) 
�(��, u�)

�(�, u) 
 , (A2) be migration nodes of g. Let B denote the set of all
deme labels for edges of g that are either edges of g�r̂,r �

or adjacent to terminal nodes of g�r̂,s �. If D \B is empty,so that �(��, �) � min{1, Q(��, �)h(��)/h(�)}. It is
the update is rejected and the MCMC counterincre-convenient, for the variable dimension MCMC, to drop
mented. Otherwise, a new value for the deme i over g�r̂,r �the convention that the nodes labels are time ordered.
is chosen uniformly at random from D \B and appliedNodes carry their labels as they are operated on by
to all edges of g that are edges of g�r̂,r �. The HastingsMCMC moves. The maximum label need not equal m �
ratio for the birth move isn � 1.

Joint scale move: This move was needed to obtain
acceptable �-mixing. Fix 0 � � � 1 and draw � uniformly Q(��, �) �

c b(m � 2n � 2)(trp � tr)
c d(m � 2n � 1)

,
at random from [�, 1/�]. The candidate state �� is

where c b and cd are the numbers of legal demes of(��, ��, ��, (E �, J �, t �)) � (�/�, ��, ��, (E, J, �t)),
subtree g�r̂, r� for a birth or death move, respectively.

Migration pair birth/death move: This move operateswhere �t � (�tA, tL). The leaf times are not scaled, since
on the topology by birth or death of two migration events.they are data. If the move produces an invalid state
The operation is illustrated at the top of Figure 1. The birth(child older than parent), the move is rejected. Other-
and death operations are chosen with equal probability.wise the move is its own inverse and Q(��, �) �

Pair death acts as follows. A tree edge �r̂, s � is chosen�1�p�p(p�1)/2�m�n�1�2; that is, Q � �|A|�1 when p � 2 since
uniformly at random from E. If either r, s � M then|A | � m � n � 1. We found that � � 1.1 � 1.2 gave
the proposal is rejected and the MCMC update is count-good acceptance ratios (�20%).
erincremented. Let r̂, š � V, respectively denote theMore general scale moves: We employed a number
parent of r and child of s. Let i r and iš denote the demeof variants of the joint scale move described above. Vari-
values on �r̂, r � and �s, š �, respectively. If i r � iš, the move isables were scaled individually and in randomly chosen
rejected and the MCMC update is counterincremented.groups. This amounts to a collection of random-walk
Otherwise, the candidate state is generated by replacingoperations that act on the log scale. As an example, the
the edges �r̂, r �, �r, s �, and �s, š � in E with an edge �r̂, š �.�-variable is updated as follows. Fix 0 � �� � 1. If the
The parameters �, �, and � are unchanged.scale-� update is chosen, � is drawn uniformly at random

Pair birth acts as follows. A tree edge �r, s � is chosenfrom [��, 1/��]. The candidate state �� is
uniformly at random from E. Two new migration nodes

(��, ��, ��, g �) � (�, ��, �, g). are inserted at times �1 and �2, each chosen uniformly
at random on t s � � � t r . Suppose the deme on �r, s �The Hastings-Green factor is Q(��, �) � 1/�. The
was i s . The deme on the new edge is chosen uniformlyreal variables �, �, and � and the tA parameters of g
at random from D�is . The Hastings-Green factor forwere all updated in this way. The �-parameter of the
the pair-birth proposal islog-scale update is fixed for each parameter type at a

value chosen by trial and error to give reasonable mixing
Q(��, �) �

(p � 1)(m � 2n � 2)(t r � t s)2

2(m � 2n)
. (A3)by CPU time. Usually two or three exploratory runs are

needed to obtain good estimates for �, which was in
the range 1.1–2 for acceptance rates of �20%. Although acceptance rates were low (�2%), the mix-

ing per CPU time was good because no likelihood calcu-Migration birth/death operation: This move is
needed to obtain irreducibility over more than two lation needs to be done.

Coalescent node merge/split move: This move oper-demes. A node r is chosen uniformly at random from
A. Let rp denote the parent of r. With probability 1/2 ates on the topology. Migration events split or merge

as they are dragged through a coalescent node. Thewe add a new migration node r̂ uniformly at random
on edge �rp , r�; otherwise let r̂ denote the parent of rp and number of migration nodes changes by one. The opera-

tion is illustrated at the bottom of Figure 1. The moveremove node rp from edge �r̂, r�. Consider the subtree
g�r̂,r � of g defined to be the maximal connected subtree proceeds as follows. A coalescent node r is chosen uni-

formly at random from C.containing edge �r̂, r � and no nodes of equal in- and
out-degree. Any migration node of g that is a node of With probability one-half, a merge operation is at-

tempted, and otherwise a split operation.g�r̂,r � must be of degree 1 (a terminal node) in g�r̂,r �. Each
terminal node of g�r̂,r � is either leaf or migration node The split operator acts as follows: Let r̂ denote the

parent of r and ř 1 and ř 2 its two children. If r̂ � M, thein g. The deme value i on all edges of g�r̂,r � is equal to
ir. We update i in a way that avoids generating matching move is rejected and the MCMC is counterincremented.

Otherwise, let r̂̂ denote the parent of r̂ and ir̂ the demedemes across any migration event. If g�r̂,r � includes a leaf
node of g, then no deme change can be made. In this label on edge �r̂̂ , r̂ �. The edges �r̂̂ , r̂ � and �r̂̂ , r � are re-

placed by an edge �r̂̂ , r �. The deme label ir for the newcase the update is rejected and the MCMC counterincre-
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edge is set equal to ir̂ . On the child side of r, two new at a time � chosen uniformly at random on (t r̂ , t r). Edge
�r̂, r � is replaced by edges �r̂, s � and �s, r � and dememigration nodes s1 and s2 are inserted at times �1 and

�2, chosen uniformly at random on t r̂1� �1 � t r and t r̂2 � labels i s � i r and i r � i r̂1 are assigned.
The Hastings-Green ratio for the split operator is�2 � t r , respectively. For a � 1, 2, edge �r̂, řa � is replaced

by edges �r, sa � and �sa, řa � and deme value isa � ir̂ is
Q(��, �) � (t r � t r̂1)(t r � t r̂ 2)/(t r̂1 � t r).

assigned.
The merge operator acts as follows. If either ř1, ř2 � The move above splits from, and merges to, a migration

node on the parent edge only. It is straightforward toM, the move is rejected and the MCMC is counterincre-
mented. For a � 1, 2, let ř̌a denote the child of řa . If modify the move so that any of the three edges can

assume the status that the parent edge has in the movei ř1 � i ř2 , the move is likewise rejected. Otherwise, for
a � 1, 2, edges �řa, ř̌a � and �r, řa � are replaced by an above. Again this move has a low acceptance ratio

(�1%) but acceptance/rejections can be evaluated veryedge �r, ř̌a �. This deletes migration nodes ř1 and ř2. On
the parent side of r, a new migration node s is inserted rapidly.


