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ABSTRACT
There has been much recent interest in describing the patterns of linkage disequilibrium (LD) along a

chromosome. Most empirical studies that have examined this issue have concentrated on LD between collections
of pairs of markers and have not considered the joint effect of a group of markers beyond these pairwise
connections. Here, we examine many different patterns of LD defined by both pairwise and joint multilocus
LD terms. The LD patterns we considered were chosen in part by examining those seen in real data. We
examine how changes in these patterns affect the power to detect association when performing single-
marker and haplotype-based case-control tests, including a novel haplotype test based on contrasting LD
between affected and unaffected individuals. Through our studies we find that differences in power
between single-marker tests and haplotype-based tests in general do not appear to be large. Where moderate
to high levels of multilocus LD exist, haplotype tests tend to be more powerful. Single-marker tests tend
to prevail when pairwise LD is high. For moderate pairwise values and weak multilocus LD, either testing
strategy may come out ahead, although it is also quite likely that neither has much power.

THE hope behind association mapping is to use link- ory relating LD to distance that is not addressed by these
types of studies. This issue is that, while we would likeage disequilibrium (LD) as an indication of proximity

of a marker to genes affecting the trait of interest. Markers to use LD as an indicator of proximity, and thus are
interested in reliable estimates of LD, the alleles at boththat are in strong LD with a gene of interest should be

close to that gene, so once these markers have been identi- loci must be available for examination to estimate LD
directly. When one of the loci of interest is the genefied, an approximate location for the gene can be estab-

lished. While this concept appears reasonable in theory, that is being mapped, most likely the alleles of that gene
are not known. Instead, association-mapping methodsthere are many issues that arise in practical applications.

One trouble is that the stochastic nature of evolution attempt to measure LD indirectly, using phenotype as
a surrogate for the genotype at the gene. What is mea-causes a large variation in LD around its expected value.

Because of this, two pairs of loci for which the expected sured is the level of association between the phenotype
and the marker alleles. This use of phenotype as a substi-levels of LD are the same on the basis of an initial state

can exhibit very different amounts of LD over time. tute for genotype at the gene has consequences for
estimating LD. In doing this, the manner in which theTo understand better the relationship between LD and

distance, empirical patterns of pairwise LD have been gene acts (which directs the degree to which phenotype
represents genotype) becomes confounded with the de-studied with great interest for different genomic regions

and within different populations (see Ardlie et al. 2002 gree of LD between the loci. This confounding of LD
with genetic effects plays a role in how successful associa-for a review). These studies have given us insight into this
tion-mapping techniques can be. This is intuitively ap-relationship, including how far useful levels of LD extend
parent when considering that it is likely that genes withand how levels of LD change across the genome and
small effects will be much more difficult to detect thanfrom population to population. There has also been much
genes with large effects. Thomson and Bodmer (1979)recent interest in the topic of “LD blocks” within the
examined the relationship between HLA haplotypesgenome (see Wall and Pritchard 2003 for a review).
and association with disease. They assumed a dominantWhile these empirical studies have provided us with
genetic model with incomplete penetrance, but noteuseful information regarding the distribution of LD and
that the theory applies to other specified models asthe relationship between LD and distance in real popu-
well. Nielsen and Weir (1999) provide a theoreticallations, an additional problem arises in the general the-
framework under a general genetic model to describe
the role genetic effects play in association-mapping tech-
niques and how these forces combine with LD to influ-1Corresponding author: 1503 Partners II Bldg., 840 Main Campus Dr.,

Raleigh, NC 27606. E-mail: dahlia@statgen.ncsu.edu ence the power of these tests. This work has been ex-
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tended to haplotype-based methods (Nielsen and Weir type and allele frequencies. Here Dkr , Dki , and Dri are
the set of two-locus LD terms, with the usual expression2001). Through this work it has become apparent that

even if simple relationships between LD and distance for pairwise LD, Dki � Pki � pkqi. Various properties of
this measure have been examined (Hill 1976; Thom-do exist, these relationships can be distorted when ex-

amining marker/phenotype associations. son and Baur 1984).
Thomson and Bodmer (1979) discuss how this mea-A number of investigators have examined the ques-

tion of whether haplotype-based association tests may be sure plays a role in haplotype-based association tests.
They give some examples for which haplotype tests maymore powerful than single-locus tests when performing

mapping studies, with varying conclusions. On the basis provide information not available from single-marker
tests and also provide examples in which they do not.of analytical results and power computations, Akey et al.

(2000) suggest that haplotypes can significantly improve An illustrative example of how this three-locus LD can
affect an association test is the following. Assume thatthe power of association-mapping techniques. In con-

trast, simulation studies by Long and Langley (1999) two diallelic markers (A and B) are to be tested in the
region of a diallelic functional site. Four three-locusand Kaplan and Morris (2001) found that single-

marker tests provide at least as much power as haplo- haplotypes exist in equal frequencies in the population:
A-D-B (25%), A-X-b (25%), a-D-b (25%), and a-X-Btype-based approaches. Fallin et al. (2001) used statisti-

cally reconstructed haplotype frequencies for relating (25%). In this situation, the D allele at the functional
site has a population allele frequency of 50%. Examin-Alzheimer’s disease with multiple SNPs on chromosome

19. They found examples of haplotype/disease associa- ing the alleles at the A locus alone provides no new
information regarding the alleles at the functional site;tions that were not identified using single markers.

Their results provide an example where haplotypes are the frequency of a D allele conditional upon a specific
allele at the A locus is still 50%. The same is true examin-more informative than a single-point analysis, even if the

phase information is recovered by statistical techniques. ing the B locus alone. The allele at the functional site
can be predicted with complete certainty, however, ifConceivably, there are several biological reasons a

haplotype-based approach may be beneficial. One possi- the haplotype of the two markers is known. This is an
example where there is no LD between any pair of loci,bility would be if the functional basis of disease suscepti-

bility is due to the combined changes at several sites but the three-locus LD is large. Because of this, single-
marker tests of association would have no power towithin a gene region. A well-known example of this is

the APOE gene and its effect on late-onset Alzheimer’s detect this gene, while a haplotype-based test would be
quite powerful. The example given here is unlikely todisease (AD; Brouwer et al. 1996). Three alleles at this

gene exist in reasonably high frequencies in most popu- occur in real data; however, it is possible to describe more
realistic haplotype patterns with similar properties.lations and have a varying effect on susceptibility. These

alleles are distinguished from one another by base Most previous empirical studies of LD patterns have
concentrated on combinations of pairwise measures andchanges at two SNPs, so that it is the two-SNP haplotype

combination that defines the APOE alleles. have not examined joint multilocus LD. This includes
the majority of studies of LD blocks, which tend toAnother circumstance where haplotype-based tests

may provide greater power than single-marker tests de- examine pairwise LD either directly or via haplotype
estimation procedures, which themselves rely on pair-pends on the haplotype structure across the markers of

interest, considered jointly. In single-marker association wise LD. It is the multilocus LD coefficients, however,
that potentially allow a haplotype-based test to betests, pairwise LD between the alleles at the marker and

the functional alleles is important. If two single-marker “greater than the sum of its parts.” In this article, we
are interested in addressing several issues related totests are performed individually, the two sets of pairwise

LD between the markers and the gene both contribute multilocus LD patterns and association mapping. We
compare the behavior of haplotype and single-markerindividually. If, however, two-marker haplotypes are con-

sidered, three loci (the markers and the putative func- tests under different patterns of pairwise and multilocus
LD, both to determine if one type of test is, in general,tional site) must be considered jointly. In addition to

the two sets of pairwise LD between each marker and more powerful and to determine how different patterns
of LD influence these tests. In addition to the usualthe functional site, there is an additional disequilibrium

value that captures the haplotype patterns of all three single-marker and haplotype-based case-control tests, we
describe a novel haplotype-based test for associationloci together, after having adjusted for each pairwise

term. This joint LD term provides additional informa- based on contrasting the level of LD among affected
individuals to that among unaffected individuals. Ourtion beyond the two-locus measures. For alleles k at

locus 1, r at locus 2, and i at locus 3, the three-locus LD experiments are based on simulations, but we incorpo-
rate empirical observations regarding LD patterns usingterm can be expressed as
estimates from real data (Zaykin et al. 2002). These

Dkri � Pkri � qiDkr � �r Dki � pkDri � pk�r qi (1)
data are used both to determine a reasonable range of
LD patterns and to depict the behavior of LD and the(Bennett 1954), where Pkri , pk, �r , and qi are the haplo-
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power to detect association with the various tests across where the terms �i � �r,s�sφrsDri and �ij � �r,sφrsDriDsj .
a chromosomal region. These terms are very convenient measures of associa-

tion. For example, in the usual allele-based case-control
test, marker allele frequencies among affected individu-

METHODS
als, qi |affected, are compared to their frequencies among

In association mapping, we hope to capture informa- unaffected individuals, qi |unaffected,
tion about proximity of a marker to an unknown gene
by measuring the degree of association between the qi |affected � qi �

1
φ

�i (3)
marker and the phenotype. For example, in the case-
control test, marker allele, genotype, or haplotype fre-

qi |unaffected � qi �
1

1 � φ
�i , (4)quencies among affected individuals (cases) are com-

pared to those among unaffected individuals (controls).
If these are significantly different, we hope this is an so that
indicator of a nearby gene. In the transmission/disequi-
librium test (TDT; Spielman et al. 1993), we examine qi |affected � qi |unaffected �

�i

φ(1 � φ)
. (5)

transmission rates of marker alleles from heterozygous
parents to affected offspring. If the transmission rates

In the TDT, the proportion of times that marker alleleof these marker alleles deviate from the expected 50%,
Mi is transmitted to an affected offspring (Ti.) is con-this is considered evidence that there is a gene nearby
trasted with the proportion of times that it is not trans-that influences susceptibility. The consequence of mea-
mitted (T.i). The expected difference between transmis-suring marker/phenotype correlations to determine
sion and nontransmission rates ismarker-gene correlations is that the manner in which

a gene acts to affect phenotype becomes important. The
Ti. � T.i � (1 � 2c)�i/φ,role of genetic effects in association mapping has been

formalized (Nielsen and Weir 1999, 2001). We briefly where c is the recombination rate between loci. It is
summarize these results here. clear that as the recombination rate approaches 50%,

We consider a gene, A, with an arbitrary number this difference will become zero, implying this is also a
of alleles Ar , at population frequencies �r . To avoid test of linkage.
dependencies on specific genetic models, we consider It is clear that both these tests of association depend
a general genetic model with genotype ArAs having pene- on LD through the association measure �i. The pene-
trances φrs (φrs is the conditional probability of being trances of the genotypes at the genes are confounded
affected given genotype ArAs). This parameterization with LD in this measure. The story is, in fact, more
considers the marginal effects of the gene and allows interesting than this. Applying a classical quantitative
for the action of other genes and environmental influ- genetics model where the genetic effect of genotype, Grs,
ences on the phenotype. For ease of calculation, we is decomposed into additive effects (�r) and dominance
assume Hardy-Weinberg equilibrium (HWE) exists in deviations (drs), Grs can be written as
the population. The overall prevalence of the disease
in the population is φ � �r,s�r�sφrs . We also consider a Grs � � � �r � �s � drs .
marker, M, also with an arbitrary number alleles, Mi.

The least-squares solutions for the additive effects are �r �The allele frequencies of the marker are qi.
�s�sGrs � � (Weir and Cockerham 1977). In the case ofThe connection between phenotype and marker ge-
penetrances, Grs � φrs and � � φ. Noting that �rDri � 0,notypes can be determined by examining the “effect”

of the marker genotype. For a discrete trait, this is the
�i � �

r,s
�sφrsDriprobability of being affected conditional on the marker

genotype, Paffected|ij. This depends on the distribution of
� �

r,s
(�sφrs � φ)DriAr As genotypes within MiMj genotype categories, which

in turn depends on LD between the loci (Dri),
� �

r
�rDri .

Paffected|i j � �
r,s

Pr(Ar As |MiMj)φrs

This shows that it is a very specific genetic effect that is
captured by these tests of association; it is the sum of�

1
qiqj

�
r,s

Pr(Ar , Mi)Pr(As, Mj)φrs (HWE)
the additive effects of the alleles at the gene (�r),
weighted by the Dri terms. When considering susceptibil-

�
1

qiqj
�
r,s

(�r qi � Dri)(�sqj � Dsj)φrs ity as the trait of interest, the additive effects of the
susceptibility alleles represent Pr(affected|Ar) � φ (the
effect of the allele Ar centered around the overall preva-� φ �

�i

qi

�
�j

qj

�
�i j

qi qj

, (2)
lence of the disease). Additionally, the additive effect
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of marker allele Mi is Pr(affected|Mi) � φ, which is �i/ measure might be less than the sum of its parts, rather
than greater.qi. Both the allele-based case-control test and the TDT

examine marker alleles individually rather than as whole LD contrast test: It is expected that both haplotype
and allele frequencies differ between affected and unaf-genotypes, whereas it is whole genotypes that affect the

phenotype. Therefore it is not surprising that these tests fected individuals when the markers being examined
are in LD with a gene affecting phenotype. Because ofare capturing only the additive effects of the gene via the

additive effects of the marker. That tests of association this, pairwise LD between the markers should also differ
between affected and unaffected individuals. We can writedepend on this combined measure, �i, is intuitively ap-

pealing, as it shows that the strength of the effect of a out these LD coefficients using Equations 3, 4, 6, and 7.
marker allele on susceptibility depends on how strongly
that marker allele is connected with each of the alleles Dki |affected � Dki �

�(M)
i �(N)

k

φ2
�

�(MN)
ki

φat the gene, combined with how strongly those alleles
themselves affect phenotype.

Dki |unaffected � Dki �
�(M)

i �(N)
k

(1 � φ)2
�

�(MN)
ki

1 � φ
.It is possible to capture nonadditive genetic effects

(the dominance deviations, drs) by performing a geno-
This can provide the basis for a novel haplotype-basedtype-based case-control test. Here marker genotype fre-
association test. The contrast between these measuresquencies are contrasted between affected and unaf-
isfected individuals:

Dki |affected � Dki |unaffected �
�(MN)

ki

φ(1 � φ)
�

�(M)
i �(N)

k (1 � 2φ)
φ2(1 � φ)2

.Pij |affected � Pij |unaffected �
qj �i � qi �j � �ij

φ(1 � φ)
.

This contrast results in a linear combination of the indi-
For a sample size of N individuals, we can derive a testvidual allele association measures and the genotype asso-
statistic based on this contrast using the following form:ciation measure �ij � �r,sφrsDriDsj � �r,sdrsDriDsj .

These results also extend to marker haplotypes (Niel-
X 2 � 2N

(D̂ki |affected � D̂ki |unaffected))2

Var
�

(D̂ki |affected) � Var

�

(D̂ki |unaffected)

. (9)sen and Weir 2001). Consider a second marker, N, with
alleles Nk at population frequencies pk. In addition to
the pairwise LD terms between each marker and the
gene, there is also pairwise LD between the markers,

We derive the variances for LD among cases and con-plus the three-locus LD term, Dkri (Equation 1).
trols using the appropriate terms in the general formA straightforward haplotype association test is the

haplotype-based case-control test, in which haplotype
frequencies among affected individuals are contrasted Var

�

(D̂ki) � q̃i(1 � q̂i)p̃k(1 � p̃k)
with those among unaffected individuals. These two-

� (1 � 2q̃i) � (1 � 2p̃k)D̂ki � D̂ 2
ki ,locus marker haplotype frequencies can be calculated

as
where p̃ is the allele frequency estimator (Weir 1996).
This test has an asymptotic chi-square distribution withPki |affected � Pki �

pk �
(M)
i � qi �

(N)
k � �(MN)

ki

φ
(6)

(K � 1) � (I � 1) d.f., where K and I are the numbers
of alleles at the markers. This test is sensitive to the
same association terms as the haplotype-based case-con-Pki |unaffected � Pki �

pk �
(M)
i � qi �

(N)
k � �(MN)

ki

1 � φ
, (7)

trol test (Equation 8), but in different combinations.
This implies that these tests are sensitive to differentwhere we have distinguished � measures for each marker
patterns of LD. In addition, this LD contrast test haswith a superscript. The marker haplotype measure �(MN)

ki fewer degrees of freedom than the haplotype-basedis �r,s�rφrsDkri � �r�rDkri . The difference between marker
case-control test, which has up to K � I � 1 d.f. Forhaplotype frequencies among cases and controls is
example, if both markers are diallelic, there can be up
to 3 d.f. for the case-control test (number of haplotypes

Pki |affected � Pki |unaffected �
pk �

(M)
i � qi �

(N)
k � �(MN)

ki

φ(1 � φ)
. (8) minus one), whereas there is only 1 d.f. for the LD

contrast test, as there is only one LD coefficient when
examining two diallelic markers. To determine whichBy rearranging terms slightly, the factor �(M)

i /qi �
�(N)

k /pk � �(MN)
ki /qipk emerges, showing that this differ- test can perform better in which situations, it is impor-

tant to understand the pattern of three-locus LD inence depends on the sum of the additive effects of
marker alleles Nk and Mi plus a contribution from the addition to the pairwise measures. We have investigated

this question through several types of simulation proce-additive effect of the joint NkMi haplotype. As each of
the single-marker and haplotype association measures dures.

Simulations: We performed a number of simulationscan be positive or negative, the combined haplotype
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TABLE 1 effects only through the variances of the test statistics,
and these effects are not substantial. We chose at leastPenetrances for the simulated genetic model
one reasonably low-penetrance model, simulating a
gene with small marginal effects on overall susceptibil-φrs

ity. The minor allele of the functional site was the one
Genotype Frequency Model 1 Model 2 Null model associated with higher risk. We made no assumptions

regarding the relative positions of the three loci, as thisA1A1 0.01 0.09 0.23 0.06
A1A2 0.18 0.06 0.13 0.06 information does not contribute to the tests other than
A2A2 0.81 0.03 0.03 0.06 through the LD terms.

Both two- and three-locus LD contribute to the power
of a haplotype-based association test, whereas only two-
locus LD affects single-marker tests. The relationshipas part of our studies to understand the relationship

between patterns of two- and three-locus LD and three between each of the LD coefficients and the power of
these tests, however, is not transparent (Equations 5tests of association. These tests included the single-

marker case-control test, the haplotype-based case-con- and 8). We were interested in examining what type
of LD patterns cause haplotype-based tests to be moretrol test, and the LD contrast test (described above).

The basis of the simulations involved creating a large powerful than single-marker tests. We investigated this
through simulation by contrasting estimates of thenumber of sets of three polymorphic loci, including two

neutral markers and one functional site. Each of these power of these tests under a large number of different
combinations of values for the various LD terms.sets of three loci differed from one another by their

haplotype frequencies and therefore by their two- and For three diallelic loci, there are three pairwise LD
terms and one three-locus term. Fully informative nota-three-locus LD patterns. To reduce the overall number

of parameters involved, we assumed two diallelic mark- tion to distinguish these terms should include a compo-
nent describing which loci and which alleles are beingers (M and N) and a diallelic functional site (A). In this

case there is one free LD coefficient for each pair of referred to (Mi, Nk, or Ar). For notational ease, we restrict
ourselves to the use of subscripts, so that Dkr is LD be-loci and one free three-locus LD coefficient for the set

of three loci. There are up to eight possible three-locus tween alleles Nk and Ar, and so forth.
Simulations based on real data: We were interestedhaplotypes. We focused on three loci at a time for our

simulations, as more loci would necessitate the incorpo- in examining the types of LD patterns expected to be
seen in real data as part of our study. To do this, we usedration of yet higher-order LD terms.

The power calculations were performed by applying three-locus estimates of haplotype frequencies from the
data described in Zaykin et al. (2002). In their experi-a genetic model to the functional site for a group of

three loci, with penetrance parameters described in Ta- ment, 138 individuals were genotyped for 552 SNPs on
chromosome 12. These SNPs were divided into six re-ble 1. We then used the genetic model and the haplo-

type frequencies to generate samples of affected individ- gions containing �92 SNPs each. All possible three-SNP
combinations were examined within each region, anduals (cases) and unaffected individuals (controls), along

with their genotypes and haplotypes at the two neutral three-locus haplotypes were estimated using an EM algo-
rithm.markers for each three-locus set. This was done by gener-

ating individual genotypes separately for cases and con- We incorporated this chromosome 12 information
into our simulation procedure by using the three-locustrols from the appropriate multinomial distributions

with probabilities of the genotypes conditional upon haplotype frequency estimates as the basis for our sam-
pling distribution. So, while the input values are esti-affection status calculated using Bayes’ rule and assum-

ing random union of gametes for the unconditional mates derived from real data, for our purposes here,
we considered them to be the true population parame-genotype frequencies (P[ArAs] � P[Ar]P[As]). For each

set of three loci, we created samples of 200 cases and ters of our simulations. This gave us an empirical distri-
bution of the range of possible haplotype frequencies.200 controls and performed the two single-marker case-

control tests, the haplotype-based case-control test, and As described above, each set contained two neutral
markers (M and N) and one functional site (A). Thethe LD contrast test. Haplotype phase was considered

known rather than estimated. The sampling and testing allele frequency distribution for ascertained SNPs tends
to be biased toward more common variants (Phillipsprocedure was repeated 10,000 times for each set of

loci, and the proportion of times a given test rejected et al. 2003). To attempt to counter this effect to some
degree, the SNP with the smallest minor allele frequencythe null hypothesis of no association was recorded. This

provided us with an estimate of the power of these tests was chosen to be the functional polymorphism for each
three-locus set. The genetic models used for the func-under the conditions of each set of three loci.

Each of the genetic models examined was additive; tional site are described in Table 1, with the rarer SNP
allele chosen to be the allele associated with higherwe were not concerned with nonadditive effects, as the

allele-based tests we examined are sensitive to these susceptibility.
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To reduce the number of three-locus sets that were To maintain this at 5%, we estimated the uncontrolled
global type I error rate, Pg(unadj) � 2�unadj � Pjoint(unadj) andconsidered, we used only loci that were within 50 SNPs

of each other. We also did not include SNPs with minor then calculated the factor W such that Pg(unadj)/W � 0.05.
The factor W could then be used to calculate the re-allele frequencies 	3%. This provided us with 206,975

three-locus combinations. duced level for each individual test as �adj � 0.05/W.
To allow the general use of this method, we needed anIterative simulations: The simulations based on real

data provided an enormous number and range of com- efficient way to estimate W. Noting that �unadj is a fixed
constant (in our case 0.05), the unknown componentbinations of LD patterns, making statements based on

pattern types difficult. To make observations regarding of Pg(unadj) is Pjoint(unadj). We were interested in deriving a
function that could be used to predict this probabilityhow individual patterns of LD affect the power of these

tests, we created a more systematic set of LD patterns on the basis of the level of LD between the markers,
Pg(unadj) � f(r 2), whereusing an iterative simulation approach. This was done

by creating three-locus sets that covered the range of
possible values for each of the LD terms. As before, for r2 �

D 2
ki

pk(1 � pk)qi(1 � qi)
. (10)

each three-locus set, we assign one locus to be functional
and the other two to be neutral. Marker M had a minor
allele frequency of 30% and marker N had a minor To do this, we simulated data under the null hypothesis

of no association between the phenotype and the mark-allele frequency of 20%. The minor allele frequency of
the functional site, A, was 10%. The genetic models used ers and then performed 10,000 replications of unad-

justed tests, tracking the frequency with which both testsfor the functional site were the same as the simulations
based on real data (Table 1). simultaneously rejected the true null hypothesis and the

level of LD between the markers. Conditions under theTo generate the combinations of values for the vari-
ous LD terms, we used a nested loop, iterating from the null hypothesis were simulated by setting the pene-

trance values for each “functional” genotype to the samelargest (in absolute value) negative value possible for
each LD term to the largest positive value. While the value of 0.06 (Table 1). These simulations were per-

formed using a subset of the data (one of the six regionspairwise LD measures are restricted by the allele fre-
quencies, the three-locus term is restricted by the two- from the chromosome 12 data, comprising 35,730 three-

locus combinations, were used). In this manner, thelocus haplotype frequencies. Because of this, we set the
values of the three-locus LD measure in the innermost three loci involved (the two markers and the putative

functional site) were still dependent on each otherloop. The possible range for this parameter is often
quite small, especially when the pairwise values were set through LD, but the phenotype was independent of all

genotypes; Paffected|rs � Paffected � 0.06. A function pre-to their extremes. In this case, possibly only one or
no iteration of the final loop occurs. There were 6586 dicting Pjoint(unadj) from LD, f(r 2), was empirically fit using

the data points from these simulations. This functionunique three-locus sets generated using this algorithm.
Corrections for multiple tests: To make the compari- was then used to estimate W in simulations under the

null hypothesis using the remaining five regions of thesons between the single-marker and haplotype-based
tests, we wanted to consider the effects of multiple test- chromosome 12 data. As the second set of data had not

been used for the derivation of f(r 2), it served as aing, as there are two single-marker tests for each haplo-
type-based test performed. One possibility for doing this validation case to verify that Pg derived using the esti-

mated factor W was indeed 0.05. The adjusted levels forwould be to use a Bonferroni correction to adjust the
threshold for each single-marker test. This method, these results were very close to the desired 0.05 level.

This indicated that our multiple-correction method washowever, is conservative, especially when the tests are
correlated. Another possible correction strategy could effective for all LD combinations seen in this study and

should be of general applicability.be to use a permutation method; however, with the
number of simulations being performed and the com- Plotting Pjoint vs. r 2 did provide useful information for

determining an adjusted � level, but we wanted to gainputational burden required, this was not feasible. We
were interested in determining a correction strategy a fuller understanding of the connection between corre-

lations between the two tests and LD. To do this, wethat accounted for the correlation between tests due to
LD between the markers and used the data directly. considered the binomially distributed variables T1 (test

1 rejected or did not reject the null hypothesis of noWe wanted to maintain the global type I error rate,
the probability of any test falsely rejecting the null hy- association) and T2 (test 2 rejected or did not reject).

The correlation between these variables was calculatedpothesis, at 5%. In our case, we were interested only in
the two tests performed for each experiment, so that using the equation for correlation between binomial

random variables: (Pjoint(unadj) � �2
unadj)2/�2

unadj(1 � �unadj)2the probability of any test falsely rejecting the null hy-
pothesis is the probability that at least one of the two (where, as before, �unadj represents the unadjusted prob-

ability that either single-marker test rejects the null hy-tests rejects. This probability is Pg � Pr(test 1 rejects) �
Pr(test 2 rejects) � Pr(both tests reject) � �1 � �2 � Pjoint. pothesis [0.05] and Pjoint(unadj) is the probability that they
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Figure 1.—Correlation between single-marker
tests and LD. The correlation between two single-
marker tests rejecting the null hypothesis of no
association (along the y-axis) plotted as a function
of the LD between the tests (along the x-axis) is
shown. LD is measured as r2 (Equation 10). The
line shows the empirically fitted function that was
used to predict correlation between the tests on
the basis of LD between the markers.

both reject the null hypothesis). By plotting these corre- An overall summary of the results of the test compari-
sons for the simulations based on real data is given inlations between the two tests vs. LD (r 2), we find a tight

connection between the correlation of the tests and LD, Figure 2. Of all three-locus sets considered, the propor-
tion of sets for which a given test was the most powerful,although this connection is not linear (Figure 1). One

interesting thing to note about Figure 1 is that LD must by at least 
%, is shown, where 
 was set to 2, 5, or 10%.
A tie was declared if the top two tests were within 
%get quite high before correlation between the tests be-

comes substantial. Correlation between the tests reached of each other. The test with the highest power had to
achieve at least 40% power to be considered successful.�0.3 only when r 2 � 0.8.
The category denoted “none” included those sets for
which no test achieved �40% power. For penetrance

RESULTS
model 1 (the one with weaker marginal effects) it can
be seen that for �60% of the locus sets examined, noneFor each three-locus set considered, the single-marker

case-control tests, the haplotype-based case-control test, of the tests achieves �40% power. If the power of a test
does exceed 40%, in a majority of cases it is a single-and the LD-contrast test were performed on 10,000 rep-

licate samples and the power of each test was recorded marker-based test that wins, although almost all the
results are within 10% of each other. For penetranceand compared. We adjusted for the fact that two single-

marker tests were performed by using the procedure model 2 (the model with reasonably large marginal
effects), in a majority of cases, at least one test achievesdescribed above, estimating W by the function f(r̂ 2),

and then using it to adjust the critical levels. For compar- �40% power. For this model, there is no substantial
difference between the proportion of times each test isison, we also recorded the results for the same simula-

tions using a Bonferroni correction. There were two most powerful. As with the other model, in almost all
cases, the power estimates of these tests are within 10%strategies for determining the input values for the two-

and three-locus LD parameters for these locus sets. One of each other.
The Bonferroni correction for the single-marker testsstrategy involved using LD patterns derived from haplo-

type frequency estimates from real data (Zaykin et al. caused a reduction in the power of these tests relative
to the haplotype-based case-control tests, as expected.2002). The other strategy involved iterating through the

range of possible values, maintaining constant single- The drop was not particularly large on average, however.
For penetrance model 1 (smaller effects), there was anmarker allele frequencies. Using the results of these

simulations, the single-marker tests and the two haplo- �3% loss in power of these tests. The loss was �2% for
model 2.type-based tests could be compared under a number of

different combinations of two- and three-locus LD, and Power across the chromosome 12 region: A closer
view of the relationship between LD patterns and thethe results could be examined in various ways.
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Figure 2.—Proportion of trials for which each
test was most powerful. The proportion of three-
locus sets for which a given test was the most
powerful by at least 
%, where 
 was set to 2, 5,
or 10%, is shown. A tie was declared if the top
two tests were within 
% of each other. The test
with the highest power had to achieve at least 40%
power to be considered successful. The category
denoted “none” included those sets for which no
test achieved �40% power.

association tests can be gained by examining the results sliding window of five loci. Figure 3 shows a summary
of the results. Figure 3, A and C, shows the rollingalong the chromosomal region. This allows us to investi-

gate both the relationship between LD patterns and average of the power of the single-marker and haplo-
type-based case-control tests for penetrance models 1power and whether the strategy of summarizing average

LD along a chromosome is useful when planning an and 3, respectively. The solid line designates the power
of the haplotype test, and the shaded line denotes theassociation-testing strategy. From this, we can also exam-

ine whether concurrently investigating both pairwise single-marker tests.
More detailed information is shown regarding theand three-locus LD can improve the selection criteria.

Dawson et al. (2002) examined average pairwise LD comparisons of the single-marker tests with the haplo-
type tests in the scatterplots in Figure 3, B and D. Therein moving windows along a chromosome. This gave a

picture of average levels of LD along the chromosome. are nr points plotted at position Sr . Each point represents
the difference between the power of the single-markerWe performed a similar type of experiment using the

results of the simulations based on real data. There tests minus the larger of the two haplotype-based tests.
Thus, positive values indicate results in which the single-were 552 SNPs examined in the chromosome 12 region

described in Zaykin et al. (2002). We used the 490 of marker tests were more powerful, and negative values
indicate that one of the haplotype tests was most pow-these with minor allele frequencies �3%. In our full

set of simulations, we considered all combinations of erful.
At the bottom of Figure 4E is a plot of average absolutethree SNPs for which the SNPs were within 50 loci of

one another. For each set of three SNPs, the one with value pairwise LD (solid line) and average absolute value
three-locus LD (shaded line) vs. chromosomal location.the smallest minor allele frequency was considered func-

tional for that set. We reduced the number of sets exam- The value of the pairwise measure at any point Sr along
the chromosomal region is the rolling average of theined for the experiments described here. Only those

sets for which the neutral markers were within 10 SNPs terms
of the one chosen to be functional for that set were
kept. All locus sets for which the rth SNP (Sr) was func- |Dr| �

1
mr

�
i�Hr

|Dri| ,
tional were then grouped together into the category Gr

(r � 1–490). (For example, if S25 was the functional SNP where Hr contains all two-locus pairs that included Srfor each of the sets {S17, S25, S28}, {S25, S26, S29}, and {S25, as a functional SNP (a collapsing of Gr above). As we
S29, S30}, these three sets would make up the category considered all triples for which the neutral markers were
G25.) The average power of a test (r) to detect an associa- within 10 SNPs in either direction of the one chosen
tion when Sr was functional by examining nearby SNPs to be functional, mr has an upper bound of 20. The
(not including Sr) for each of the three tests performed rolling average is again taken with a sliding window of
was calculated as size five. The three-locus LD average includes values

from all three-locus sets containing Sr as the functional
r �

1
nr

�
i�Gr

i , (11) site (Gr). These averages are calculated in the same
manner as average power (Equation 11), above.

From these results, a number of things can be seen.where nr is the number of three-locus sets in Gr. We
could then plot r for each type of test (single-marker As was shown in Figure 2, in a majority of cases, the

power of the haplotype-based case-control tests wascase-control, haplotype case-control, and LD contrast)
across the region of Sr SNPs. To eliminate some noise, within 10% of the power of the single-marker-based

tests. When the haplotype-based test did outperforma rolling average of the r values is plotted, using a
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Figure 3.—Summary results for
power comparisons along the
chromosome. The horizontal axes
represent the relative positions of
the chromosome 12 SNPs (Zay-
kin et al. 2002, map not to scale).
(A) Rolling averages for the power
of the single-marker case-control
tests (shaded line) and the haplo-
type-based case-control test (solid
line) under penetrance model 1
(small effects). (B) Each point
represents the difference between
the power of the single-marker
case-control test and that of the
most powerful haplotype test un-
der penetrance model 1 (see text
for details). (C) Rolling averages
as in A, but under penetrance
model 2 (larger effects). (D) Dif-
ferences in power as in A, but un-
der penetrance model 2. (E) Roll-
ing averages of pairwise (solid
line) and three-locus (shaded
line) LD along the chromosome.
The scale of these values is given
along the axis to the right.

the single-marker test, however, it could be by a very the other two tests are marked by points at the bottom
of the power curves in Figure 3, A and C. These caseslarge amount, especially for penetrance model 2 (Figure

3C, stronger effects). These cases where the haplotype appear to occur when both two-locus and three-locus
LD are reasonably small and the power of the othertests have substantial power influence the average power

of the haplotype-based tests. For penetrance model 2, tests is quite low.
One factor that may affect these results, particularly asthis increase in average power was sufficient to make

the average power for the haplotype-based tests larger presented in Figure 3, is whether we have chromosomal
regions for which the minor allele frequencies are gen-than the average power for the single-marker tests (in

spite of the fact that the single-marker tests won more erally large (relative to the rest of the region). This
could affect both the amount of LD present and thefrequently).

For penetrance model 1 (Figure 3A, weaker effects), magnitude of the effect of the functional alleles, inflat-
ing the power in that region. We investigated whetherthere is a slightly larger tendency for the single-marker

tests to win, and the differences in power are not quite this was the case in our data by examining the minor
allele frequencies of the three loci across the chromo-as pronounced. Because of this, the average power for

the single-marker tests appears to be slightly higher than somal region. The results indicated that there were no
trends or aggregates of similar allele frequencies in thisthe average power of the haplotype-based test. Both

types of tests had very good power in regions where LD region, so that this would not be a concern.
Effects of specific patterns of LD on power: As thewas high; these were the regions in which the tests

tended to perform equally well. The LD contrast test number and range of LD patterns seen in the real data
were very large, it was not feasible to use these resultsshowed lower power than the other two tests on average.

There were cases, however, in which this test was the to make comparisons between individual patterns and
power. We used the results of the more systematic itera-most powerful. The cases for which the power of the

LD contrast test was at least 10% greater than either of tive simulations to determine these relationships di-
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Figure 4.—Power results
for a subset of the iterative
simulations. Power results
for the three tests (single-
marker case-control, haplo-
type-based case-control, and
LD contrast) under differ-
ent LD patterns for pene-
trance model 2 are shown.
A includes all results for
which pairwise LD between
the markers and the func-
tional site are low (Dkr � 0
and Dir � 0.01). B displays
results for stronger LD
(Dkr � 0.02 and Dir � 0.04).
The bottom parts of A and
B show the combination of
three-locus LD and pairwise
LD between the two neutral
markers for each point
along the power curve at the
top. The values of pairwise
LD between the markers
have been scaled by a factor
of 1⁄20.

rectly, rather than through averaged results. Figure 4 tests may come up as the most powerful. The haplotype-
based tests were consistently more powerful when theshows an illustrative subset of the results of these simula-

tions under penetrance model 2. Figure 4A shows the three-locus LD was at its extremes, irrespective of the
level of the pairwise LD terms. The most powerful testpower results when pairwise LD between the markers

and the functional site are small: Dkr � 0 and Dri � 0.01 in this case alternated between the two haplotype-based
tests. When the pairwise LD values drop to zero, even(D�ri � 0.14). The results shown in Figure 4B reflect

higher pairwise LD between the markers and the func- with moderate levels of three-locus LD, it is likely that
none of the tests have power, but the only tests thattional site: Dkr � 0.02 (D�kr � 0.25) and Dri � 0.04

(D�ri � 0.57). In the bottom sections of Figure 4, A and have any possibility of detecting association are the hap-
lotype-based tests.B, all levels of three-locus LD and all levels of pairwise LD

between the two neutral markers are displayed. Three- The peaks in the graph represent changes in power
due to pairwise LD between the two neutral markers.locus LD is shown by the solid dots. Pairwise LD values

between the markers, shaded dots, are scaled by a factor The effect of this LD term on the power of the haplotype
tests is illustrated in Figure 5, which displays the resultsof 1⁄20 so that they would fit within the bounds of the

figure. of the haplotype case-control test for Dkr � 0.02 and
Dri � 0.04 (as in Figure 4B). The solid circles are theThe power of the single-marker tests can be seen to

rely on pairwise LD with the functional site, as would results when three-locus LD are negative (Dkri � �0.006)
and the open circles are when these values are positivebe expected. In Figure 4A, this power is low, whereas

in Figure 4B, it is high. The interesting thing is how (Dkri � 0.004). In the first case, power drops as pairwise
LD between the neutral markers increases from negativepower of these tests compares with that of the haplotype-

based tests. In general, the single-marker tests become to positive, while in the second case, the reverse occurs.
This is unfortunate, as it indicates that predicting haplo-the predominantly most powerful tests as the pairwise

LD values between the markers and the functional site type power by examining LD between the markers alone
may not be possible.become large in absolute value. For less extreme values

of the pairwise LD terms, the most powerful test tends The LD patterns generated in this manner represent
the range of possible combinations of the four LD terms,to alternate between a single-marker test and the haplo-

type-based case-control test, although any of the three given the allele frequencies considered. It is possible
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could be by a very large degree. If single-marker tests
are to be used, it does appear that a multiple-testing
adjustment that takes LD between the markers into con-
sideration should be applied, as the Bonferroni correc-
tion can reduce power. Our method is effective for
jointly testing two SNPs. A permutation method can also
be applied for two or more SNPs.

There are patterns of LD for which one of the haplo-
type-based tests appears to be best suited. For instance,
if pairwise LD values between the markers and the func-
tional site are close to zero, the only hope for detecting
association appears to be the LD-contrast test, as this
test appears to be the most sensitive to smaller values
of the three-locus LD term. Displaying the power resultsFigure 5.—Power results for the haplotype-based case-con-
along the chromosome (Figure 3) gives an indicationtrol test under penetrance model 2 when Dkr � 0.02 and Dir �

0.04 (LD between the markers and the functional site) are of the regions for which it will be difficult or easier to
shown. Solid circles are for negative three-locus LD (Dkri � locate SNPs associated with the phenotype. These results
�0.006) and open circles are for positive three-locus LD (Dkri � are closely related to the patterns of two- and three-0.004).

locus LD across the chromosome (Figure 3E), showing
that maps such as these may be useful in predicting
power to detect associations.that some of these combinations are unlikely to occur

in real data. To examine this question, we extracted a One important consideration when interpreting the
results based on real data is that the properties imposedsubset of the real data for which the allele frequencies

were similar to the simulated frequencies. In this subset on the sites considered to be functional, such as the
allele frequency distribution and the levels of LD withof the real data, we saw a large range of two- and three-

locus LD patterns, which included the spectrum of possi- surrounding markers, were dictated by the properties
of those SNPs ascertained in the samples described inble two-locus and three-locus LD terms. While this does

not provide a rigorous examination of the likelihood Zaykin et al. (2002). It is reasonable to assume that the
properties of true functional sites are not the same asspace of two- and three-locus LD patterns, it does indi-

cate that individual patterns should not be excluded the properties of SNPs ascertained for association stud-
ies. For common variants, however, it seems reasonablefrom consideration, although they may be less common

than others. that these results should be realistic.
Both of these simulation procedures were performed

assuming that all three loci involved are diallelic. In the
DISCUSSION

case of a multiallelic functional site, the relationship
between LD and marker/phenotype association be-We examined several questions regarding patterns of

two- and three-locus LD and the power of single-marker comes much more complicated. In this case the results
from comparing the different types of tests may be quiteand haplotype-based tests of association. We addressed

these questions through two types of simulations. One different and are a topic for further study.
simulation strategy involved using haplotype patterns This work was supported in part by National Institutes of Health
estimated from real data (Zaykin et al. 2002). This pro- grant GM 45344.
vided us with an empirical distribution of LD patterns.
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