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THE purpose here is to discuss the limits of theoreti- of evolutionary theory. For theoretical population ge-
netics, processes over longer time scales are of interestcal population genetics. This 100-year-old field now

sits close to the heart of modern biology. Theoretical only insofar as they directly affect observable patterns
of variation within species. The focus on current geneticpopulation genetics is the framework for studies of hu-

man history (Reich et al. 2002) and the foundation for variation came to the fore during the 1970s and 1980s
with the development of coalescent theory (Kingmanassociation studies, which aim to map the genes that

cause human disease (Jorde 1995). Arguably of more 1982, 2000), or the mathematics of gene genealogies.
Ewens (1990) reviews this transition from the forward-importance, theoretical population genetics underlies

our knowledge of within-species variation across the time approach of classical population genetics to the
new, backward-time approach. It can be seen both inglobe and for all kinds of life. In light of its many incarna-

tions and befitting its ties to evolutionary biology, the classical work (Fisher 1922; Wright 1931) and in coa-
lescent theory (Kingman 1982; Hudson 1983; Tajimalimits of theoretical population genetics are recognized

to be changing over time, with a number of new paths 1983), both of which are considered below, that the time
frame over which the models of theoretical populationto follow. Stepping into this future, it will be important

to develop new approximations that reflect new data genetics apply within a given species is a small multiple
of Ntotal generations, where Ntotal is the total populationand not to let well-accepted models diminish the possi-

bilities. size, or the count of all the individuals of the species.
Looking at gene genealogies in humans, for example,It is valuable to define this field narrowly. Theoretical

population genetics is the mathematical study of the it seems that this means roughly from 104 to 106 years
(Harris and Hey 1999).dynamics of genetic variation within species. Its main

This allows us to suppose that the parameters affect-purpose is to understand the ways in which the forces
ing the species that we wish to model have remainedof mutation, natural selection, random genetic drift,
relatively constant over time, compared to the situationand population structure interact to produce and main-
in evolutionary theory. For purposes of discussion, con-tain the complex patterns of genetic variation that are
sider the following simple model which, with embellish-readily observed among individuals within a species. A
ments, might serve to describe any species from Homotremendous amount is known about the workings of
sapiens to Bacillus subtilis. The species is divided into Dorganisms in their environments and about interactions
subunits, each of size N, so that the total populationamong species. Ideally, with constant reference to these
size is Ntotal � ND. Corresponding to the phenomenafacts—the bulk of which are undoubtedly yet to be dis-
listed above, the other parameters of the model are thecovered—theoretical population genetics begins by dis-
per-locus, per-generation probability of mutation u, thetilling everything into a workable mathematical model
selective advantage or disadvantage, s, of some type rela-of genetic transmission within a species.
tive to some other type in the population, and a parame-Taking this narrow view precludes the application of
ter, m, which determines the extent of population struc-theoretical population genetics to studies of long-term
ture.evolutionary phenomena. This, instead, is the purview

The subunits in the model are used below to represent
D diploid individuals, so that N � 2 is the number of
copies of each chromosome within each individual.
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this departure is to emphasize the similarities between The first limiting result was established independently
by Hardy (1908) and Weinberg (1908) for the case ofthe diploid model and other models of population struc-

ture. Thus, the same model is used to represent a popu- two alleles, A and a, with frequencies p and q � 1 � p,
respectively, in a population of diploid, monoeciouslation subdivided into D local populations, or demes (Gil-

mour and Gregor 1939), each containing N individual organisms; see Crow (1988) for a perspective on this
important result. In this case, the subunits in the modelorganisms.

Many details have been ignored in this model for the represent the organisms (N � 2), the population is
supposed to be infinite (D � ∞), without mutation (u �sake of simplicity. For example, mutation is a complex

process, which includes various kinds of recombination, 0) or selection (s � 0), and offspring are formed by
either random mating or random union of gametesand natural selection is similarly not likely to be so

simple that a single parameter captures all of its intrica- (m � 1). Then, the Hardy-Weinberg law states that the
frequencies of the genotypes AA, Aa, and aa will becies. In addition, the general term “population struc-

ture” encompasses dioecy, ploidy level, age structure, equal to p2, 2pq, and q 2 after a single generation, regard-
less of the initial genotype frequencies, and that they willreproductive patterns such as partial selfing, as well as

the various forms of geographical structure and dis- remain in these frequencies forever. Provine (1971)
discusses the important historical role of the Hardy-persal. Finally, as noted above, all parameters are as-

sumed to not change over time. However, with some Weinberg law in evolutionary biology, which was to show
that the mechanism of inheritance would not itself causeflexibility in the interpretations of parameters, this

model can be used to illustrate the limits of theoretical the variation upon which selection acts to be depleted
in a population.population genetics.

The ranges of the parameters are restricted by nature. The simplicity of the Hardy-Weinberg law is a conse-
quence of its very stringent assumptions. It exists onlySpecifically, D and N are whole numbers, both of which

it is natural to assume are �1. The other parameters in the special case in which the values of all parameters
are fixed and given by (D � ∞, N � 2, u � 0, s � 0,can vary continuously, but also have natural ranges: 0 �

u � 1, s � �1, and 0 � m � 1. The last two require m � 1). Fisher (e.g., 1930) and Haldane (e.g., 1932),
and a great number of workers who followed their leadsome context. Let m be the fraction of each subunit

(of which there are D) that is replaced by offspring were content with the assumption of infinite population
size. They sought to establish the dynamics of allelerandomly sampled from the entire population each gen-

eration. This is the island model of population subdivi- frequencies in an expanded Hardy-Weinberg popula-
tion that included mutation and selection. As a result,sion and migration introduced by Wright (1931), but

it can be used to represent other forms of structure as much of classical population genetics takes place in the
restricted parameter space where {(D, N, u, s, m); D �well. Subdivision is at its least when m � 1 and is at its

most when m � 0. Selection is imagined between two ∞, N � 2, 0 � u � 1, s � �1, m � 1}. However, the
overwhelming majority of results have been derived un-types, one with fitness 1 and the other with fitness 1 �

s, and s � �1 precludes negative fitness values. With der the additional assumption that u and s are small.
Although every population is finite, so that D � ∞ canselection among more than two types, the fitness of one

of them is taken to be equal to one and this establishes never be true, these classical predictions are valuable be-
cause they establish tendencies at work in populationsthe relative selection coefficients (values of s) of the

others. of any size (e.g., the frequency of a favored allele will
increase over time). Further, these classical predictionsThe current and historical boundaries of theoretical

population genetics can be understood with reference should be close to true if the population is “large enough.”
Of course, it is only by considering a finite populationto the object of study, which is genetic variation within

species, but also in terms of methodology. The ridicu- that these two statements can be investigated and veri-
fied. In addition, some vital phenomena simply cannotlously oversimplified model just described already has

five parameters. Even with the restrictions above, there be studied using an infinite population model. Ques-
tions concerning the fixation or loss of alleles fromis an enormous five-dimensional space that defines all

possible kinds of species under the model: {(D, N, u, s, the population or, more generally, questions about the
behavior of alleles in low copy number are outside them); D � 1, N � 1, 0 � u � 1, s � �1, 0 � m �

1}. Theoretical population geneticists obtain predictive boundaries of classical, infinite-population-size theory.
No population is so large that finite size can be ig-equations by simplifying such complicated models,

again ideally with close attention to the biological rele- nored as a factor contributing to patterns of genetic
variation within a species. For example, in an infinitevance of any assumptions made. Formally, this is done

by taking mathematical limits. The hope is that by doing population with mutation but no selection, every possi-
ble allelic type will be present at the frequency deter-so, i.e., by further restricting the ranges of parameters,

tractable analytical results or simple approximations to mined by the pattern and rate of mutation. However,
even a stretch of 100 nucleotides has 4100 � 1060 possiblethe model can be obtained, which will be both useful

and illuminating. alleles, and no population comes even remotely close
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to being this large. Considered further, the conse- able. Early on, Fisher (1922) and Wright (1931) con-
sidered a continuous time, continuous allele-frequencyquences of reproduction in finite populations are rather

amazing. First of all, without mutation (and assuming approximation to the model, which allowed many re-
sults of biological interest to be derived. Their resultsat least some mixing: m � 0), all variation will eventually

be lost from any population. More subtly, reproduction relied on a diffusion approximation to the discrete
model (Komolgorov 1931). Malécot (1944, 1946)with any reasonable fidelity, which is assured by univer-

sally small rates of mutation (Drake et al. 1998), causes used the same ideas and rigorous methods to greatly
extend the application of diffusion results in populationidentical or related alleles to accumulate in the popula-

tion even as they are all ultimately ephemeral (Watter- genetics. Feller (1951) provided the general mathe-
matical framework for these models, and Kimurason 1976).

Random genetic drift is the term used to describe the (1955a,b) obtained the full solution of the time-depen-
dent distribution of allele frequencies in a population.stochastic effects of reproduction in a finite population.

Historically, the need to incorporate random genetic The transition from the discrete model to the continu-
ous one happens in the limit as the population sizedrift into population genetic models was motivated by

observations of J. T. Gulick and others concerning geo- tends to infinity, but it relies on very different assump-
tions about the other parameters than are made in classi-graphic variation within species without apparent selec-

tive causes—see Provine (1986) for a thorough compi- cal deterministic work. This model, which is often called
the diffusion limit of population genetics, exists in thelation of the history—and by the trenchant argument

of Hagedoorn and Hagedoorn (1921), which demon- limit as D tends to infinity and assumes that limD→∞ 4Du �
� and limD→∞ 4Ds � � are finite. Time is rescaled so thatstrated the need to understand the random effects of

reproduction in finite populations. The result was the it is measured in units of Ntotal � ND � 2D generations.
The continuous model holds in the limit because singleWright-Fisher model of random genetic drift.

To be concrete, consider the population model as it generations and single copies of alleles represent, re-
spectively, infinitesimal amounts of time on the newwas used above to illustrate the Hardy-Weinberg law in

an infinite population of diploid organisms, but elimi- time scale and infinitesimal differences in allele fre-
quency. This is the appropriate diffusion approximationnate the assumption of infinite population size. This

leaves {(D, N, u, s, m); D � 1, N � 2, 0 � u � 1, s � 1, when 1/D, u, and s are all small and do not differ too
greatly in magnitude. Finally, the limit is taken withm � 1} for the parameter space. The total population

size is Ntotal � ND � 2D and is finite. The Wright-Fisher the allele frequency i/(2D) assumed to be fixed (i.e.,
constant) in the limit as D tends to infinity, which meansmodel of random genetic drift states that the D diploid

individuals that form generation t � 1 are obtained by that for most purposes—but see Bürger and Ewens
(1995)—this model is not appropriate when the num-randomly sampling pairs of gametes, with replacement,

from the adults of generation t. Generations are non- ber of copies of an allele in the population is not large.
Note that the apparent dependence of the parametersoverlapping, so all adults die and are replaced by off-

spring. If there are currently i copies of allele A among u and s on D in the assumptions limD→∞ 4Du � � and
limD→∞ 4Ds � � is not a statement about biology. Thegametes, then the frequency of allele A now is p � i/

(2D), and the probability Pij that there are j � 0, 1, model does not suppose, for example, that if the popula-
tion doubled in size, the mutation rate and the selection. . . , 2D copies of allele A at the beginning of the next

generation is given by the familiar binomial distribution coefficient would drop by one-half. The standard diffu-
sion limit is simply a mathematical approximation towith parameters 2D and p � i/(2D).

Fisher used the above model of genetic drift implic- the behavior of a large population in which the probabil-
ity of mutation and the selection coefficient(s) are small.itly, in many cases assuming a Poisson distribution of

offspring number with the mean equal to one per indi- Like the classical (D � ∞) results, it applies in a particu-
lar region of the parameter space, one in which D →vidual, which is the large-D approximation to the above

binomial distribution with i � 1. Wright used the model ∞ but where the effects of random genetic drift are not
negligible. Another possible point of confusion is theexplicitly, as a null model for the dynamics of a randomly

mating population of finite size. Fisher and Wright extra factor of two in the parameters � and � relative
to the way in which time is rescaled. This practice wasshowed, among other things, that the rate of loss of

heterozygosity in a population is equal to 1/Ntotal � 1/ inherited from Wright and Fisher, and it simply reflects
biologists’ great concern for heterozygosity, or polymor-(2D). This illustrates the statement above that the time

scale over which theoretical population genetics consid- phism between a pair of chromosomes.
Nearly all of modern population genetics is baseders things is a small multiple of Ntotal generations.

The Wright-Fisher model of random genetic drift is upon this standard diffusion model, although much of
the time it is used implicitly. It is the source of thea discrete time, discrete allele-frequency model. Time

is measured in numbers of generations and Pij describes common practice of simplifying expressions obtained
from a discrete model by keeping only terms involvingchanges in the numbers of alleles. This model is surpris-

ingly difficult to analyze, and few exact results are avail- u, s, and 1/D and throwing out “small” terms like u 2, s 2,
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1/D 2, u/D, etc. In this case it is clear why 1/D, u, and s gives a historical perspective, which includes credit to
Gustave Malécot for having the original idea of tracingshould not differ too greatly in magnitude. For example,

if D � 104 and u � 10�8, it does not make sense to lineages back to common ancestors; see also Nagylaki
(1989). Applications of coalescent theory to the prob-ignore terms involving 1/D 2 but keep terms involving

u. Technically, the standard diffusion holds for any � lems of modern biology abound, from the geographic
origin of Plasmodium falciparum (Joy et al. 2003) andand �, as long as these remain finite as D tends to infinity.

Thus, the standard diffusion model can be used to the dynamics of HIV within infected individuals (Drum-
mond et al. 2002) to the extent of gene flow betweenmodel weak selection and mutation by making � and �

small and to model strong selection and mutation by recently separated cichlid species (Hey et al. 2004).
The standard diffusion approximation has permeatedmaking � and � large. The risk in doing so is that the

error of using these results to approximate the results the field so thoroughly that it shapes the way in which
workers think about the genetics of populations. Therefor a finite population may be large unless D is very

large (Ethier and Norman 1977). are positive aspects of this. For example, the parameters
� � 4Du and � � 4Ds capture the important and fascinat-There are more appropriate approximations than the

standard diffusion, even other diffusion approxima- ing fact that even very weak mutation and selection can
have a strong effect if the population size is large. Thistions, if one needs to model populations that fall into

other regions of the parameter space (Feller 1951; illustrates the potentially important role of the popula-
tion size in setting the time scale of population geneticKarlin and McGregor 1964). One which is well known

and has been fairly well exploited to address questions of change. However, in terms of the general model with
parameter space {(D, N, u, s, m); D � 1, N � 1, 0 � u �fixation probabilities since Fisher (1922) and Haldane

(1927) is the branching-process approximation for the 1, s � �1, 0 � m � 1}, the standard diffusion model
can be viewed only as a model of weak mutation andnumber of copies of an allele. The counts of an allele

can be approximated by a branching process (without weak selection. For selection, the term “strong” would
best be reserved for cases in which s is either close toreference to the rest of the population) in the limit as

D tends to infinity for fixed values of u and s but where �1 or much greater than zero (e.g., s � 10), while the
typical usage is to say, roughly, that |�| � 10 constitutesthe number of copies of the allele is not large. This

complements the classical deterministic model, which strong selection.
It is problematic when conclusions drawn from a spe-makes the same assumptions about D, u, and s, but

applies only when the counts of alleles are very large. cial case of a general model become normative state-
ments carried over to other situations. Under the as-For a recent example, see Wahl and DeHaan (2004).

Another approximation, the Gaussian diffusion, sits sumptions of the standard diffusion model, in which
D → ∞ while � and � remain fixed, everything dependsbetween the standard diffusion model and the classical

deterministic results. In a somewhat neglected article— only on the products Du and Ds. This limiting result is
responsible for the notion that it is impossible to esti-but see Nagylaki (1990) and Gillespie (2001)—

Norman (1975) proved that with s → 0 and u → 0, but mate D and u, for example, separately and that only �
can be estimated. However, this is simply a consequenceDs → ∞ and Du → ∞, the trajectories of allele frequen-

cies would tend strongly to the deterministic predictions of the assumptions of the model, which might be ex-
pected to break down in cases outside the region ofbut with small deviations. Further, these stochastic devia-

tions in allele frequencies tend to zero as D becomes parameter space in which the standard diffusion is ap-
propriate. For example, it breaks down for very largemuch larger than 1/s and 1/u. Thus, if D is very much

greater than 1/s and 1/u, and the latter are large, the samples in a coalescent model (n/D → x as D → ∞),
allowing both D and u to be estimated (Wakeley anddeterministic equations are very nearly correct (as long

as the number of copies of each allele is large). Such Takahashi 2003). While it may be true that there is
low power to estimate D and u separately, questionsconcerns underlie the use of a stochastic treatment of

allele frequencies close to zero or one and a determinis- about this cannot even be posed within the framework
of the standard coalescent.tic treatment in the interior, for example, by Kaplan et

al. (1989) and Gillespie (1991). A parallel set of issues arises in the study of structured
populations. The simple model adopted here includesReturning to the ubiquity of the standard diffusion

approximation, the addition of a single assumption, that Wright’s (1931) island model of population subdivi-
sion and migration, which he proposed to help explainthe sample size n is constant, so that n/D → 0, as D

tends to infinity (roughly: n 	 D), yields coalescent nonadaptive differences among different subunits of a
species—recall the observations of Gulick—and whichtheory (Kingman 1982; Hudson 1983; Tajima 1983;

Krone and Neuhauser 1997; Neuhauser and Krone became part of his shifting balance theory of evolution
(Provine 1986). Wright introduced the diffusion ap-1997). Coalescent theory describes the genetic ancestry

of a sample and provides the tools for the analysis of proximation to obtain the equilibrium distribution of
allele frequencies on a single island under the assump-intraspecies molecular data. Nordborg (2001) gives a

recent thorough review of this field. Kingman (2000) tion of a constant allele frequency among migrants.



5Perspectives

Thus, in addition to � � limN→∞ 4Nu and � � limN→∞ difficulties are greater because subdivision, i.e., when
m 
 1, increases the complexity of the system substan-4Ns, which Wright defined for the single island of N

diploid organisms rather than for the total population, tially. Because there are more parameters, there are
more choices as to how the parameters might be relatedthe island model has a scaled migration parameter, M �

limN→∞ 4Nm. The parameter M captures the notion that or restricted in approximations to the model.
The best known of these limits is the one that under-small amounts of migration over the time scale of N

generations can have a very large effect; see also Nagy- lies the structured coalescent process (Notohara 1990;
Wilkinson-Herbots 1998). This is the finite-islandlaki (1980). As with � and �, the relevance of the param-

eter M in the limiting model should not be taken to model with N → ∞ and with parameters scaled as
Wright (1931) did originally. This model frames mostmean it will be impossible to separately estimate N and

m in other cases—see Vitalis and Couvet (2001)—or work on populations structured by migration. It is a
model of a relatively small number of very large popula-that the dynamics of every subdivided population de-

pend only on the product Nm. tions connected by limited migration, with weak muta-
tion and, in nearly all cases, no selection. Another limit,Wright offered two possible justifications for the as-

sumption of constant allele frequency among migrants: which is to the island model what the standard diffusion
is to the unstructured model, is the many-demes limit(1) that migrants come from an infinitely large, unstruc-

tured population, like the one that gave the Hardy- with weak mutation and selection, and any m � 0 and
N � 1 (Wakeley 2003). Allele frequencies in the totalWeinberg law above, or (2) that migrants come from

an infinitely large collection of islands, of which the population change according to the standard diffusion,
but on a time scale that depends on N and m. At thefocal island is a single example. This second possibility

is easily represented using the present model. It is ob- same time, relatively strong migration and drift within
demes keeps the collection of demes close to the kindtained by assuming that D � ∞, so that allele frequencies

in the total population remain constant, as they do un- of equilibrium described by Wright (1931), which is
the analog in this model of Hardy-Weinberg genotypeder the Hardy-Weinberg law described above. The as-

sumptions of diploidy (N � 2) and random mating (m frequencies in the diploid model. It hardly needs stating
at this point that neither the finite-D, N → ∞ diffusion�1) need to be relaxed so the demes can be of any

size (N � 1) and receive migrants at any biologically nor this finite-N, D → ∞ diffusion should be applied or
accepted without attention to its restrictions.reasonable rate (0 � m � 1).

Described in this way, it is helpful to think of Wright’s Why all this attention to the arcane subject of diffu-
sion theory, which may seem to have peaked with Ki-infinite-island model as a classical population genetic

model for idealized N-ploid organisms (the demes), with mura’s work in the 1950s? Possibly the most exciting
new direction in theoretical population genetics is thecomplications such as double reduction ignored. Repro-

duction is a little more complicated than in the classical study of a coupled (backward and forward) process that
promises to unite diffusion theory and coalescent the-diploid model—newborn individuals receive a fraction,

m, of their gametes from the total parental population’s ory, while fully incorporating natural selection into the
latter. This relates population genetic models to bodiespool of gametes and a fraction, 1 � m, from a single

parent’s gamate pool—but these models share many of more abstract mathematics, such as the theory of
interacting particle systems (Liggett 1985). The ap-features. It is clear, for example, that the allele frequen-

cies in the total population will remain constant only if proach was introduced into population genetics by Don-
nelly (1984), developed further by Krone and Neu-there is no selection and no mutation; otherwise they

should change according to something like the classical hauser (1997), and can also be seen in Darden et al.
(1989). Recent articles include Donnelly and Kurtzdeterministic theory. In addition, the infinite-island

model suffers the same restrictions as the classical (1999) and Barton et al. (2004). The challenge is to
develop from this work a set of tools for making infer-model: questions about stochastic trajectories of allele

frequencies in the total population (e.g., the fixation or ences from genetic data that can be applied in the way
that the standard coalescent is being applied now.loss of alleles) cannot be addressed.

By assuming a fixed, finite number of demes, Maru- Due to recent developments in biotechnology, the
theory and methodology of population genetics are lag-yama (1970), Latter (1973), and others studied the

finite-island model and obtained results for fixation ging behind the collection of data. The abundance of
data now available, and soon to be available, holds theprobabilities and other properties of the population.

Without making any assumptions about the parameters, promise that it will finally be possible to infer the current
and historical characteristics of populations with a highthe finite island model is represented by the general

version of the present model, with parameter space {(D, degree of precision. There is already a huge store of
results in the historical literature of theoretical popula-N, u, s, m); D � 1, N � 1, 0 � u � 1, s � �1, 0 � m �

1}. There are difficulties in analyzing the finite island tion genetics, which can be mined for present-day aims.
However, at least since the introduction of coalescentmodel, as there are in the case of the Wright-Fisher

model of an unstructured finite population. In fact, the theory 20 years ago, theoretical population genetics has
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