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ABSTRACT
Gene duplication is the primary source of new genes. Duplicate genes that are stably preserved in

genomes usually have divergent functions. The general rules governing the functional divergence, however,
are not well understood and are controversial. The neofunctionalization (NF) hypothesis asserts that after
duplication one daughter gene retains the ancestral function while the other acquires new functions. In
contrast, the subfunctionalization (SF) hypothesis argues that duplicate genes experience degenerate
mutations that reduce their joint levels and patterns of activity to that of the single ancestral gene. We
here show that neither NF nor SF alone adequately explains the genome-wide patterns of yeast protein
interaction and human gene expression for duplicate genes. Instead, our analysis reveals rapid SF, accompa-
nied by prolonged and substantial NF in a large proportion of duplicate genes, suggesting a new model
termed subneofunctionalization (SNF). Our results demonstrate that enormous numbers of new functions
have originated via gene duplication.

GENE duplication is believed to be the primary NF-II. In recent years, an alternative to the NF hypothe-
sis termed the subfunctionalization (SF) hypothesis hassource of new genes (Ohno 1970) and “evolution

by gene duplication” has emerged as a general principle been developed. The SF hypothesis argues that ancestral
functions of the progenitor gene are partitioned be-of biological evolution, evident from the prevalence of

duplicate genes in all sequenced genomes of Bacteria, tween the duplicates so that the joint levels and patterns
of activity of the duplicates are equivalent to that ofArchaea, and Eukaryota (reviewed in Zhang 2003). Pop-

ulation genetic theories predict that an entirely redun- the progenitor gene (Hughes 1994; Force et al. 1999;
Stoltzfus 1999). It should be noted that there aredant duplicate copy cannot be maintained in the ge-

nome for a long time, as deleterious mutations will several versions of the SF hypothesis depending on the
meaning of “gene function.” For example, Hughesaccumulate and render the gene nonfunctional. The

only exception may be the concerted evolution among (1994) meant protein function when he formulated the
SF hypothesis, whereas Force et al. (1999) emphasizedcertain duplicate genes for which a larger amount of gene

product is beneficial (Zhang 2003). In other words, the pattern of gene expression when they proposed SF.
Lynch and Force (2000) further formulated their SFfunctional divergence between duplicates is usually re-
hypothesis mathematically in a so-called “duplication-quired for their long-term retention in the genome.
degeneration-complementation (DDC)” model. BecauseThe evolutionary process of this divergence, however,
gene function includes both gene expression and pro-is not well understood. The neofunctionalization (NF)
tein function, we do not attempt to differentiate thehypothesis proposes that after duplication one daughter
different forms of SF in this work.gene retains the ancestral function while the other can

Several authors have attempted to test the NF andgain novel functions (Ohno 1970). In Ohno’s view, the
SF hypotheses at the genomic level by comparing theduplicate gene that eventually acquires new function
nucleotide substitution rates of duplicate genes (Vanexperiences a period of complete functional relaxation,
de Peer et al. 2001; Kondrashov et al. 2002; Kellis etbehaving like a pseudogene (Ohno 1973). This, how-
al. 2004). Their results were equivocal because the twoever, does not have to be the case during NF. We there-
hypotheses do not make contrasting predictions on sub-fore consider a broader NF hypothesis in which the
stitution rates. For example, asymmetric evolutionarygene acquiring new function may retain all (NF-I), none
rates between duplicates have been used to support NF(NF-II), or some (NF-III) of the ancestral functions (Fig-
(Kellis et al. 2004). But this observation can also beure 1). Ohno’s (1973) NF model is represented by our
explained by asymmetric SF because the two daughter
genes could have inherited different numbers of ances-
tral functions and thus could be under different levels
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use of other cutoffs did not change our results as the twosynonymous substitution rates) in both daughter genes
groups were similar in general.immediately after duplication led some to reject the NF

It is generally agreed that an ancestral function of a progeni-
hypothesis (Kondrashov et al. 2002), although a certain tor gene will be retained in at least one of the daughter genes
degree of functional constraint is compatible with a after duplication and that shared functions between duplicates
broader NF model (e.g., NF-I and NF-III in Figure 1). are ancestral functions. It follows that SF reduces the number

of shared functions between duplicates (s), whereas NF doesBecause the NF and SF hypotheses are explicitly about
not affect s. In the absence of NF, SF can be measured bygene function, the most direct test would be to use
ISF � (1 � s/t)[1 � �/(t � s)] � 1 � (s � �)/t, where t is

functional genomic data. In this article, we use genome- the total number of functions of the duplicates and � is the
wide protein-protein interaction data from yeast and difference in the number of functions between the duplicates.
gene (spatial) expression data from human to test the In the above formula, 1 � s/t measures the proportion of

ancestral functions that are no longer shared by the duplicatesNF and SF models. We show that neither NF nor SF
and 1 � �/(t � s) measures the extent of SF for these func-alone adequately explains functional divergence of du-
tions. Given t and s, expected values of ISF under random SFplicate genes. Instead, our analysis reveals rapid SF, ac- (i.e., an ancestral function is equally likely to be retained by

companied by prolonged and substantial NF in a large either of the two genes) can be calculated using probability
proportion of duplicate genes, suggesting a new model theories.

To estimate the number of yeast genes produced by duplica-termed subneofunctionalization (SNF).
tion, all-against-all BLASTP searches were carried out with
E � 10�5 as the cutoff. A minimum of 2250 duplications
were necessary to explain the gene families suggested by the

MATERIALS AND METHODS BLASTP search results.
Human data and analyses: The human gene expression data

Yeast data and analyses: A total of 6402 open reading frames were generated by Su et al. (2002) using the U95A arrays of
(ORFs) in Saccharomyces cerevisiae were downloaded from the Affymetrix (http://www.affymetrix.com) and were downloaded
Comprehensive Yeast Genome Database at the Munich Infor- from http://expression.gnf.org. Annotation files of U95A
mation Center for Protein Sequences (MIPS; http://mips.gsf. arrays were downloaded from Affymetrix. Following Su et al.
de/). Among these, 4362 are encoded in the nuclear genome (2002), we used an average difference (AD) value of 200 as
and have gene names in MIPS, the Saccharomyces Genome the cutoff for determining whether a gene is expressed in a
Database (http://www.yeastgenome.org/), or NCBI (http:// given tissue. Use of AD � 400 did not change our results.
www.ncbi.nlm.nih.gov/). These genes formed our database of The human protein data containing 28,681 sequences were
confirmed nuclear genes (CNG). All (6402 ORFs)-against-all downloaded from NCBI. All-against-all BLASTP (E � 0.1) was
BLASTP searches were carried out with E � 10�20 as the cutoff, carried out to identify 3283 singletons, including 515 that
and the reciprocal best hits that both appear in CNG were were found in the gene expression data. A total of 1230 pairs
regarded as duplicates. After removing transposable elements, of duplicate genes that appeared in the expression data were
625 duplicate gene pairs were found. To identify singleton identified by Makova and Li (2003) and the dS values were
genes, all-against-all BLASTP searches were conducted with estimated by these authors using PAML.
E � 0.1 as the cutoff. A total of 1022 members of CNG were
found to have no nonself hits and were regarded as singletons
for further analysis.

Yeast protein-protein interaction data were obtained from RESULTS
MIPS and from the high-confidence subset of interaction data

Analysis of yeast protein-protein interaction data: Tocompiled by von Mering et al. (2002). Only physical interac-
tions were considered. After excluding self-interactions and test the NF and SF models at the genomic level, it is
interactions involving mitochondrion proteins, a nonredun- necessary to use a measure of gene function that is
dant protein interaction data set containing 9316 pairwise applicable to and available in a large number of genes.interactions among 4292 ORFs was obtained, including 331

Protein-protein interaction is an important function ofpairs of the above identified duplicate genes and 745 singleton
many protein-coding genes and it has been investigatedgenes.

The DNA sequences of duplicate genes were aligned follow- in the yeast S. cerevisiae by various high-throughput meth-
ing the protein sequence alignment by CLUSTALW (Thomp- ods in the past few years (summarized in Von Mering
son et al. 1994). Numbers of synonymous substitutions per

et al. 2002). Wagner (2001, 2002, 2003) pioneered thesynonymous site (dS) between duplicates were estimated by
analysis of yeast protein-protein interactions in the con-the likelihood method using PAML (Yang 1997). Because

codon usage bias may reduce the rate of synonymous substitu- text of duplicate gene evolution. But he focused on
tion, we computed the effective number of codons (ENC; the functional divergence of duplicate genes without
Wright 1990) for all the duplicate genes using codonW properly differentiating NF from SF. In our analysis, we
(http://bioweb.pasteur.fr/seqanal/interfaces/codonw.html).

specifically test the NF and SF models. To reduce errors,Following Gu et al. (2002) and Papp et al. (2003), we reanalyzed
particularly false-positive errors, we analyzed the high-the data after removing those genes with ENC �35 (48 pairs),

but the results did not change. Duplicate genes were grouped confidence interaction data compiled in von Mering
according to the dS values between duplicates. dS � 1 was used et al. (2002) and those annotated in the MIPS database.
as a cutoff because dS estimates �1 are relatively reliable. We From the yeast genome, we identified nonredundant pairs
further divided genes of dS � 1 into two groups of approxi-

of duplicate genes and genes that do not have recogniz-mately equal size using the cutoff of dS � 0.25. Because most
able duplicate copies in the genome (singleton genes). Agene pairs had dS � 1 (299 out of 331), we separated these

duplicate genes into two groups using dS � 20 as the cutoff; total of 331 duplicate gene pairs and 745 singleton genes
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TABLE 1

Notations used in this article

Symbols Meaning for the yeast protein-protein interaction dataa

a1 No. of protein interaction partners for duplicate gene 1
a2 No. of protein interaction partners for duplicate gene 2
s No. of shared partners between gene 1 and gene 2
t (� a1 � a2 � s) Total no. of nonredundant partners for gene 1 and gene 2
A Average no. of partners per singleton gene
S Average no. of shared partners per randomly picked singleton pair
T Average total no. of nonredundant partners per randomly picked singleton pair
� (� �a1 � a2�) Absolute difference between a1 and a2

min (a1, a2) The smaller of a1 and a2

max (a1, a2) The bigger of a1 and a2

dS No. of synonymous substitutions per synonymous site between a pair of duplicates
ISF [� 1 � (s � �)/t] Subfunctionalization index
SF Subfunctionalization
NF Neofunctionalization
SNF Subneofunctionalization

a The number of interaction partners is substituted by the number of expression sites when human gene
spatial expression pattern is concerned.

appeared in our protein interaction data set and these parametric Mann-Whitney U-test (P � 0.0001). This ob-
servation is inconsistent with the pure SF model andgenes were subjected to further analysis.

For a given pair of duplicates, let a1 and a2 be the indicates the occurrence of NF.
To estimate the speed with which NF occurs, we com-numbers of interaction partners for each of them, and

let s be the number of shared partners between them puted the number of synonymous substitutions per syn-
onymous site (dS) between duplicate genes. Because(Table 1). Thus, t � a1 � a2 � s is the total number of

partners for the pair. Immediately after gene duplica- synonymous changes are largely neutral and occur at an
approximately constant rate, dS is widely used as a proxytion, the two daughter genes have the same interaction

partners. Under the SF model, each daughter gene grad- for time (Lynch and Conery 2000; Wagner 2001; Gu et
al. 2002; Papp et al. 2003). However, because estimatesually loses partners, but t remains constant over time

(Figure 1). Furthermore, t should equal the number of of dS � 1 are associated with large stochastic errors and
t varies substantially among duplicate pairs, we groupedpartners that the progenitor gene had before duplica-

tion. We found that the mean t for duplicate genes is the 331 gene pairs into four bins according to dS (see
materials and methods). We found that t and dS are8.57 � 0.64, which is significantly greater than A �

4.69 � 0.30, the number of interaction partners that positively correlated (Spearman’s rank correlation co-
efficient r � 0.14, n � 331, P � 0.01). Furthermore, thean average singleton gene has (P � 0.0001, t-test). The

statistical significance was further confirmed by the non- mean t per bin increases with dS (linear correlation r �

Figure 1.—Evolutionary mod-
els of functional divergence be-
tween duplicate genes. The three
neofunctionalization (NF) mod-
els differ in the number of ances-
tral functions retained by the gene
that acquires novel functions. The
newly proposed subneofunction-
alization (SNF) model is a combi-
nation of NF and subfunctionali-
zation (SF). Duplicate genes are
depicted by open circles and dif-
ferent gene functions are shown
by solid squares. Dotted lines link
genes with their functions. In this
article, we analyze functions of du-
plicate genes by their protein in-
teraction partners and expression
sites.
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Figure 2.—Number of protein
interaction partners of yeast dupli-
cate and singleton genes. (a)
Mean number of partners (t) for
duplicate pairs with different dS.
The error bar shows one standard
error of the mean. The dashed line
shows the average number of part-
ners per singleton (A) and the dot-
ted line shows the average number
per random pair of singletons (T).
There are 17, 15, 70, and 229 dupli-
cate pairs in the four bins, respec-
tively. (b) Frequency distributions
of the number of interaction part-
ners for singletons (open bars),
singleton pairs (shaded bars), and
duplicates (solid bars). (c) Fre-
quency distributions of the num-
ber of shared partners between
singleton pairs (open bars), dupli-
cates with dS � 20 (shaded bars),
and duplicates with dS � 20 (solid
bars). (d) Difference in the num-
ber of partners between duplicates.
The mean max(a1, a2), min(a1, a2),
and � � |a1 � a2| for duplicates
are shown in open, shaded, and

solid bars, respectively, with their corresponding mean values from random singleton pairs shown by the dotted, dashed, and
solid lines, respectively. For any given pair of duplicates, a1 and a2 are the numbers of partners that they each have.

0.987 between mean t and dS category, P � 0.01; Figure combining bins with expectations �5, P � 0.0013) sig-
nificantly better than the singleton distribution (�2 �2a). When dS � 0.25, mean t is 5.76 � 0.96, �23%

greater than A. For duplicates with dS between 0.25 and 275.11, d.f. � 14 after combining bins with expectations
�5, P � 1.8 	 10�50). Furthermore, the median for the1, mean t is 7.07 � 0.85, �51% higher than A, suggest-

ing gain of numerous new protein partners by this time. duplicate gene distribution (5) is much closer to the
singleton-pair distribution (6) than to the singleton dis-An earlier study established that dS � 1 corresponds

approximately to a gene age of 100 million years (MY) tribution (2; Figure 2b). These results show that the
larger number of partners for duplicates than for single-in yeasts (Wolfe and Shields 1997). Thus, our results

suggest that many new protein interactions have tons is not due to the presence of a few outliers, but
reflects a general trend for most duplicate genes.emerged 25–100 MY after duplication and that NF con-

tinues to occur even long after duplication (i.e., when Can NF alone explain the observed protein interac-
tion pattern? As mentioned earlier, we consider threedS � 1). To compare duplicates with singleton genes,

we randomly drew 4000 pairs of singletons with replace- NF models in which the duplicate gene that acquires
new function could retain all, none, or some of thement from our sample of 745 singletons and estimated

that the mean t for singleton pairs was T � 9.29 � 0.17. ancestral functions, respectively (Figure 1). If all ances-
tral functions are retained by this gene (NF-I), s shouldInterestingly, for duplicates with dS � 20, the mean t is

9.16 � 0.80, virtually identical to T (P � 0.5, t-test), be a constant equal to the number of partners of the
progenitor gene before duplication. That is, mean s forindicating that eventually the total number of partners

for a duplicate pair is almost the same as that for two duplicates is expected to equal A. In fact, mean s � 1.02 �
0.14, �22% of and significantly smaller than A (P �singletons.

The observed high mean t in duplicates and the rejec- 10�14, t-test), which strongly rejects the NF-I model. On
the other hand, mean s is significantly �0 (P � 10�11,tion of the pure SF model for the genome as a whole

could be due to a small number of outliers with huge t-test), suggesting that duplicate genes share partners.
From the 4000 randomly chosen pairs of singletons, weNF. To examine this possibility, we compared the distri-

butions of the number of partners for singleton genes, estimated that the mean s for singleton pairs is S �
0.028 � 0.003, significantly smaller than the mean s forrandomly paired singleton gene pairs, and duplicate

gene pairs (Figure 2b). The latter two distributions are duplicates (P � 10�10, t-test). We also compared the
distribution of s for duplicates and for random pairs ofmuch more similar to each other than each of them is

to the first distribution. The duplicate gene data fit the singletons. Significant differences were observed re-
gardless of whether duplicates with dS � 20 or dS � 20singleton-pair distribution (�2 � 39.97, d.f. � 17 after



1161Evolution of Duplicate Genes

were considered (P � 10�65, �2-test; Figure 2c). The of NF in these relatively young duplicates. Since SF is
completed when dS reaches 0.25, it may be inferred thatfinding that duplicates share more protein partners

than random pairs of singletons do even long after du- the average ISF for all duplicates is �0.5. This level of SF
is substantial, as random partition of ancestral partnersplication strongly rejects the NF-II model, which pre-

dicts s � 0. The distributions of s (Figure 2c) also indi- between a duplicate pair with t � 5 and s � 1 results
in an expected ISF of 0.5.cate that the rejection of NF-I and NF-II is not due to

a small number of outliers, because 35% of duplicates The demonstration of both NF and SF from the geno-
mic data could be due to the presence of some genesvs. 2.4% of singleton pairs share partners. It is important

to note that the mean s for the duplicates with dS � following NF and some other genes following SF. We
think that this explanation is unlikely to be correct be-0.25 already reduces to 1.0, virtually identical to the

mean s (1.1) for duplicates with dS � 20. This indicates cause it cannot explain the observation that the genome-
wide average number of protein interaction partnersthat the reduction of s by loss of partners has already

been completed when dS reaches 0.25, in agreement per duplicate pair is equivalent to that for two single-
tons. Furthermore, it cannot explain the virtually maxi-with previous observations from fewer data (Wagner

2001). There is no detectable difference in the propor- mum level of SF (as reflected by ISF) observed for the
genome-wide data. Rather, our observations suggest thattion of shared partners between duplicate genes with

more partners and those with fewer partners. the majority of duplicate genes undergo both SF and
NF. Thus, we propose a new model termed SNF toLet us denote a1 the number of partners for the gene

retaining all the ancestral functions in the three NF account for the evolutionary changes in interaction part-
ners after gene duplication. This model easily explainsmodels and a2 the corresponding number for the gene

acquiring new functions. We observed an increase in the increase of mean t over time by NF and the decrease
of mean s to a level that is between 0 and A by incompletethe mean t after dS � 0.25 (Figure 2a), indicating the

occurrence of NF after the completion of the loss of SF. This incompletion may have arisen from shared
structural constraints between duplicates. Under gen-partners in the second gene. Under the NF-III model,

this will render the absolute difference between a1 and eral models of SNF in which SF and NF occur more or
less randomly between the two duplicates, max(a1, a2)a2 (� � |a1 � a2|) smaller for a period of time, because

the deduction of a2 by loss of partners has made it and � should both be raised by NF after the end of the
SF process, as observed in this study. Similar to NF-III,smaller than a1, and the subsequent increase of a2 by

NF will reduce the difference between them. However, the SNF model predicts an increase of min(a1, a2) by
continuous NF after the completion of SF. However,contradictory to the prediction of NF-III, mean � in-

creases steadily with dS (Figure 2d). The linear correla- given the same amount of rise in t, the increase in
min(a1, a2) is expected to be slower under SNF thantion between mean � and the dS category is r � 0.954 (P �

0.05) and the Spearman’s rank correlation between � under NF-III. This is because in SNF only 50% of NF is
expected to occur in the gene with the smaller numberand dS is r � 0.15 (n � 331, P � 0.005). Furthermore,

NF-III predicts that min(a1, a2), the smaller of a1 and of partners and to raise min(a1, a2). By contrast, under
NF-III, one daughter gene does not change at all whilea2, should increase with dS under this condition because

a1 is constant and a2 increases by NF. But this was not the other loses many partners and then gains new part-
ners, leading to a situation where almost all NF willobserved (Figure 2d), as neither the linear correlation

between mean min(a1, a2) and the dS category (r � raise min(a1, a2). Given this comparison, the negligible
increase in min(a1, a2) is not incompatible with the SNF0.450, P � 0.2) nor the Spearman’s rank correlation

between � and dS (r � 0.085, n � 331, P � 0.10) is model, though a further test with more data is needed.
Our results suggest that SF occurs rapidly after duplica-significant. NF-III also predicts that max(a1, a2), the

bigger of a1 and a2, should stay constant for a period of tion, as the mean s reduces from the expected value of
4.69 immediately after duplication to a final value oftime after the first bin, because a2 � a1 due to loss of

partners and a1 does not change by NF. But max(a1, a2) �1 before dS reaches 0.25. At that time, the mean t has
increased by only 23%, and it continues to rise evenwas found to increase with dS steadily (Figure 2d). The

linear correlation between mean max(a1, a2) and the dS when dS � 20, to a final value that is �1.96 times that
before duplication.category is r � 0.998 (P � 0.01) and the Spearman’s

rank correlation between max(a1, a2) and dS is r � 0.14 Analysis of human gene expression data: Although
the protein-protein interaction data provide key infor-(n � 331, P � 0.01). Thus, NF-III is not supported by

the observations. mation on gene function, temporal and spatial patterns
of gene expression offer other important aspects of geneThe rejection of all three NF models is due to the

presence of SF. When there is no NF, the level of SF function. Furthermore, one version of the SF hypothesis
was specifically proposed to explain the change in genecan be measured by ISF � 1 � (s � �)/t (see materials

and methods). ISF varies from 0 for no SF to 1 when s � 0 expression after duplication (Force et al. 1999). There-
fore, it is necessary to evaluate the SF and NF modelsand a1 � a2. We estimated that ISF � 0.51 � 0.08 for

duplicates with dS � 0.25, after ignoring the small amount by examining genome-wide gene expression patterns in
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a multicellular organism. We analyzed a large data set
that included the expression levels of 7565 human genes
in 25 independent and nonredundant tissues (Su et al.
2002). Using conventional criteria, we transformed the
quantitative expression levels to discrete expression pat-
terns (expressed or unexpressed). The expression pat-
terns of 515 singletons and 1230 pairs of duplicate genes
were analyzed.

All the notations defined above can be used for the
expression data if we replace the number of interaction
partners by the number of expression sites. We found
that the number of expression sites per duplicate pair
(mean t � 13.04 � 0.26) is significantly greater than
that per singleton gene (A � 8.85 � 0.43; P � 10�17,
t-test; P � 0.0001, Mann-Whitney U-test). This rejects the
pure SF model that predicts equal mean t and A. To
examine how t increases over time since duplication,
we again used dS between duplicates as a proxy for time
[dS � 1 in mammals corresponds to �250 MY after
duplication (Kumar and Subramanian 2002)]. To re-
duce random fluctuations, we grouped the duplicates
into seven bins by their dS values (Figure 3a). Each of
the first six bins contains 100 pairs of duplicates whereas
the seventh bin includes the remaining 630 duplicates.
We lumped the final 630 gene pairs into one bin because
their dS values are so large (�3.06) that their estimates
have substantial variances. We found that t and dS are
positively correlated (Spearman’s rank correlation coef-
ficient r � 0.07, n � 1230, P � 0.01). Furthermore, the
mean t per bin increases with dS (linear correlation r �
0.647 between mean t and dS category, P � 0.03; Figure
2a). In the first bin (0 � dS � 0.68, with a median of
0.18), mean t is 10.28 � 0.93, 16% greater than A. The
second bin (0.71 � dS � 1.64, with a median of 1.35) has

Figure 3.—Number of expression sites of human duplicatea mean t of 10.97 � 0.89, 24% greater than A. By this
and singleton genes. (a) Mean number of expression sitestime, acquisition of new expression sites is substantial.
(t, squares) and mean number of shared expression sites (s,To compare duplicates with singletons, we randomly drew circles) for duplicate pairs with different dS. The 1230 dupli-

3500 pairs of singletons with replacement from our sam- cate gene pairs are ranked by their dS. Each square (or circle)
ple of 515 singletons and estimated that the mean t for represents the median dS and mean t (or mean s) for 100

gene pairs, with the exception of the last square (or circle),singleton pairs is T � 14.47 � 0.16. This number is
which is derived from 630 gene pairs. The error bar showssubstantially �2A � 17.70 because two randomly picked
one standard error of the mean. The dashed line shows thesingletons share on average S � 3.17 � 0.10 expression average number of expression sites per singleton (A) and the

sites. We noted that in the third bin (1.94 � dS � 2.23, dotted line shows the average number per random pair of
with a median of 1.80), mean t (13.09 � 0.88) already singletons (T). The solid line shows the average number of

shared expression sites per random pair of singletons. (b)approaches T (P � 0.05, t-test), indicating that by this
Difference in the number of expression sites between dupli-time the total number of expression sites for a duplicate
cates. The mean � � |a1 � a2| and min(a1, a2) for duplicatespair is indistinguishable from that for two singletons. are shown in squares and circles, respectively, with their corre-

We next examined the three NF models. NF-I predicts sponding mean values from singleton pairs shown by the dot-
that the number of shared expression sites between a ted and dashed lines, respectively. For any given pair of dupli-

cates, a1 and a2 are the numbers of expression sites that theyduplicate pair (s) is a constant that equals the number
each have.of expression sites of the progenitor gene before dupli-

cation (Figure 1). We found that mean s � 3.45 � 0.18,
�39% of and significantly lower than A (P � 10�25,

other bin or from S (P � 0.1, t-test). This indicates thatt-test), which strongly rejects the NF-I model. Figure 3a
the loss of expression sites has been completed beforeshows that mean s declines quickly from the expected
dS reaches 0.68. Under NF-II and NF-III, the continuousvalue of 8.85 right after duplication to �3.25 � 0.68
growth of t is entirely due to NF in the gene that firstfor the first bin (dS � 0.68). This value is no longer

distinguishable from the mean s (P � 0.1, t-test) of any loses expression sites. Thus, these two models predict
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that min(a1, a2) should continuously rise after the first to be misclassified as singletons due to the low power
of BLAST in finding highly divergent paralogs. Further-bin, to the expected value Min, which is the mean mini-

mum for randomly picked pairs of singletons and is more, the evolutionary rate has at most a weak negative
correlation with the number of interaction partners (Fra-estimated to be 3.64 � 0.11. But, in fact, the mean

min(a1, a2) for the first bin is already 3.53 � 0.69, not ser et al. 2002; Jordan et al. 2003; Hahn et al. 2004) and
the difference observed by Davis and Petrov (2004)significantly different from Min (P � 0.1, t-test; Figure

3b). Furthermore, the two models predict that after the seems much too small to explain the twofold difference
between mean t (for ancient duplicates) and A. No biasfirst bin � � |a1 � a2| will decrease for a period of time

and then increase as NF continues, but this was again in the comparison of expression sites between duplicate
genes and singleton genes is expected because house-not observed. Instead, � increases continuously with dS

(linear correlation r � 0.887 between � and dS category, keeping genes (with high numbers of expression sites)
and tissue-specific genes are known to have similar ratesP � 0.01; Spearman’s rank correlation r � 0.09 between

� and dS, n � 1230, P � 0.001; Figure 3b). Taken to- of duplication (Zhang and Li 2004). Nonetheless, it
remains possible that our results have been biased quan-gether, none of the three NF models adequately de-

scribe the evolutionary patterns of human gene expres- titatively, if singleton genes and duplicate genes indeed
have somewhat different properties (X. He and J. Zhang,sion. Rather, they are compatible with the SNF model

with contributions of both NF and SF, for the same reasons unpublished data). But the bias, even if it exists, is un-
likely to be large enough to alter our conclusions quali-aforementioned for the protein interaction data.
tatively. In the analysis, we also assumed that duplicate
genes cannot independently acquire the same new func-

DISCUSSION
tions after duplication. Although this assumption may
not be true for every duplicate pair, it is likely correctIn this work we used functional genomic data to study

the evolutionary mechanisms underlying the divergence for the majority of them. In fact, the negligible number
of shared protein partners between random pairs ofof duplicate genes. Because functional divergence may

occur by either SF or NF, it is important to separate singletons (S � 0.028 � 0.003) supports our assumption.
For the gene expression data, however, our assumptionthem explicitly. Our results show that the pure SF or

NF model is inadequate to explain the genomic patterns may be less robust due to the limited number of tissues
and NF might have been underestimated.of protein interaction or gene expression for duplicate

genes. Rather, a large proportion of duplicate genes Our analyses show that both SF and NF play promi-
nent roles during functional divergence of duplicateundergo rapid SF, accompanied by prolonged and sub-

stantial NF. The large-scale protein interaction and gene genes and that most duplicate genes follow the new SNF
model. Our results do not exclude the possibility thatexpression data likely contain some false-positive and

false-negative errors. If the data are entirely random a minority of duplicate genes evolve by pure SF or pure
NF. We found that SF occurs rapidly after gene duplica-without any biological reality, we expect to see similar

behaviors between duplicates and random pairs of sin- tion, whereas NF is a lengthy process that continues even
long after duplication. Thus, the short-term retention ofgletons. This, however, is not the case. For example, s is

significantly higher in duplicate genes than in singleton duplicate genes in the genome is primarily due to SF,
consistent with a much higher rate of degenerate muta-pairs for the yeast protein interaction data (Figure 2c)

and � is significantly lower in duplicate genes than in tions than beneficial mutations (Walsh 1995; Lynch
and Force 2000). Preservation of the duplicate genessingleton pairs for the human gene expression data (Fig-

ure 3b). Most importantly, experimental errors, whether in the genome and partial functional relaxation caused
by loss of ancestral functions subsequently provide thenegative or positive, cannot generate the positive corre-

lation between t and dS for either data set. In this work, opportunity for advantageous mutations, which can lead
to new functions. The SNF model is supported by theseveral properties were compared between duplicate

genes of different ages. This comparison would be bi- genome-wide evolutionary pattern of regulatory se-
quences of duplicate genes in yeasts (Papp et al. 2003).ased if duplicate genes of different ages represent differ-

ent types of genes (in terms of gene function). Lynch The model is also consistent with accelerated sequence
evolution immediately after gene duplication (Ohta 1994;and Conery (2000) showed that duplicate genes des-

tined to die usually die in a few million years after dupli- Lynch and Conery 2000; Van de Peer et al. 2001;
Kondrashov et al. 2002). Although this accelerationcation. Thus, except for a small number of genes in the

first bin of Figure 2a (or Figure 3a), duplicates analyzed may be explained by either reduction of purifying selec-
tion or action of positive selection (Zhang et al. 1998),here are stably retained in genomes and they should

be comparable. We also compared singleton genes with our observation of rapid SF suggests the former as the
primary cause. This general pattern does not precludeduplicate genes in this work. A recent study in yeasts

suggested that genes of low evolutionary rates are more the possibility of positive selection occurring immedi-
ately after duplication, as has been observed in a fewlikely to duplicate than those with high rates (Davis

and Petrov 2004). This could be a statistical artifact cases (Zhang et al. 1998; Johnson et al. 2001; Zhang et
al. 2002; Moore and Purugganan 2003), but it suggestsbecause rapidly evolving duplicate genes are more likely
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