
Copyright © 2005 by the Genetics Society of America
DOI: 10.1534/genetics.103.019752

An Expectation-Maximization–Likelihood-Ratio Test for Handling Missing Data:
Application in Experimental Crosses

Tianhua Niu,*,†,1 Adam A. Ding,‡ Reinhold Kreutz§ and Klaus Lindpaintner**

*Division of Preventive Medicine, Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston,
Massachusetts 02215, †Program for Population Genetics, Harvard School of Public Health, Boston, Massachusetts 02115,

‡Department of Mathematics, Northeastern University, Boston, Massachusetts 02115, §Department of Clinical Pharmacology,
Benjamin Franklin Medical Center, Berlin 12200, Germany and **Roche Center of

Medical Genomics, F. Hoffmann-La Roche AG, CH-4070 Basel, Switzerland

Manuscript received July 7, 2003
Accepted for publication September 2, 2004

ABSTRACT
The mapping of quantitative trait loci (QTL) is an important research question in animal and human

studies. Missing data are common in such study settings, and ignoring such missing data may result in
biased estimates of the genotypic effect and thus may eventually lead to errant results and incorrect
inferences. In this article, we developed an expectation-maximization (EM)–likelihood-ratio test (LRT)
in QTL mapping. Simulation studies based on two different types of phylogenetic models revealed that
the EM-LRT, a statistical technique that uses EM-based parameter estimates in the presence of missing
data, offers a greater statistical power compared with the ordinary analysis-of-variance (ANOVA)-based
test, which discards incomplete data. We applied both the EM-LRT and the ANOVA-based test in a real
data set collected from F2 intercross studies of inbred mouse strains. It was found that the EM-LRT makes
an optimal use of the observed data and its advantages over the ANOVA F-test are more pronounced
when more missing data are present. The EM-LRT method may have important implications in QTL
mapping in experimental crosses.

ANIMAL models and their corresponding genomes parameter estimation, because the sample size for the
are highly useful for mapping traits that may ap- incomplete data is less than it would be if the data were

ply to human diseases (Knoblauch and Lindpaintner complete. In previous literature, the treatment of such
1999). Since genes are conserved throughout evolution, a missing data problem is not adequate. Two simple
the identification of “evolutionary homologs” in animals methods have been most widely applied. One is simply
is well appreciated in helping to find their counterparts to use the incomplete data by deleting all data records
in humans. with any values missing, and it is called “listwise dele-

There are two primary methods for quantitative trait tion.” A second approach is called “pairwise deletion,”
locus (QTL) mapping: (a) the single-marker method and which deletes those data records if either the phenotypic
(b) the interval-mapping method. The single-marker data or the genotypic data at the marker of interest
method is a traditional method for detecting the asso- are missing. In this article, we propose an expectation-
ciation between individual genetic markers and the quan- maximization (EM)–likelihood-ratio test (LRT) to incor-
titative trait of interest (Luo et al. 2000). The analysis- porate the flanking markers’ information in the presence
of-variance (ANOVA) represents the typical method of missing marker data in the single-marker analysis. The
applied in this kind of analysis. The interval-mapping LRT is derived from the maximum likelihood calculated
method uses information provided by multiple linked using the EM algorithm based on all the observed data.
markers to probabilistically assess potential QTL at In the following section, we first introduce the mathe-
chromosomal locations between such markers. In the matical model and notations, and then we derive the
interval-mapping approach developed by Lander and EM algorithm for maximum-likelihood estimation. Af-
Botstein (1989), evidence for a putative QTL is sum- terward, we describe the EM-LRT (or the EM-based Stu-
marized by a LOD (log of odds) score that exceeds a dent’s t -test) and the standard ANOVA-based tests (F -test
predefined threshold at a given chromosomal position. and pairwise t -test). Then, we assess the validity of the EM-

The presence of missing data in studies usually lowers LRT at various sample sizes and various proportions of
both the power of QTL mapping and the precision of missing data, compare the performances of the proposed

EM-based tests over the ANOVA-based tests through simu-
lations, and evaluate whether or not it represents a more

1Corresponding author: Division of Preventive Medicine, Department effective test for real data sets. Finally, we provide a summa-of Medicine, Brigham and Women’s Hospital, 900 Commonwealth
Ave., Boston, MA 02215. E-mail: tniu@rics.bwh.harvard.edu rization and some further discussions.

Genetics 169: 1021–1031 (February 2005)



1022 T. Niu et al.

We have implemented the algorithm described in this L(�) � �
n

i�1

li(�), (2)
article in the freely available statistical software R (Ihaka
and Gentleman 1996). The code is available from the where li(�) is defined as follows. First, if the phenotype Yi and

the three genetic markers X1,i, X 2,i, X 3,i are all observed for theauthors upon request.
i th animal, obviously,

li(�) � l(Yi , X1,i , X 2,i , X 3,i , �); (3)
MATERIALS AND METHODS

second, if the phenotypeYi is observed but some genetic markers
Model settings and notations: Let us denote the genotypes are missing for the i th animal, then

at the trait marker locus A (the hypothesized QTL for the
trait) as AA, Aa, and aa, the genotypes at its left-side flanking
marker locus B as BB, Bb, bb, and the genotypes at its right- li(�) � log

⎛
⎜
⎝

�
j�X1,i

�
k�X2,i

�
l�X3,i

pj,k,l

√2��
exp �� (Yi � �j )2

2� 2 �
⎞
⎟
⎠
; (4)

side flanking marker locus C as CC, Cc, and cc (note that we
consider here only the biallelic markers, such as the simple

and third, if the phenotypeYi is missing for the i th animal,sequence length polymorphisms). Let Y denote the phenotype
value; let X1, X2, and X3 denote the respective genotype values
at the loci A, B, and C, where X1 � 1, 2, and 3 denotes the li(�) � log

⎛
⎜
⎝

�
j�X1,i

�
k�X2,i

�
l�X3,i

pj,k,l
⎞
⎟
⎠
. (5)

three respective genotypes, AA, Aa, and aa, X 2 � 1, 2, and 3
denotes the three respective genotypes, BB, Bb, and bb, and

Here and in the following, the notation of summation �j�X1,i
X3 � 1, 2, and 3 denotes the three respective genotypes, CC,
Cc, and cc. Let �i denote E(Y |X1 � i), where i � 1, 2, and 3. denotes the summation over all possible values of X1,i. For

example, if X1,i is observed to be 2, then the summation con-Then, what we test here is
tains only one case (i.e., j � 2); on the other hand, if X1,i is

H0: �1 � �2 � �3 (locus A is not a QTL for Y), missing, then the summation is taken over all three possible
values j � 1, 2, and 3.vs.

We propose estimating the parameters by maximizing the
log-likelihood L(�) as defined in Equations 2–5 above andHa: �1, �2, and �3 are not all equal (locus A is a QTL for Y).
using the corresponding LRT in hypothesis tests.

This hypothesis test includes the test for both dominant and Direct maximization of L(�) is difficult, as we can see in
additive effects of the hypothesized QTL—locus A. the complicated equations [(2)–(5)] shown above. The EMIn practice, the genotype measure X1 at locus A may be algorithm (Dempster et al. 1977; Little and Rubin 1987) ismissing for some animals. The usual approaches for missing an appropriate method for computing the maximum-likeli-data such as listwise deletion and pairwise deletion would hood estimator �̂ when missing data are present. In the follow-simply exclude such animals from the ANOVA-based tests,

ing, we first derive formulas for the EM algorithm to maximizeresulting in a lower power to detect the QTL. Here, we propose
the log-likelihood L(�). Then, we deduce the LRT using thean EM-based approach utilizing information of incomplete
EM estimations and compare its performance with the ordi-data, rather than discarding it. When there are missing data
nary ANOVA-based tests.at locus A, the approach makes use of genotype data not only

EM algorithm: We now derive the formulas of the EM algo-at locus A, but also at its two most closely linked markers, loci
rithm for this problem following standard notations (McLach-B and C. For the three linked markers, A, B, and C, there are
lan and Krishnan 1997).a total of 27 possible genotype combinations {X1 � j, X2 � k,

We start with an initial estimate �(0) (which can be eitherX 3 � l }, where j, k, l � 1, 2, or 3. We denote the probabilities
the ANOVA estimate or any other reasonable estimate). Atfor the occurrence of each combination as pj,k,l � Pr(X1 � j,
the (m � 1)th iteration, we update the current estimate �(m )X 2 � k, X 3 � l).
by completing the E-step and the M-step as follows.By assuming a standard ANOVA model relating the pheno-

E-step: Compute Q(�, �(m )) � E[Lc(�)|�(m ), observed data].type Y to the genotype X1, we have
The computation is simplified to

Y � �X1
� ε , (1)

Q(�, �(m )) � �
n

i�1
�
3

j�1
�
3

k�1
�
3

l�1

�(m�1)
i,jkl li(�), (6)where ε � N(0, � 2) and X1 can take one of the three possible

genotype values of 1, 2, or 3 defined above. The complete
where �(m�1)

i,jkl � �i,jkl(�(m )) denotes the Pr(X1,i � j, X 2,i � k, X 3,i �data set in this case is {(Yi , X1,i , X2,i , X3,i ), i � 1, . . . , n} for a
l |observed data and �(m )). It can be computed according tosample size of n.

The log-likelihood of the complete data is Lc(�) � the following formula: If Yi is observed,
�n

i�1l(Yi , X1,i , X 2,i , X 3,i , �), where
�(m�1)

i,jkl �
p(m )

j,k,l exp{�(Yi � �(m )
j )2/2� 2}

�j�X1,i �k�X2,i �l�X3,i
p(m )

j,k,l exp{�(Yi � �(m )
j )2/2� 2}

l(Yi, X1,i, X2,i, X3,i, �) � log �pX1,i ,X2,i ,X3,i

√2��
exp�� (Yi � �X1,i

)2

2�2 ��
	 φ{ j � X1,i , k � X 2,i , l � X 3,i }; (7)

if Yi is missing,� log(pX1,i ,X2,i ,X3,i
) �

(Yi � �X1,i
)2

2� 2

�(m�1)
i,jkl �

p(m )
j,k,l

�j�X1,i �k�X2,i �l�X3,i
p(m )

j,k,l

φ{ j � X1,i , k � X 2,i , l � X 3,i }.� log(√2��)

(8)and � � (�1, �2, �3, �2, p1,1,1, p1,1,2, p1,1,3, p1,2,1, p1,2,2, p1,2,3, p1,3,1,
p1,3,2, p1,3,3, p2,1,1, p2,1,2, p2,1,3, p2,2,1, p2,2,2, p2,2,3, p2,3,1, p2,3,2, p2,3,3, p3,1,1, Here φ{ j � X1,i , k � X 2,i , l � X 3,i } is the indicator functionp3,1,2, p3,1,3, p3,2,1, p3,2,2, p3,2,3, p3,3,1, p3,3,2, p3,3,3).

whether ( j, k, l) is a possible value for (X1,i, X2,i, X3,i).
M-step: Update the parameter estimate to the value � �When there are missing data,
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The ANOVA can also use the pairwise t -tests to examine�(m�1) that maximizes Q(�, �(m )). The maximization over � be-
the phenotypic difference between two particular genotypes.comes rather simple if we further write out the expression
This pairwise t -test is used to evaluate H0: �j � �m vs. Ha: �j �
�m for pairs of genotypes j and m (e.g., j � 1 and m � 2, orQ(�, �(m )) � �

n

i�1
�
3

j�1
�
3

k�1
�
3

l�1

�(m�1)
i,jkl log(pj,k,l )

j � 1 and m � 3, or j � 2 and m � 3). The T-statistic is
calculated as

� �
i�obs(Y )

�
3

j�1
�
3

k�1
�
3

l�1

�(m�1)
i,jkl

(Yi � �j )2

2� 2

T �
|�̂j � �̂m|

�̂�1/�n*
i�1φ{X1,i � j } � 1/�n*

i�1φ{X1,i � m }

. (13)
� nobs(Y ) log(√2��).

Here, obs(Y) denotes the set of i’s where Yi is observed, and
nobs(Y ) � |obs(Y)|. The t -test would reject H0 (therefore declare a phenotypic

The maximization of the above expression is very similar difference between genotypes j and m) when T 
 t�/2;n*�3,
to a linear model and we find explicitly the following updating where t�/2;n*�3 is the (1 � �/2)100th percentile of a t-distribu-
formula: tion with d.f. � (n* � 3).

As pointed out above, the power of the ordinary ANOVA
p(m�1)

j,k,l � �
n

i�1

�(m�1)
i,jkl /n, j � 1, 2, 3, is not optimal because it does not use information for those

data records with either phenotype or genotype marker data
missing. In the previous section, we proposed using the EMk � 1, 2, 3, l � 1, 2, 3.
algorithm to incorporate information from the flanking loci(9)
(i.e., B and C) in the parameter estimation. Here we describe
how to use these EM-based parameter estimates to develop a

�(m�1)
j �

�i�obs(Y )Yi(� 3
k�1� 3

l�1�
(m�1)
i,jkl )

�i�obs(Y )� 3
k�1� 3

l�1�
(m�1)
i,jkl

, j � 1, 2, 3. (10) statistical test that replaces the corresponding F -test (or the
pairwise t -test when applicable) in the ordinary ANOVA.

Basically, the F -test in the ordinary ANOVA is replaced by
�(m�1) � ��i�obs(Y )� 3

j�1(Yi � �(m�1)
j )2(� 3

k�1� 3
l�1�

(m�1)
i,jkl )

�i�obs(Y )� 3
j�1� 3

k�1� 3
l�1�

(m�1)
i,jkl

. (11) the LRT in the EM approach as follows: (a) use the EM algo-
rithm of (6)–(11) to find the parameter estimate �̂, and then
compute the log-likelihood L(�̂) according to (1); (b) fit theThe E-step and M-step are then iterated until the estimate
parameters again under H0 (by the EM algorithm with formu-�(m) converges to an estimated value, �̂.
las described in the next paragraph) to yield an estimate �̂0,Hypothesis testing: To check whether locus A is a QTL for
and compute the log-likelihood L(�̂0); and (c) compute thethe trait of interest, Y, statistically we test the hypothesis
likelihood-ratio statistic (LRS),

H0: �1 � �2 � �3 (locus A is not a QTL for Y)
LRS � 2[L(�̂) � L(�̂0)]. (14)

vs.
The LRT will reject H0 if LRS 
 �2

�, where �2
� is the (1 � �)100th

Ha: �1, �2, and �3 are not all equal (locus A is a QTL for Y). percentile of the �2-distribution with d.f. � 1.
The calculation of the LRS according to Equation 14 re-Here we first describe the ordinary ANOVA for single-marker

quires the calculations of both the maximum log-likelihoodanalysis, which is the standard approach in the present litera-
L(�̂) under Ha and the maximum log-likelihood L(�̂0) underture (Rubattu et al. 1996; Vallejo et al. 1998; Poyan Mehr
H0. We have provided in the previous section EM formulaset al. 2003; Zhao and Meng 2003). When missing data are
for fitting �̂ in Equations 7–11. Here we describe EM formulaspresent, the ordinary ANOVA excludes all the data records
for fitting the parameters �̂0 under H0. The EM algorithmwith missing information on X1 or Y, and a subset of observa-

tions is left {(Yi , X1,i ), i � 1, . . . , n*}, (n*  n). The ordinary under H0 is simpler because �1 � � 2 � � 3 � �. Therefore,
ANOVA then estimates the mean phenotype given the geno- we would estimate � by the overall sample mean under H0.
type data, Correspondingly, the variance is estimated by the sample vari-

ance. That is, we can get the estimates without going through
�̂j � �

n*

i�1

Yi φ{X1,i � j }, j � 1, 2, 3, any iterations:

�̂j � �̂ � Y �
1

n* �
n*

i�1

Yi , j � 1, 2, 3 (10�)where φ is an indicator function. The variance is estimated by

�̂ 2 �
1

n* � 3 �
n*

i�1

(Yi � �̂X1,i
)2 .

�̂ � � 1
n* �

n*

i�1

(Yi � Y )2 . (11�)

Then, an F -test is constructed by comparing �̂ 2 with the be-
tween-group variance, �̂ 2

b, Thus, for estimating pj,k,l’s, we need to iterate only between
the E-step,

�̂ 2
b �

1
3 � 1 �

n*

i�1

(�̂X1,i
� Y )2 ,

�(m�1)
i,jkl �

p(m )
j,k,l

�j�X1,i
�k�X2,i

�l�X3,i
p(m )

j,k,l

φ{ j � X1,i , k � X 2,i , l � X 3,i } ,

where Y � (1/n*)�n*
i�1 Yi . Therefore, the F -test statistic is con- (8�)structed as

and the M-step,
F �

�̂ 2
b

�̂ 2
. (12)

p(m�1)
j,k,l � �

n

i�1

�(m�1)
i,jkl /n, j � 1, 2, 3, k � 1, 2, 3, l � 1, 2, 3.

The F -test would reject H0 if F 
 F�;2,n*�3, where F�;2,n*�3 is the (9�)
(1 � �)100th percentile of an F-distribution with d.f. � 2 and
(n* � 3). The estimate �̂0 consists of �̂j in (10�), �̂ in (11�), and p̂j,k,l’s
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RESULTSthat are the values of (9�) at convergence. Then �̂0 is plugged
into Equation 1 to calculate L(�̂0), which is then used to

Assessment of the validity of EM-LRT in finite sam-compute the LRS in (14).
ples: EM-LRT is a valid test asymptotically; however,The pairwise t -test in the ordinary ANOVA is replaced by
its validity for finite sample sizes needs to be carefullya corresponding adjusted t -test in the EM approach. Since

�̂j ��̂m��i�obs(Y )Yi �k,l(�i,jkl/�i�obs(Y )�k,l �i,jkl ��i,mkl/�i�obs(Y )�k,l �i,mkl), checked. We used extensive simulations to assess the
the variance of �̂j � �̂m is approximately �i�obs(Y )[�k,l(�i,jkl/ validity of the EM-LRT for various sample sizes under
�i�obs(Y )�k,l �i,jkl � �i,mkl /�i�obs(Y )�k,l �i,mkl)]2�̂ 2. The adjusted t -test various proportions of missing data.statistic, T, for testing the pair of genotypes j and m is

We simulated a data set of n animals with the pheno-
type measurement (Yi) and three genetic markers (X1,i ,T �

|�̂j � �̂m |

�̂��i�obs(Y )��k,l(�i,jkl /�i�obs(Y )�k,l �i,jkl � �i,mkl /�i�obs(Y )�k,l �i,mkl)�
2
,

X 2,i , X 3,i) for each animal i: {(Yi , X1,i , X 2,i , X 3,i)}, where
i � 1, . . . , n. The phenotype Y for each animal was(15)
generated according to the linear model: Equation 1,

where �̂j , �̂m , and �̂ are from the EM estimate, �̂. The t -test would with parameters �1 � �2 � �3 � 100 and � � 10. We
reject H0 when T 
 t�/2;n�30, where t�/2;n�30 is the (1 � �/2)100th

assigned pj,k,l to be proportional to (4 � j) � (4 �percentile of a t-distribution with d.f. � (n � 30).
k) � (4 � l). [We initially intended to simulate pj,k,lAs the proportion of missing data increases, but is kept

below the upper limit such that the type I error is not inflated, proportional to j � k � l. However, as j � 1 denotes the
we would expect the EM-LRT to perform better than the homozygous wild-type genotype, it should have higher
ANOVA-based test in the single-marker analysis. probability than j � 3. Hence, we used the transforma-Comparison with the interval-mapping method: The pro-

tions (4 � j) to flip the probabilities.] We then randomlyposed EM-LRT above uses the genotype information at flank-
dropped phenotype observations at the trait markering marker loci to allow more efficient QTL detection at the

trait locus when there are missing genotype or phenotype data. locus A according to a missing probability.
The idea of using genotype information at flanking marker For each data set, we first fitted the EM estimates �̂
loci for capturing information of incomplete data is similar

through iterations of Equations 6–11. The iterationto the idea adopted by the interval-mapping method (Lander
started with the initial estimates:and Botstein 1989). The interval-mapping method also uses

the EM algorithm to incorporate flanking markers’ genotype
�(0)

j � Y, j � 1, 2, 3;information for inferring the association (expressed as a LOD
score) of the phenotypic trait with genetic variation at any
given point between the two flanking markers, but there is a �(0) � � 1

n* �
n*

i�1

(Yi � Y )2 ,
significant difference between our method and the interval-
mapping method. First, the main strategy is different. Our
method is exactly a single-marker test when no data are miss- p (0)

j,k,l � 1/27, j � 1, 2, 3, k � 1, 2, 3, l � 1, 2, 3.
ing, and it uses information of the flanking markers only when
data are missing at the marker of interest; in contrast, the The iteration would stop when a convergence criterion
interval-mapping method intends to “screen” any given point,

of 10�4 relative change was met. Next, we fitted the EMlocus X, in the interval bracketed by two linked markers, assum-
estimates �̂0 again under H0 through Equations 8�–11�.ing (a) genotypic variation at such theoretical point exists and

(b) its recombination rates from the two flanking markers are Then �̂ and �̂0 were used in computing the LRS in (14).
correctly specified. Therefore, the trait locus X is a putative We repeatedly ran the simulation 1000 times. For
locus and is totally unobserved, and the interval-mapping

each simulated data set, we computed the EM-LRT (14)method uses recombination rates, r B and rC, to compute the
and recorded their values. The empirical type I errorconditional probabilities p j

k,l � Pr(X1 � j |X 2 � k, X 3 � l), thus
reducing the number of parameters to 2. However, such reduc- of EM-LRT was calculated as the proportions of the
tion of the number of parameters is valid only if the underlying 1000 data sets where H0 was rejected at the significance
assumptions regarding the recombination rates (i.e., r B and level � � 0.05.rC in Figure 1) hold. Our proposed EM-LRT, on the other

We simulated for n � 50, 100, 200, 500, and 1000,hand, makes no assumptions on the recombination rates (i.e.,
r B and rC), but instead it computes p j

k,l through pj,k,l � Pr(X1 � respectively. For each sample size of n, we increased the
j, X 2 � k, X 3 � l), only if there are some incomplete phenotype missing probability from 10% upward, until the type I
data or genotype data at locus A (Figure 1). For convenience error exceeds the nominal significance level � � 0.05
of mathematical derivation, we have written our formula in

significantly (that is, it exceeds by two standard devia-terms of pj,k,l . Hence our EM-LRT involves 27 pj,k,l’s and we did
not reduce them to two parameters, rB and rC, which are used tions, 2√0.05 	 0.95/1000 � 0.014). Table 1 shows the
in interval-mapping methods. However, the trade-off is that type I error for EM-LRT for various sample sizes.
our EM-LRT is more generic with no model assumptions on As shown in Table 1, for a small sample size (n � 50),
the specification of recombination rates: for example, for very

the EM-LRT is valid for up to 10% missing observations.tightly linked markers, it has been shown that the rate of
When n � 100, the EM-LRT is valid when as much asrecombination is no longer a monotone function of the physi-

cal distance (Thompson et al. 1988), and the assumption of the 20% data were missing. When n � 200, the EM-LRT
interval-mapping method would appear to be overly strong. can tolerate up to 50% missing data. These simulations
Under such circumstances, when there are missing data, our showed that we have to be careful in applying theEM-LRT is still valid. We therefore consider our EM-LRT as

EM-LRT. For a small sample (e.g., n � 40), which isa complimentary method for the interval-mapping method, par-
ticularly when markers are very densely spaced (�1 cM). often encountered in real-world experiments, the type I
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Figure 1.—A schematic illustrating (a) EM-
LRT and (b) the interval-mapping method.
The shaded inverted triangles indicate ob-
served markers, the open inverted triangle in-
dicates the putative locus.

error rates were 0.060 and 0.077 for 10 and 20% missing, (i.e., �j’s and � 2) were not much affected by the accura-
cies of the estimates of pj,k,l’s. All parameters were esti-respectively. Thus, for n � 40 (see the real example in

III shown below), we can still use EM-LRT if 10% or mated more accurately when the sample size n became
larger. As a result, the EM-LRT is a valid test for increas-fewer observations are missing. When there are �200

animals, we can use the tests with up to half of all obser- ingly greater missing proportions as n becomes larger.
Power comparison of EM-LRT with ANOVA-basedvations missing.

To evaluate the accuracy of parameter estimates, we tests: To compare the power of EM-LRT with that of
the ANOVA-based test, we conducted simulation studiescalculated the coefficient of variability (CV) for each

model parameter estimate. CV is conventionally defined using two types of phylogenetic models.
Simulation models: In the simulations performed, ge-as √MSE(�̂)/�, where MSE(�̂) denotes the mean squared

netic markers were generated according to two phyloge-error of the estimate for parameter � over 1000 simula-
netic models (Figure 2). Let A, B, and C denote thetion runs. Table 2 shows the average CV for estimates
wild-type alleles and a, b, c their corresponding mutantof pj,k,l’s, �j’s, and � 2. (It turned out the CVs for estimates
alleles for the three loci, A, B, and C, respectively. Weof pj,k,l’s were rather similar and thus we presented only
assume that the A → a event has arisen before eithertheir average values.)
B → b or C → c occurred, and B → b or C → c eventsIt can be seen that the ancillary parameters pj,k,l were
occurred only on the aBC haplotype. In model I, theestimated less accurately compared to the estimates of
B → b took place first on the ancestral haplotype aBC,the main parameters �j and � 2 across the board. How-
followed by the mutation of locus C on the haplotypeever, because pj,k,l’s are parameters that are used only in
abC, resulting in four distinctive haplotypes: ABC, aBC,the adjustment of the impacts of the missing data on

the main parameters, the main parameters of interest abC, and abc. In model II, the mutation at locus B took

TABLE 1

The empirical type I error of EM-LRT over 1000 simulations

Proportion of missing genotype

Sample size (n) 10% 20% 30% 40% 50% 60% 70%

50 0.059 0.068 — — — — —
100 0.043 0.055 0.072 — — — —
200 0.046 0.055 0.061 0.060 0.060 0.086 —
500 0.054 0.055 0.049 0.048 0.052 0.058 0.088

1000 0.060 0.048 0.056 0.051 0.048 0.046 0.081

Note that the type I error calculations were made only at those proportions of missing data when the EM-LRT
remains valid or when the type I error starts to be inflated.
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TABLE 2

The average CVs for the parameter estimates of EM-LRT over 1000 simulations

Proportion of missing genotype
Sample Parameters
size (n) of interest 10% 20% 30% 40% 50% 60% 70%

50 pj,k,l 0.767 0.812 — — — — —
50 �j 0.023 0.025 — — — — —
50 � 2 0.106 0.110 — — — — —

100 pj,k,l 0.536 0.571 0.603 — — — —
100 �j 0.018 0.019 0.020 — — — —
100 � 2 0.071 0.073 0.074 — — — —
200 pj,k,l 0.386 0.402 0.423 0.453 0.487 0.541 —
200 �j 0.013 0.013 0.014 0.015 0.016 0.019 —
200 � 2 0.051 0.051 0.052 0.053 0.053 0.055 —
500 pj,k,l 0.241 0.253 0.267 0.285 0.306 0.336 0.387
500 �j 0.008 0.008 0.009 0.009 0.010 0.011 0.014
500 � 2 0.032 0.031 0.031 0.032 0.032 0.033 0.033

1000 pj,k,l 0.172 0.180 0.188 0.198 0.216 0.239 0.269
1000 �j 0.006 0.006 0.006 0.007 0.007 0.008 0.009
1000 � 2 0.021 0.023 0.022 0.022 0.023 0.023 0.023

Note that the average CVs for the parameter estimates were calculated only at those proportions of missing
data when the EM-LRT remains valid or when the type I error starts to be inflated.

place first on the ancestral haplotype aBC, followed by loci A, B, and C, respectively (e.g., genotype “aaBbCC”
the mutation of locus C on the haplotypes bearing either corresponds to X1 � 3, X 2 � 2, X 3 � 1);
the wild-type allele (i.e., aBC) or the mutant allele (i.e.,

model IB: the genotype measures X1 , X 2 , and X 3 referabC) at locus B, resulting in five distinctive haplotypes:
to loci B, A, and C, respectively (e.g., genotype aaBbCCABC, aBC, abC, aBc, and abc.
now corresponds to X1 � 2, X 2 � 3, X 3 � 1).In model I, we assume that C → c occurred only on

the abC haplotype, as shown in Figure 2. Let pa denote
In model II, we considered the case where B → b andthe proportion of the “a” allele in the population, pb C → c events were independent (see Figure 2); withoutdenote the probability of the B → b event conditional

loss of generality, we assume that B → b occurred beforeon the A → a event, and pc denote the probability of
C → c . Under this model, pa and pb were defined similarlythe C → c event conditional on the B → b event. Two
as we defined in model I, but pc is defined as the probabil-variants of model I were considered:
ity of the C → c event conditional on the A → a event.

In our simulations, we considered the following pa-model IA: the genotype measures X1 , X 2 , and X 3 refer to

Figure 2.—Two phylogenetic models for three linked loci (i.e., A, B, and C) residing on the same chromosome, all starting
from an ancestral haplotype aBC , which arose from its founder haplotype, ABC (i.e., A → a is the most ancestral event, and B →
b or C → c took place only on the aBC haplotype). In model I, the B → b event took place first on the ancestral haplotype ABC ,
followed by the the C → c event occurring on the AbC haplotype only, resulting in four distinct haplotypes. In model II, the
mutation at locus B took place first on the ancestral haplotype ABC, followed by the mutation of locus C on the haplotypes
bearing either the wild-type allele (i.e., ABC) or the mutant allele (i.e., AbC) at locus B, resulting in five distinctive haplotypes.
Open circles, aBC ; shaded circles, AbC ; hatched circles, aBc ; solid circles, abC.
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Figure 3.—Power estimation
and comparison of the EM-LRT
and ANOVA F -test when P(A →
a) � 20%. The points plotted indi-
cate the empirical proportion of
tests (by use of a nominal level � �
0.05) that rejected the H0 among
1000 simulated data sets. K � �/
(�/√n). Plots on the left corre-
spond to cases with 10% missing
data. Plots on the right corre-
spond to cases with 20% missing
data. * indicates cases where P �
0.05, and ** indicates cases where
P � 0.005. Here “P” refers to the
P -value of Wilcoxon rank-sum
tests comparing the power differ-
ence between the EM-LRT and
the F -test. Solid diamonds denote
the power of the EM-LRT; solid
squares denote the power of the
ANOVA F -test.

rameter settings for pa , pb , and pc : pb � pc � 0.8, and pa various values of � and for different missing probabili-
ties (10 and 20% on the left-hand and right-hand sides,of values 0.1, 0.2, and 0.4. For example, pa � 0.2 would

mean that the a allele is present in 20% of the popula- respectively for Figures 3–5). The simulated � values
tion, and hence �32% of the animals have the genotype were defined as K�/√n, where K � 0, 1, 2, . . . . For the
Aa and 4% have the genotype aa. simulation runs with pa � 0.1 (Figure 5), we replaced

Simulation and fitting procedures: For these models, we the comparison between EM-LRT (14) and ANOVA F -test
simulated for n � 200: {(Yi , X1,i , X 2,i , X 3,i)}, where i � (12) with the comparison between the EM-adjusted
1, . . . , n. The phenotype Y for each animal is again t -test (15) and the ANOVA t -test (13) for the following
generated according to the linear model—Equation 1, reason: when the minor allele (a) frequency is low (pa �
with parameters �1 � 100 � �, �2 � 100, �3 � 100 � 0.1), it would be expected that only �1% of animals
�, and � � 10. Here we randomly dropped values from would carry the aa genotype. Since a total of 200 animals
each variable with a probability, pm . We conducted simu- were in each simulation, there were on average �2 ani-
lations under two scenarios: (a) pm � 10% and (b) pm � mals with the aa genotype in most simulated data sets.
20%. Note that in our simulations used for assessing In many simulation runs, there was not a single observa-
the validity of EM-LRT in finite samples, the missing tion in the aa genotype group. Therefore, in this case,
proportion refers to the missing probability of X1 . Here, the phenotypic comparison is needed only between the
pm refers to the missing probability of all variables, Y, X1 , pair of genotypes AA and Aa, with respective mean val-
X2 , and X3 . The validity of the EM-LRT for the simulation ues denoted as �1 and �2. It was thus more appropriate
used here was verified by checking the values of the to compare the power of the EM-adjusted t -test (15)
empirical type I error rates (i.e., when � � 0). with that of the ordinary ANOVA t -test (13).

For each model setting, we repeatedly ran the simula- Power comparisons: For a hypothesis test, a type I error
tion 1000 times. For each simulated data set, we com- occurs if H0 is rejected when it is true. If H0 holds, a
puted the EM-LRT (14) and ANOVA F -test (12) statistics correct test should have a type I error rate  �. The H0

and recorded their values. The empirical powers of the in this case was represented by � � 0 (or equivalently,
EM-LRT and F -test were calculated as the proportions K � 0) or the left-most case in Figures 3–5. It can be
of data sets where H0 was rejected at the significance seen that in those cases the empirical type I error rates
level � � 0.05. Figures 3 and 4 display the empirical for both the EM-LRT and the ANOVA F -test were close
powers from the 1000 simulation runs for pa � 0.2 and to � � 0.05, confirming that they were both valid tests.
0.4, respectively. The statistical powers were calculated The power of a test is defined as one minus the type

II error. Among valid tests with correct type I error rates,and compared for all three models (IA, IB, and II), for
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Figure 4.—Power estimation
and comparison of the EM-LRT
and ANOVA F -test when P(A →
a) � 40%. The points plotted indi-
cate the empirical proportion of
tests (by use of a nominal level � �
0.05) that rejected the H0 among
1000 simulated data sets. K � �/
(�/√n). Plots on the left corre-
spond to cases with 10% missing
data. Plots on the right corre-
spond to cases with 20% missing
data. * indicates those cases where
P � 0.05, and ** indicates those
cases where P � 0.005. Here “P”
refers to the P -value of Wilcoxon
rank-sum tests comparing the
power difference between the EM-
LRT and the F -test. Solid dia-
monds denote the power of the
EM-LRT; solid squares denote the
power of the ANOVA F -test.

it is clear that a test with a higher power is preferred. and a strain with high brain weight (BXD5). Brain vol-
ume, striatal volume, striatal neuron number, striatal neu-It can be seen from Figures 3 and 4 that the empirical

powers of EM-LRT were higher than the empirical pow- ron number residual, striatal volume residual, and brain
weight were measured using standard procedures. Weers of the F -test. Due to simulation variations, however,

a higher empirical power does not necessarily mean the studied a total of 13 microsatellite markers—9 markers
on chromosome 10 (D10Mit106, D10Mit3, D10Mit194,real power is higher. To see whether the difference in

power is statistically significant, we conducted a pairwise D10Mit61, D10Mit186, D10Mit266, D10Mit233, D10Mit-
179, and D10Mit180), and 4 markers on chromosome 18nonparametric test (the Wilcoxon rank-sum test) on the

1000 pairs of P -values for EM-LRTs and F -tests. The (D18Mit20, D18Mit120, D18Mit122, and D18Mit184). The
map locations of the loci studied were obtained fromcases where the powers of EM-LRTs are statistically sig-

nificantly higher are indicated by asterisks in the figures. Ensembl (http://www.ensembl.org/Mus_musculus/).
The P -values of both the ANOVA F -test and EM-LRTAs illustrated in Figures 3 and 4, when pm � 10%, the

power of the EM-LRT was significantly higher than that are displayed in Tables 2 and 3.
Since few missing observations were present in the data,of F -test when K 
 3 for models IA, IB, and II. And

when pm � 20%, the EM-LRT started to outperform the the differences in P -values were very small between the
ANOVA F -tests (Table 3) and the EM-LRT (Table 4).F -test when K � 2. Not surprisingly, the power improve-

ment of EM-LRT over the F -tests became more signifi- Both methods showed that D10Mit186 affects most phe-
notypes in the study. Also, two markers on chromosomecant when more data were missing.

The comparison results shown in Figure 5 were simi- 18, D18Mit20 and D18Mit120, significantly affect brain
weight.lar to those of Figures 3 and 4: when 10% of data were

missing, the EM-adjusted t -test started to significantly To illustrate the effects of missing genotype observa-
tions, we randomly dropped 10% of the genotype obser-outperform the ordinary ANOVA t -test for K � 3 or 4;

when 20% of data were missing, the better performance vations at the interested locus and recalculated the
P -values of the ANOVA and EM-LRT. Table 5 presentsstarted when K � 2.

Application to a real data set in experimental crosses: the P -values of the ANOVA F -test and EM-LRT for all
phenotypes of interest with and without the droppedAs an illustration, we applied the proposed method to

a real data set based on an F2 intercross study. This data D10Mit186 genotype data. Similarly, Table 6 presents
the P -values of the ANOVA F -test and EM-LRT for brainset, based on a previously published report (Rosen and

Williams 2001), consisted of a total of 36 mice from an weight with and without the dropped D18Mit20 and
D18Mit120 genotype data.F2 intercross between a strain with low brain weight (A/J)
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Figure 5.—Power estimation
and comparison of the EM-adjusted
t -test and the ordinary t -test when
P(A → a) � 10%. The points plot-
ted indicate the empirical propor-
tion of tests (by use of a nominal
level � � 0.05) that rejected the
H0 among 1000 simulated data
sets. K � �/(�/n). Plots on the
left correspond to cases with 10%
missing data. Plots on the right
correspond to cases with 20%
missing data. * indicates those
cases where P � 0.05, and ** indi-
cates those cases where P � 0.005.
Here “P” refers to the P -value of
Wilcoxon rank-sum tests compar-
ing the power difference between
the EM-adjusted t -test and the or-
dinary t -test. Solid diamonds de-
note the power of the EM-adjusted
t -test; solid squares denote the
power of the ordinary t -test.

As we can see from these tables, P -values for the detect the association under the same condition. On
the other hand, as shown in Table 5, the effect of drop-ANOVA F -tests were more sensitive to the dropped phe-

notype data than were those for the EM-LRT. For exam- ping 10% D10Mit186 genotype data is less pronounced.
The results produced by ANOVA tests led to the sameple, in Table 6, the ANOVA tests are no longer able to

detect the association at the � � 0.01 level with brain conclusions on the associations of the D10Mit186 geno-
type with all the phenotypes except the striatal neuronweight when 10% of genotype observations at the inter-

ested locus were dropped while the EM-LRT can still number residual. The ANOVA test was not able to detect

TABLE 3

The P-values of the ANOVA F-test for associations between the phenotypes and genetic markers
for the mouse data

Phenotype

Striatal Striatal
Genetic Brain Striatal Striatal neuron no. volume Brain
marker volume volume neuron no. residual residual weight

D10Mit106 0.1506 0.0055 0.2186 0.8832 0.0441 0.0240
D10Mit3 0.2361 0.0781 0.4253 0.4546 0.0568 0.0261
D10Mit194 0.4302 0.0135 0.4712 0.3219 0.1759 0.0229
D10Mit61 0.0555 0.0020 0.2007 0.1048 0.2857 0.0118
D10Mit186 0.0062 0.0004 0.0225 0.0062 0.2073 0.0037
D10Mit266 0.0640 0.0029 0.1382 0.2667 0.0754 0.0438
D10Mit233 0.0749 0.0032 0.1314 0.2031 0.0553 0.0290
D10Mit179 0.1523 0.0463 0.4410 0.5620 0.4758 0.1031
D10Mit180 0.1185 0.0521 0.5966 0.6470 0.7244 0.0697
D18Mit20 0.2476 0.0955 0.1081 0.0837 0.3491 0.0012
D18Mit120 0.5902 0.3389 0.9843 0.4053 0.2581 0.0037
D18Mit122 0.2092 0.2850 0.4006 0.2872 0.8266 0.0208
D18Mit184 0.6908 0.4677 0.2811 0.1631 0.8803 0.0904

P-values �0.01 are in italics.
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TABLE 4

The P-values of EM-LRT for associations between the phenotypes and genetic markers for the mouse data

Phenotype

Striatal Striatal
Genetic Brain Striatal Striatal neuron no. volume Brain
marker volume volume neuron no. residual residual weight

D10Mit106 0.1268 0.0035 0.1904 0.8733 0.0332 0.0171
D10Mit3 0.2057 0.0568 0.3822 0.5158 0.077 0.0232
D10Mit194 0.3488 0.0101 0.5458 0.3501 0.2025 0.0123
D10Mit61 0.0426 0.0012 0.1735 0.0854 0.2549 0.0079
D10Mit186 0.0039 0.0002 0.0160 0.0039 0.1796 0.0022
D10Mit266 0.0391 0.0012 0.1067 0.2279 0.0492 0.0261
D10Mit233 0.0536 0.0016 0.1003 0.1952 0.0339 0.0197
D10Mit179 0.1284 0.0350 0.4093 0.5334 0.4448 0.0838
D10Mit180 0.1284 0.0350 0.4093 0.5334 0.4448 0.0838
D18Mit20 0.4458 0.1223 0.2379 0.1652 0.3077 0.0010
D18Mit120 0.5360 0.3015 0.9819 0.3581 0.1829 0.0017
D18Mit122 0.2882 0.2364 0.4726 0.3259 0.8005 0.0125
D18Mit184 0.8812 0.2694 0.4598 0.1603 0.9425 0.0281

P-values �0.01 are in italics.

the association between the D10Mit186 genotype and utilize information contained in incomplete data. By
using both simulated and real data sets, we demon-the striatal neuron number residual when 10% of data

were missing while the EM-LRT could still detect the strated that EM-LRT utilizing incomplete data is a valid
test for finite samples with moderate proportions ofassociation. By and large, we see that the EM-LRT im-

proves the statistical power over the case when all miss- missing values and is a more powerful test compared to
ordinary ANOVA-based tests that discarded all missinging data were excluded.
data from the analysis.

Missing information on either genotype or phenotype
DISCUSSION can obscure the true genetic effect (Sen and Churchill

2001). To reduce the proportion of missing data, theIn this article, we presented an EM-LRT using flank-
best solution is to repeat the experiment, but it caning markers information in single-marker analysis to
be costly and time-consuming. The EM algorithm is a
standard maximum-likelihood estimation method for

TABLE 5 handling missing data (Dempster et al. 1977). In the
present context, the method fractionally assigns (E-step)The P-values of the ANOVA F-test and the EM-LRT for
the incomplete data to their theoretically possible valuesassociations between the phenotypes and genetic
on the basis of the current estimates of the parametersmarker D10Mit186 for the mouse data with
and then revises the parameter estimates to maximizevarious proportions of missing genotype data

Proportion of
missing D10Mit186 TABLE 6

genotype
The P-values of the ANOVA F-test and the EM-LRT forEstimation

Phenotype method 0% 10% association between brain weight and genetic
markers D18Mit20 and D18Mit120 for the

Brain volume ANOVA F-test 0.0062 0.0014 mouse data with various proportionsEM-LRT 0.0039 0.0032
of missing genotype dataStriatal volume ANOVA F-test 0.0003 0.0180

EM-LRT 0.0002 0.0001
Proportion ofStriatal neuron no. ANOVA F-test 0.0225 0.0231

missing genotypeEM-LRT 0.0159 0.0165 Genetic Estimation
Striatal neuron no. ANOVA F-test 0.0062 0.0107 marker method 0% 10%
Residual EM-LRT 0.0039 0.0039
Striatal volume ANOVA F-test 0.2072 0.3731 D18Mit20 ANOVA F-test 0.0011 0.0166

EM-LRT 0.0010 0.0030Residual EM-LRT 0.1796 0.1664
Brain weight ANOVA F-test 0.0036 0.0004 D18Mit120 ANOVA F-test 0.0037 0.0261

EM-LRT 0.0017 0.0011EM-LRT 0.0022 0.0014

P-values �0.01 are in italics. P-values �0.01 are in italics.



1031An EM-LRT for Handling Missing Data

(the M-step) the likelihood on the basis of the pseudo- selected is independent from study I. In other words, the
new genetic marker is not selected because the flankingcomplete data. This two-step, alternating iteration pro-

cedure is repeated until convergence can be reached. markers already showed associations with the phenotype
in study I. If the new genetic marker is selected becauseStatistical theory guarantees that the observed data like-

lihood increases to a maximum via the algorithm, and of an association observed in regard to the flanking
markers in study I, then a sequential design is needed.thus the EM-LRT can be performed validly (Dempster

et al. 1977). Likelihood methods with the EM algorithm How to adjust our tests for the sequential design is an
interesting research topic that deserves further investi-allow the recovery of much of the lost information and

make statistically efficient use of the data. In the simu- gation.
lated data sets, the EM-LRT outperforms the ANOVA- We are grateful to the two anonymous reviewers for their comments
based tests at various marker allele frequencies, and and suggestions. We thank Glenn D. Rosen at the Beth Israel Deacon-

ess Medical Center, Harvard Medical School for providing the mousethe differences in statistical power became increasingly
inbred strain data.more pronounced with an increasing portion of missing

data or an increasing value of � (Figures 3–5). In the
real data set example on inbred mouse strains, we found
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