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ABSTRACT
The cornerstone of population genetics is a probabilistic understanding of the ultimate fate—survival

or extinction—of rare mutations. If a mutation is beneficial, it enables its carrier to reproduce faster than
native wild-type individuals. In classic derivations and in the considerable body of research that has
followed, “faster” has been defined mathematically to mean “able to produce more surviving offspring
per generation.” Many organisms, however, may increase their reproductive rate by producing the same
number of offspring in a shorter generation time: a mutant bacterium, for example, may complete the
cell cycle and produce two offspring more quickly than the wild type. We find that the ultimate fixation
probability of a mutation conferring a shorter generation time differs from that of a mutation conferring
more offspring by a factor of 2 ln(2)—nearly 40%. This predicts a reduction in the overall substitution
rate for any mutation that decreases the generation time: fixation probability is biased toward increased
offspring number.

THE selective advantage, as classically defined by To our knowledge, the effect of this alternative mecha-
nism of the selective advantage has not been explored.Fisher (1930) and Wright (1931), is realized in

In the sections that follow, the fate of a rare beneficialterms of fecundity: if the wild type has on average one
mutation is determined, assuming that the selective ad-offspring per generation, a rare beneficial mutant has
vantage is realized in terms of decreased generationon average (1 � s) offspring per generation. This model
time. Perhaps surprisingly, the fixation probability ofof the selective advantage is fundamental to the classic
such a mutant differs significantly from the fixationpublications in population genetics (Haldane 1927,
probability for a mutant with an equivalent advantage1932; Kimura 1957, 1962) and has been assumed, ex-
in fecundity. Before describing the analytical work, how-plicitly or implicitly, in the considerable body of litera-
ever, we present an illustrative example to build someture that has followed. Using increased fecundity in
intuition about this effect.this way to model the selective advantage is not only

mathematically convenient, but also appropriate from
a biological point of view. Specifically, the (1 � s) model

ILLUSTRATIVE EXAMPLEcaptures any mechanism that changes the mean number
of offspring that survive to reproductive maturity. For our example, we consider a population of lytic

For many organisms, however, a mutant may have the viruses. As is typical for fixation probabilities, the exact
same number of offspring as the wild type on average, size of the population is unimportant, as long as the
but may produce these offspring in a reduced genera- wild-type population is sufficiently “large.” We also allow
tion time. A simple example here is bacterial fission. In unmitigated exponential growth, at least over a few gen-
an environment that favors growth, each bacterium will erations, in our sample population. While ignoring the

need to keep growth in check greatly simplifies theproduce, on average, close to two surviving offspring;
example, we do not allow unbounded growth in thethe enhanced growth of a beneficial mutant can then
analysis that follows.be realized as a reduced cell cycle time. This may be

We assume that the viruses are not perfectly adaptedparticularly true in the presence of antibiotics, which
to their environment; that is, beneficial mutations arereduce the rate of cell growth in drug-sensitive strains.
possible. In particular, we consider two different muta-Similarly, the number of virions released during lysis
tions that might theoretically be available to our popula-may be limited by the size of the host cell; mutant strains
tion. Mutation F, for fecundity, increases the number ofthat have a shorter replication time will realize their
infectious virions produced per infected cell. Mutationselective advantage by reaching this limit more quickly.
G, for generation time, produces the same number of
virions as the wild type, but produces them in a shorter
time, decreasing the time until cell lysis.
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age, two infectious virions at cell lysis, which occurs 1 1 that strain G gets an extra generation of growth and
“catches up” with strain F, such that over 9 time unitstime unit after the cell was infected. Mutant F, in con-
their growth rate is precisely equivalent. Unfortunately,trast, is able to produce 2.02 infectious virions on aver-
strain G survives long enough to realize this advantageage. Mutant G, like the wild type, produces two infec-
only 80% of the time. We find that a mutation is moretious virions on average, but produces these in a slightly
likely to spread through the population if it confersreduced time, 0.986 time units.
an increase in fecundity, rather than what would beThis value of the generation time was chosen such
measured in a fitness assay as an equivalent reduction inthat the long-term growth rate of the two mutants is
generation time. This is because even a modest increaseequivalent. In particular, the expected number of infec-
in fecundity reduces the chance of extinction in thesetious virions produced in t time units by virus F is 2.02t.
first, critical generations.Likewise, the number of copies of virus G after t time

In the sections that follow, we derive the fixationunits is 2t/0.986. Manipulating the latter expression we
probability for mutations that confer either a fecundityfind that
or generation time advantage. We compare these values

2t/0.986 � 21.014t � 2(1�log2(1.01))t � (2(1.01))t. when the population size is constant and then extend
our results to consider populations in environments

Thus the long-term growth rates of mutant F and mutant where growth is favored. In the latter case we assume
G are exactly the same. Typically, if we were introducing that growth is ultimately kept in check by periodic popu-
either mutant into a mathematical model we would say lation bottlenecks.
that the growth rate is given by (2(1 � s))t and that
both mutants F and G have the same selective advantage,
s � 0.01. Likewise, if we were experimentally measuring METHODS: ANALYTICAL DERIVATION
the growth rate of F or G in a fitness assay, we would

Our analytical work simply extends the classic deriva-measure the same value for s. Finally, if either F or G
tion of the fixation probability described by Haldaneoccurred de novo in a population, the expected time to
(1927). We outline the basic techniques and assump-fixation would be precisely the same for the two mutant
tions for the general reader below; a detailed derivationstrains.
is presented in the appendix.This effect is illustrated in the top of Figure 1. The

Constant population, fecundity advantage: In brief,solid line shows the growth of mutant F (fecundity ad-
we assume that a wild-type individual produces on aver-vantage) over 10 generations of unimpeded growth; in
age r offspring per generation and thus produces r t

each generation, the number of copies of F increases
offspring in t generations. For the classic model of anby a factor of 2(1 � s). The dotted line, in contrast,
increase in fecundity, we consider a mutant lineage inshows the growth of mutant G (reduced generation
which the generation time remains unchanged fromtime). The number of copies of G increases by only a
the wild-type value, but more offspring are produced perfactor of 2 in each generation, but the generation times
generation by the mutant. Thus a mutant with selectiveare slightly shorter. Circles and crosses show the number
advantage s would produce (r(1 � s))t offspring in the

of copies after each lysis event and illustrate that after
same amount of time.

9 time units, both F and G have exactly the same number
To determine the fixation probability in the simplest

of copies at exactly the same instant. The overall growth
case with a constant population size, we use Haldane’s

rates of the two mutant strains are identical. method. If N0 denotes the total, constant size of the
The bottom part of Figure 1, however, illustrates that population, it is clear that no matter how big r is, only

extinction probabilities for F (circles) and G (crosses) N0 of all newly created offspring can survive each genera-
are not the same. First, note that once either mutant tion. Haldane used probability-generating functions
has survived four or five generations, the chance of (see appendix) to describe the processes of creating
extinction in future generations becomes negligible. new offspring and randomly determining which off-
During the first few critical generations, however, mu- spring survive to form the next generation. The effects
tant G has a slightly higher extinction probability be- of these two processes—growth and sampling—are com-
cause of its lower fecundity. We have assumed a Poisson bined to determine the probability that a rare mutant
distribution of offspring, but the effect we describe de- ultimately leaves no descendants. If fn(0) gives the proba-
pends only on the reasonable assumption that lower bility that zero offspring have survived after n genera-
fecundity entails a higher probability of having zero tions of growth and sampling, we find that the extinction
surviving offspring in a single generation. probability v is given by

This difference in extinction probability between the
v � lim

n →∞
fn(0) (1)two mutant strains accrues such that the cumulative

extinction probability, shown in the inset, differs sub-
stantially depending on the mechanism of the selective (Haldane 1927).

Following Haldane and others, we define the extinc-advantage. Put another way, we see in the top of Figure
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tion probability, v, as the probability of ultimately leav- we use td to denote the generation time for the mutant,
with t d � 1. The average number of offspring for theing no descendants, and therefore the fixation probabil-

ity u is simply given by u � 1 � v. Since we do not allow wild type in t time units (wild-type generations) is r t. As
illustrated in the example, for a mutation with a fecun-our populations to grow without bound, this is strictly

true. Another implicit assumption, however, is that a dity advantage, the mean number of offspring is (r(1 �
s))t ; for a generation time advantage, this number isbeneficial mutation can be lost only by producing zero

offspring in either the growth or the sampling processes. r t /t d.
This is not strictly true, since the lineage may also be The overall growth rate of the mutant will then be
eliminated by other factors such as clonal interference the same in both cases when the mutant generation
(see Gerrish and Lenski 1998). The effects we describe time is
in the sections that follow are therefore mitigated if
clonal interference accounts for a substantial compo- t d �

1
1 � logr(1 � s)

. (2)
nent of the extinction probability.

Population bottlenecks, fecundity advantage: A popu-
Once again, this equivalence is illustrated in the ex-lation bottleneck is a severe reduction in population
ample.size, typically caused by intense competition, adverse

For a small selective advantage (td � 1), it is clear thatenvironmental conditions, or parasitism. In many natu-
after the favorable mutation first appears, both mutantral populations, seasonality imposes regular bottlenecks.
and wild type will likely experience the same number ofNatural populations of parasites, similarly, are subject
generations before the next bottleneck. The replicationto severe bottlenecks in their transmission from host to
times of the mutant will occur progressively earlier inhost. In laboratory populations, population bottlenecks
the growth phase, however, as the generation time ad-are often an inherent feature of the experimental proto-
vantage of the mutant accrues. Eventually, the mutantcol; bacterial populations, for example, may be sampled
population will experience � � 1 replications betweenat ratios of 1:100 or more during serial passaging, usually
two bottlenecks. It is fairly straightforward to include thison a daily basis (Lenski et al. 1991; Lenski and Trav-
effect in Haldane’s probability-generating functions, asisano 1994). Experimental evolution in viruses likewise
described in the appendix. The fixation probability caninvolves serial passaging (Kichler Holder and Bull
then be determined for a mutation conferring a re-2001) or periodic sampling when chemostat tubes sus-
duced generation time but no increased fecundity.taining populations of phage and host are changed

(Bull et al. 1997).
Haldane’s approach can naturally be extended to in-

RESULTS
clude populations that experience growth followed by

Useful approximations: For a population of constantbottlenecks. We assume that these bottlenecks occur at
size, it is well known that the fixation probability canfixed times, every � generations. (Our analysis does not
be approximated by 2s, for a mutation conferring ayet include situations in which population bottlenecks
fecundity advantage (Haldane 1927). When popula-occur randomly, at variable times.) Once again, the
tion bottlenecks are included in the analysis, this ap-appendix describes the derivation in detail. We find
proximation changes to �s for moderate values of �that the extinction probability is again given by Equation
(Heffernan and Wahl 2002). Our overall goal was to1, but fn(x) in this case includes � growth processes
find similar approximations for mutations conferringfollowed by one sampling process, the population bottle-
reduced generation times.neck.

For an analytically tractable approximation, we im-An important point to note is that for the typically
posed the condition that the mutant with a reducedassumed case of Poisson-distributed offspring and ran-
generation time experiences an extra generation regu-dom sampling of offspring to obtain the next genera-
larly every b bottlenecks. (Thus, in a constant popula-tion, a constant population size is formally equivalent
tion, an extra generation occurs every b wild-type genera-to a population that undergoes bottlenecks at rate � �
tions.) This allows us to write td as the fraction �b/(�b �1. When deriving the fixation probability for a mutation
1), where both � and b are integers. For example, inwith a reduced generation time, we therefore investigate
Figure 1 the mutant doubles 10 times in the time itthe general case of a bottlenecked population for any
takes the wild type to double 9 times, and td wouldinteger �. To address a constant population size, we can
therefore be given by 18/19.then consider the case � � 1.

We can then use the Kolmogorov forward equationReduced generation time, constant or bottlenecked
(Crow and Kimura 1970), in a derivation analogouspopulation: To model the selective advantage in terms
to that described in Wahl and Gerrish (2001). In brief,of a reduced generation time, we find a generation time
the approach is an extension of classic work and allowsfor the mutant that would produce the same overall
us to approximate the fixation probability as u � 1 �growth rate as a (1 � s) fecundity advantage. Since the

wild-type generation time is by definition 1 time unit, e�2M/V, where M is the mean number of offspring after
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show that M � r and V � r(1 � r(b � 1))(1 � r��).
Thus

u � 1 � exp� �2
(1 � r(b � 1))(1 � r��)�

in this case.
For a Poisson distribution of offspring with mean r,

the derivation of V is quite difficult. In this situation,
we restrict our attention to a population in which each
individual produces an average of two offspring per
replication, that is, r � 2. This is the natural case to
consider for bacterial fission, for example. This allows
us to compute M � 2 and V � 4(2b � 1)(1 � 2��),
yielding

u � 1 � exp� �1
(2b � 1)(1 � 2��)� , r � 2.

Although this equation is still fairly unwieldy, it allows
us to make a number of further approximations. For a
constant population, � � 1. If b is moderately large (such
that 2b � 1 � 2b), we find u � 1 � exp(�1/b). The
condition that b is large implies that s is small, and thus
we have the further approximation

u � s
ln 2

, � � 1, s small.

If we had incorrectly assumed that the mutation of inter-
est conferred a fecundity advantage, the fixation proba-
bility would be given by 2s (Haldane 1927). Thus theFigure 1.—Growth and extinction probability of two mu-
error made in assuming a fecundity advantage, if in facttant strains. In the top, the solid line shows the growth of a
the mutation confers a generation time advantage, isviral mutant that has a fecundity advantage, mutant F. In each

generation, the number of copies of F is Poisson distributed 2 ln 2 � 1, or 39%.
and increases by a factor of 2(1 � s). The dotted line shows Similarly, when � is moderately large (more than
the growth of a different mutant that has a reduced generation about five generations between bottlenecks) we havetime, mutant G. The number of copies of G increases by only

1 � 22�� � 1, which yields u � 1 � exp(�1/2b) whena factor of 2 in each generation, but the generation times are
s is small. Again, this yieldsslightly shorter. Circles and crosses show the number of copies

after each lysis event and illustrate that after 9 time units, both
F and G have exactly the same number of copies at exactly u � 1

2b
� �s

2 ln 2
, � moderate, s small.

the same instant. The overall growth rates of the two mutant
strains are identical. The bottom shows the probability that

Assuming a fecundity advantage, the fixation probabilityeither F (circles) or G (crosses) have zero offspring in each
successive generation. During the first few generations, mu- for population doublings under bottlenecks is approxi-
tant G has a slightly higher extinction probability because of mately �s for moderate values of � (Heffernan and
its lower fecundity. The inset plots the cumulative extinction Wahl 2002). Thus the error in assuming a fecundityprobability after 10 generations for mutants G (dotted line)

advantage is again 39%.and F (solid line).
Numerical and simulation results: The fixation proba-

bility can also be determined numerically, that is, by
taking the limit described in Equation 1 using standard
computational methods. Over a large range of s, thissome time step, and V is the variance of this number.

In our case, we take a “time step” to be b bottlenecks. technique verifies that the fixation probability of the
mutant is significantly affected by the mechanism ofThe appendix describes the calculation of M and V in

more detail. the selective advantage. The top of Figure 2 shows the
fixation probability when fecundity is increased (solidWe must also decide how to model the growth and

sampling of the population. If we assume that each line) or when generation time is decreased (dashed
line) as functions of s for a constant population (� �individual in the population has exactly r offspring in

each generation, and that individuals are chosen at ran- 1). The analytical approximations 2s (dotted line) and
s/ln 2 (dotted-dashed line) are also shown. The logarith-dom to survive the bottleneck, it is straightforward to
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Figure 2.—Generation time vs. fecundity ad-
vantage. The fixation probability for a rare bene-
ficial mutation with selective advantage s was com-
puted as described in the text for mutants with a
fecundity advantage (solid line) or an equivalent
generation time advantage (dashed line). The an-
alytical approximations 2s (dotted line) and s/ln
2 (dotted-dashed line) are also shown for compar-
ison. In the top, the population has a constant
size (� � 1). In the bottom, the population grows
for five wild-type generations, after which a bottle-
neck reduces the population to its initial size;
this process repeats indefinitely. For both top and
bottom r � 2. Triangles show the same results
calculated by simulating the fate of a single bene-
ficial mutation 100,000 times. The standard devia-
tion of the simulated data was calculated as (u(1 �
u)/105)1/2, but the resulting error bars are too
small to discern on the scale of the figure.

mic plot shown here illustrates the power-law relation Our analytical work assumes that the bottleneck oc-
curs after an integer number of wild-type generations.between fixation probability and s, but obscures the true

magnitude of the differences involved; see Figure 3 for We relaxed this assumption using the Monte Carlo ap-
proach, investigating bottlenecks that occur at variousclarification. The bottom of Figure 2 shows the same

results for � � 5; in this case the appropriate analytical times between the first and second generations during
the growth phase. As shown in Figure 4, the fixationapproximation is �s/(2 ln 2) (dotted-dashed line). For

comparison, the classic fixation probability, 2s, is also probabilities for mutations conferring either a fecundity
or generation time advantage are affected in complexshown (dotted line). Note that when � � 1, 2s is a very

poor approximation to the fixation probability because ways by changes in the bottleneck time. Briefly, this
is because the pattern of the number of generationsthe effects of population growth between bottlenecks

have been neglected (Wahl and Gerrish 2001). These between bottlenecks can be vastly different for noninte-
ger bottleneck times and can in some cases greatly re-numerical results were verified using Monte Carlo simu-

lation, in which large populations were modeled at the duce the fixation probability conferred by a fecundity
advantage. Thus, although the difference between thelevel of the individual bacterium (triangles).

The overall importance of the mechanism of the selec- two cases is clearly mitigated, fixation probabilities are
still significantly higher, on balance, for a fecundity ad-tive advantage is more clearly illustrated in Figure 3,

which shows the percentage error introduced by assum- vantage.
Our analytical work also assumes that the generationing a fecundity advantage when a mutation actually con-

fers a generation time advantage. We see that for a time for individuals carrying a beneficial mutation is
constant, such that the descendants of a rare mutantconstant population, or for a population experiencing

regular bottlenecks, this error approaches 40% for typi- all undergo fission, for example, at the same time for
all future generations. Again, we investigated the effectcal values of s.
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Figure 3.—Percentage dif-
ference in fixation probabil-
ity. The difference between
the fixation probabilities de-
termined with a fecundity or
generation time advantage is
plotted as a percentage of the
fixation probability with a gen-
eration time advantage. Popu-
lations grow for � wild-type
generations between popula-
tion bottlenecks, which reduce
the population to its initial size;
the case � � 1 corresponds to
a constant population size. In
all cases r � 2. Because we con-
sider only a limited set of s val-
ues [such that td � �b/(�b �
1)], the maximum value of s
varies with �.

of relaxing this assumption using the Monte Carlo ap- fecundity advantage (circles) or generation time ad-
vantage (squares) in this case. We find that fixationproach. Here we test a case in which each offspring of

the mutant, although genetically identical, has a small probability for a fecundity advantage decreases when
the lifetimes of genetically identical mutants have somevariation in fission time; bottlenecks occur regularly be-

tween the sixth and seventh generations of the growth variation. This effect gradually erodes the difference
between the two types of advantage when lifetimes arephase. Figure 5 shows the fixation probability for a

Figure 4.—Fixation proba-
bility vs. bottleneck time. The
fixation probability, u, is plot-
ted for a fecundity advantage
(circles) or a generation time
advantage (squares), for a
bottleneck that occurs at �
wild-type generations. Values
are calculated through Monte
Carlo simulation of 100,000
replications with r � 2 and
s � 0.0093; error bars show
the standard deviation of the
computed values, given by
(u(1 � u)/105)1/2.
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Figure 5.—Fixation proba-
bility with stochastic genera-
tion times. The fixation prob-
ability, u, is plotted for a fecun-
dity advantage (circles) or a
generation time advantage
(squares), for a bottleneck
that occurs at � � 6.91 wild-
type generations; r � 2 and
s � 0.0093. Values are calcu-
lated through Monte Carlo
simulation with 500,000 repli-
cations; error bars show the
standard deviation (u(1 � u)/
5 � 105)1/2. Each generation
time for each individual in
the simulation is drawn from
a normal distribution with
standard deviation �; the x-
axis plots the total standard
deviation for the descendants
of the mutant at the end of
the growth phase. Thus, on
the right side, the fission
times of the mutant offspring
after the growth phase occur
within a 20% window around
the mean �95% of the time.

sufficiently variable. Because even small biases become the substitution rate for beneficial mutations in natural
and experimental populations, since the overall fixationrelevant on evolutionary timescales, however, we predict

that the bias in favor of a fecundity advantage will persist rate will be lower than classically estimated if reductions
in generation time are possible. For example, since mu-in populations with variable generation times, but will

be most prevalent when there is minimal variability in tations conferring antibiotic resistance typically allow
bacteria to complete the cell cycle more quickly thanthe length of the reproductive cycle.
their drug-sensitive counterparts, we might model such
mutations as having a reduced generation time. Thus

DISCUSSION
when predicting how often these mutations will arise de
novo and survive the first few generations of growth andTheoretically, our results demonstrate that the mecha-

nism of the selective advantage is of critical importance. sampling, their reduced fixation probability should be
taken into account. Our results indicate that such muta-In particular, the classic “2s” approximation for fixation

probability does not hold for any mutation that reduces tions will survive less frequently than has been previously
predicted under the assumption that they confer a fe-the generation time: in this case, the fixation probability

should instead be approximated by s/ln 2 in a popula- cundity advantage (Levin et al. 2000).
The effect we describe is not conditional upon succes-tion of constant size. Figure 1 demonstrates the reasons

underlying this difference: although two beneficial mu- sive generations reproducing in lock-step. Variance in
the generation times of individuals carrying the muta-tations might have the same selective advantage s, the

same growth rate against the wild type, and the same tion of interest does, however, significantly mitigate this
“fecundity bias.” Similarly, variation in the time at whichexpected time to fixation, the mutation that increases

fecundity is more likely to survive its first few generations the bottleneck occurs reduces this effect. Since the bias
is of the order of 40% without these mitigating factors,of growth.

In describing this process mathematically, we were however, reduction due to either source of variation is
unlikely to eliminate the effect, especially when evolu-forced to explicitly define the processes underlying

growth in our model populations, entailing a number of tionary timescales come into play.
Although related to the classic evolutionary trade-offassumptions. We emphasize, however, that the general

results we describe depend only on one critical (but between increased fecundity and reduced development
time (Stearns 1992), the fecundity bias we report doesreasonable) assumption: that a slight increase in fecun-

dity implies a slight decrease in the probability of having not directly pertain to the optimization of these life-
history parameters. Theories of “rK-selection” assumezero offspring in each generation.

Practically, our results will be important in estimating that decreased development time implies reduced fe-



1016 L. M. Wahl and C. S. DeHaan

cundity (and vice versa); that is, you cannot have it both the assumption of equal survival probabilities is clearly
invalid and further assumes that an unlimited numberways. In contrast, our results pertain to populations in
of offspring are possible in one reproduction event.which both strategies are available and potentially ad-

We frame our analysis in terms that include bothvantageous to the organism. When either reduced gen-
populations of constant size and populations that sus-eration times or increased fecundity is possible, and
tain periods of growth followed by population bottle-even if they confer an equivalent growth advantage, we
necks. Bottlenecks are ubiquitous in natural systems andfind that fixation is biased in favor of fecundity. This
may in fact be more the rule than the exception forpredicts, for example, that if mutations of both types
natural populations in the face of constant seasonalityare available and occur at roughly equal rates, increases
and rapidly evolving parasitism. In experimental studiesin fecundity are a more likely adaptive response to a
of evolution, serial passaging imposes severe bottle-changing environment. Studies of the adaptation of
necks, often on a daily basis; these bottlenecks havefruit flies to bottle culture support our predictions, ex-
profound effects on evolutionary dynamics (Wahl et al.hibiting an increase in fecundity that was not matched
2002). The results of this study may have particularby reductions in generation time (Sgro and Partridge
relevance for these experimental systems, many of which2000). Similarly, increases in cell size are one of the
involve microbial populations in an environment thatclearest phenotypic changes in the adaptation of bacte-
favors growth. In this situation a decrease in generationrial populations to serial passaging environments (Len-
time is clearly a possible mechanism for the selectiveski et al. 1991). An increase in cell size is consistent
advantage; for lytic viruses and bacterial populations inwith increased offspring survival, but is not likely to
favorable environments, a shorter replication time isaccompany decreased generation time.
often a more natural assumption than an increase inOur results do not address the underlying rates at
offspring number. Now that detailed experimental workwhich mutations that either increase fecundity or de-
has begun to elucidate the molecular mechanisms un-crease generation time might spontaneously occur. For
derlying increased fitness in these systems (see, for ex-example, if mutations that reduce the generation time
ample, Bull et al. 2000), it will be fascinating to deter-occur 40% more frequently than mutations that in-
mine whether the predictions of this study are realizedcrease fecundity, the difference in fixation probability
in the laboratory.that we describe would be entirely offset. It is perhaps

We thank two anonymous referees for their insightful comments.impossible to predict which of these alternate mecha-
This work was supported by the Natural Sciences and Engineeringnisms will be more “accessible,” by mutation, to an evolv-
Research Council of Canada, the Ontario Ministry of Science, Tech-
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that the fixation probability for any mutation that de-
creases the generation time will be significantly less than
we would previously have predicted on the basis of the

LITERATURE CITED
selective advantage alone. Thus, observed substitution

Bull, J. J., M. R. Badgett, H. A. Wichman, J. P. Huelsenbeck, D. M.rates will not be an accurate reflection of the underlying
Hillis et al., 1997 Exceptional convergent evolution in a virus.

mutation rates unless the mechanism of the fitness in- Genetics 147: 1497–1507.
Bull, J. J., M. R. Badgett and H. A. Wichman, 2000 Big-benefitcrease for each mutation is known. The interesting point

mutations in a bacteriophage inhibited with heat. Mol. Biol. Evol.here is that even if the population size, structure, and 17: 942–950.
mating behavior can be well estimated, the fitness of a Crow, J. F., and M. Kimura, 1970 An Introduction to Population Genet-

ics Theory. Harper & Row, New York.beneficial mutation is not enough to predict its fixation
Fisher, R. A., 1930 The Genetical Theory of Natural Selection. Oxfordprobability, as we had previously assumed. The mecha- University Press, Oxford.

nism by which the selective advantage is conferred is Gerrish, P. J., and R. E. Lenski, 1998 The fate of competing benefi-
cial mutations in an asexual population. Genetica 102/103: 127–also of critical importance.
144.Our model assumes that the survival probability to Haldane, J. B. S., 1927 The mathematical theory of natural and

reproductive age is the same for both fecundity and artificial selection. Proc. Camb. Philos. Soc. 23: 838–844.
Haldane, J. B. S., 1932 The Causes of Evolution. Harper Brothers,generation-time mutants. This assumption is clearly in-

New York.
valid when the generation times in the two cases differ Harris, T. E., 1963 The Theory of Branching Processes. Springer-Verlag,

Berlin/New York.significantly, suggesting a direction for future work. In
Heffernan, J. M., and L. M. Wahl, 2002 The effects of genetic driftparticular, consider the possibility of a mutation that

in experimental evolution. Theor. Popul. Biol. 62: 349–356.
delays reproduction, but has a corresponding increase Kichler Holder, K., and J. J. Bull, 2001 Profiles of adaptation in

two similar viruses. Genetics 159: 1393–1404.in fecundity, such that the overall growth rate is still
Kimura, M., 1957 Some problems of stochastic processes in genetics.(r(1 � s))t. Using the current model, we might predict Ann. Math. Stat. 28: 882–901.

that such a mutation would have an even higher fixation Kimura, M., 1962 On the probability of fixation of mutant genes
in a population. Biometrics 19: 1–17.probability than the classic 2s approximation, implying

Lenski, R. E., and M. Travisano, 1994 Dynamics of adaptation andthat delaying reproduction indefinitely would maximize diversification: a 10,000-generation experiment with bacterial
populations. Proc. Natl. Acad. Sci. USA 91: 6808–6814.fixation probability. This describes a scenario in which



1017Fixation With Reduced Generation Time

Lenski, R. E., M. R. Rose, S. C. Simpson and S. C. Tadler, 1991 to determine the overall pgf of process g followed by
Long-term experimental evolution in Escherichia coli. I. Adaptation

process h, we can simply take the composition g(h(x)),and divergence during 2000 generations. Am. Nat. 138: 1315–
1341. also written as g � h(x). The overall probability-generat-

Levin, B. R., V. Perrot and N. Walker, 2000 Compensatory muta- ing function for the mutant lineage after one generation
tions, antibiotic resistance and the population genetics of adap-

is then f(x) � g � h(x). After n generations, the proba-tive evolution in bacteria. Genetics 154: 985–997.
Sgro, C. M., and L. Partridge, 2000 Evolutionary responses of the bility-generating function for the total number of off-

life history of wild-caught Drosophila melanogaster to two standard spring in the mutant lineage will be
methods of laboratory culture. Am. Nat. 156: 341–353.

Stearns, S. C., 1992 The Evolution of Life Histories. Oxford University fn(x) � f � f � f . . . (n times) . . . f(x).Press, Oxford.
Wahl, L. M., and P. J. Gerrish, 2001 Fixation probability in popula-

For any pgf f(x) � p0 � p1x � p2x 2 . . . evaluating attions with periodic bottlenecks. Evolution 55 (12): 2606–2610.
Wahl, L. M., I. Saika-Voivod and P. J. Gerrish, 2002 Evaluating x � 0 eliminates the higher terms and leaves us with p0.

the impact of population bottlenecks in experimental evolution. Haldane therefore computed the extinction probability,
Genetics 162: 961–971.

the probability that the lineage is ultimately eliminated,Wright, S., 1931 Evolution in Mendelian populations. Genetics 16:
97–159. as v � limn →∞ fn(0) (Haldane 1927).

Population bottlenecks: The derivation above can nat-Communicating editor: M. Feldman
urally be extended to include populations that experi-
ence growth followed by bottlenecks. We assume that
these bottlenecks occur at fixed times, every � genera-APPENDIX
tions. In this case the overall generating function for

Fixation probability with a fecundity advantage: We the mutant lineage after one growth phase (� successive
assume that a wild-type individual produces on average generations of growth) and one bottleneck is
r offspring per generation and thus produces r t offspring

f(x) � g � g � g . . . (� times) . . . g � h(x),in t generations. A mutant with a fecundity advantage
s produces (r(1 � s))t offspring in the same amount of

which we also denote g� � h(x).
time.

An important point to note is that for the typical case
We first introduce a general method of determining

of Poisson-distributed offspring and binomial sampling,
the fixation probability in the classic case of a fecundity

a constant population size is formally equivalent to a
advantage and constant population size. Following Hal-

population that undergoes bottlenecks at rate � � 1.
dane (1927), we imagine that a large number of off-

This is because for g(x) � e r (1�s)(x�1) and h(x) � 1 �
spring are produced (the “growth” phase), of which a

1/r � (1/r)x, we find that g � h(x) � e(1�s)(x�1).
fraction survive (or are “sampled”) to form the next

Fixation probability with a reduced generation time:
generation. Let g(x) be the probability-generating func-

We let td denote the generation time for a mutant with a
tion (pgf) that describes the number of offspring pro-

reduced generation time (but no fecundity advantage),
duced in a single mutant lineage during one generation.

such that td � 1. The average number of offspring for
A pgf is a mathematically convenient way to express a

the wild type in t time units (wild-type generations) is
discrete probability distribution and is defined in the

r t. For a mutation with a fecundity advantage, the mean
following way: if the probability of producing i offspring

number of offspring is (r(1 � s))t; for a generation time
is p i , g(x) is simply formed by writing g(x) � p0 � p1x �

advantage, this number is r t/td.
p2x 2 � . . . (Harris 1963). As described above, g(x) will

The overall growth rate of the mutant will then be
reflect the selective advantage of the mutant and will

the same in both cases when the mutant generation
have a larger mean than the analogous growth distribu-

time is td � 1/(1 � logr(1 � s)) � 1/(1 � s�). Here for
tion for the wild type. For Poisson growth with mean

convenience the notation s� has been introduced, where
2(1 � s), we note that g(x) can also be written in the

s� � logr(1 � s); note that when s is small, s� � s/log(r).
short-hand notation g(x) � e 2(1�s)(x�1).

For the mutation with a generation time advantage,Let N0 denote the total size of the population, includ-
the mutant population will eventually experience � �ing both mutant and wild type. To maintain a constant
1 generations between two bottlenecks. For a mutationpopulation size, only N0 of the newly created offspring
that first arises at the beginning of a growth phase, thiswill survive each generation. Thus, if each wild-type indi-
will first occur before bottleneck n1, wherevidual produces r offspring per generation on average,

the chance that each offspring survives is 1/r. We can
(n1� � 1) � 1

1 � s �� 	 n 1�, yielding n 1 

1

s ��
.then write the pgf for this sampling process, h(x), in

exactly the same way as we formed g(x). In particular,
Extending this logic, it can be seen that the successivefor the sampling process we know that the probability
bottlenecks ni before which the mutant strain experi-that an individual survives is p1 � 1/r, while the probabil-
ences an extra generation are given by the smallestity that the individual does not survive sampling is p0 �
integer that is greater than i/(s��).1 � 1/r. This allows us to write h(x) � 1 � 1/r � (1/r)x.

One of the reasons why pgfs are convenient is that The probability-generating function for the mutant lin-
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eage is therefore a composition of f �(x) � g��1 � h(x) Finally, we make use of the known mean and variance
of a pgf to evaluate M and V as described in the Usefulfor growth and sampling phases where an extra generation

occurs, and f(x) � g� � h(x) for all other growth and approximations section. For any pgf f(x), the mean of
the underlying distribution is given by f �(1) and thesampling phases. For example, if � � 2 and s� � 1⁄6, the

generating function for the mutant strain after six bottle- variance by f ��(1) � f �(1) � [ f �(1)]2 (Harris 1963).
We can therefore determine M and V for the approxi-necks would be f6(x) � f � f � f � � f � f � f �.

Once again, the extinction probability can then be mations described in the text by simply taking the first
and second derivatives of fb(x) � f � f � . . . � f �(x).determined by evaluating Equation 1.


