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ABSTRACT
We investigate conditions under which a model with stochastic demography or population structure

converges to the coalescent with a linear change in timescale. We argue that this is a necessary condition
for the existence of a meaningful effective population size. We find that such a linear timescale change
is obtained when demographic fluctuations and coalescence events occur on different timescales. Simple
models of population structure and randomly fluctuating population size are used to exemplify the ideas
and provide an intuitive feel for the meaning of the conditions.

IN population genetics, simplifying assumptions are be defined, they may lead to complex formulas involving
demographic parameters that are practically impossiblenecessary to turn complex biological systems into

caricatures that are, on the one hand, simple enough to measure. Furthermore, one too often reads of “the”
effective population size without reference to the partic-to analyze and, on the other hand, realistic enough to

capture key features of the process under investigation. ular notion being considered.
We propose that the coalescent effective population size in-These simple models often make assumptions that are

clearly violated in most populations; yet they are of great troduced and discussed in Nordborg and Krone (2002),
importance since their simplicity allows one to make when it exists, provides a more general and consistent
predictions about the patterns of polymorphism that notion of effective size that is less likely to be misused.
are expected under these assumptions. Data can then Since the coalescent essentially embodies all of the infor-
be compared with these predictions to detect deviations mation that can be found in sampled genetic data, one
from the simplifying assumptions. In other words, these can argue that, if anything deserves the title of “the
simple models serve as null models. The standard popu- effective size,” it is the coalescent effective size.
lation genetic null model, the Wright-Fisher model, and By definition, the coalescent effective size exists only
its retrospective cousin, the standard coalescent, are when the scaling of time to retrieve the standard coales-
examples of this. cent is independent of time; but, when this is the case,

The concept of effective population size has tradition- the appropriately rescaled population behaves precisely
ally been used to rescale a given population model so as the Wright-Fisher model does in all respects. Likewise,
that it behaves, with regard to certain properties, as a when it does not exist, the Wright-Fisher model can be
simple Wright-Fisher model with constant population rejected as a null model. As already pointed by Nord-
size. The three properties of the Wright-Fisher model borg and Krone (2002) the nonexistence of an effec-
most commonly used in defining effective population tive population size in some situations is a desirable
sizes are: (i) the probability of identity-by-descent of two property, at least if the purpose of defining an effective
alleles chosen at random, (ii) the variance in offspring population size is to investigate how genetic drift oper-
allele frequency, and (iii) the leading non-unit eigen- ates, because it stresses that these situations cannot be
value of the allele frequency transition matrix. They described by a Wright-Fisher model.
correspond, respectively, to the “inbreeding effective The Wright-Fisher null model has proved surprisingly
population size,” the “variance effective population size,” difficult to reject, despite what appear to be major viola-
and the “eigenvalue effective population size.” In some tions of the assumptions. This is due to the “robustness”
demographic models the three effective sizes are equal of the coalescent process, which is one of three proper-
but in others they can differ considerably or simply not ties listed by Kingman (2000) as fundamental to this
exist (Ewens 1982; Orive 1993). Even when they can process. Even if a natural population does not fulfill all

the assumptions of the Wright-Fisher model, it can some-
times behave in all important respects (i.e., those that
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happens when the ancestral process can be approxi- the number of ancestral lineages as time recedes into
the past.mated by Kingman’s coalescent with the population size

replaced by a constant—the coalescent effective popula- How Kingman’s coalescent relates to the ancestry in
a given population genetic model is described mosttion size, Ne. On the positive side, this means that the co-

alescent process—and thus the Wright-Fisher model— easily for the haploid Wright-Fisher model with fixed
population size N and no selection or recombination.manages to capture something essential about the way

natural populations behave; in other words, it is robust In this panmictic model, when N is sufficiently large
and time is measured in units of N generations, theto changes in the assumptions and is therefore a good

approximation to real systems. More disturbingly, this ancestry of a sample is approximated by Kingman’s co-
alescent.lack of sensitivity also implies that certain seemingly

important features of the population history cannot be Thus to do a calculation for the Wright-Fisher model
one does the analogous calculation for the coalescentdetected using polymorphism data.

In this article we assess conditions under which the co- process and then interprets t units of coalescent time
to be [Nt] generations, where [Nt] is the largest integeralescent effective size exists, both analytically and through

computer simulations. In the simulations we use two less than or equal to Nt . For example, the mean time
to go from k lineages to k � 1 in the coalescent issimple demographic models, one with randomly fluc-

tuating population size and the other with subdivided E[Tk] � 1/ck . Thus, in the Wright-Fisher model with
population size N, it takes on average N/ck generationspopulations linked by migration.
for k lineages to coalesce down to k � 1. With the ap-
propriate scaling of time this approximation works well

THE COALESCENT beyond the Wright-Fisher model and there are varia-
tions of the coalescent that incorporate the effects ofThe coalescent is a random tree that allows one to
selection, recombination, spatial structure, and demo-characterize ancestral relationships between individuals
graphic variation.(genes) in a sample when the population size is large

Mathematically, the above can be expressed as follows.(Kingman 1982a,b,c). The probabilistic structure of
Let A(t) denote the number of lineages in the standardKingman’s coalescent (sometimes referred to as the
coalescent t units of (coalescent) time in the past, andstandard coalescent) is quite simple. If we start with a
let AN(�) be the number of ancestors � generations in thesample of n individuals, we wait a random time Tn that
past for the discrete-time neutral Wright-Fisher model

is exponentially distributed with mean 1/�n2�. At this time, corresponding to fixed population size N. Convergence
to the coalescent then means AN([Nt]) → A(t), as Ntwo randomly chosen ancestral lineages coalesce, leav-

ing n � 1 distinct lineages. The lineages continue coa- tends to infinity. If we are dealing with a different popu-
lescing in this way until we reach a single common lation model that has some quantity fluctuating over
ancestor for the sample. We thus obtain a sequence Tn , time, we say “averaging occurs” if the corresponding dis-
Tn�1, . . . , T2 of intercoalescence times that are indepen- crete-time ancestral process satisfies AN([Nt]) → A(ct) for
dent and exponentially distributed with some constant c . This means that, after converting t

units of coalescence time to [Nt] generations, the ances-E[Tk] � 1/ck , k � 2, . . . n,
tral process for the discrete-time model can be approxi-

where mated by the standard coalescent with time speeded up
by a factor c . This scaling factor c then allows us to
define the coalescent effective population size byck � �k2 � � k(k � 1)/2

Ne � N/c .
is the number of ways to choose an unordered pair from

Note that speeding up the coalescent by a factor ck objects. The time to reach the most recent common
is equivalent, as far as sample data are concerned, toancestor is thus the sum
multiplying the mutation rate by the factor 1/c . Thus,

TMRCA � Tn � Tn�1 � · · · � T2 we get the same genealogy as for a neutral, panmictic,
constant-size Wright-Fisher model with a different muta-

with expected value tion rate. Indeed, if there is a scaling constant c such that
the appropriately scaled ancestral process converges to

E(TMRCA) � �
n

k�2

1
ck

� 2(1 � 1/n). A(ct), then the sampled data cannot be distinguished
from those arising in a standard neutral Wright-Fisher

Since the standard coalescent corresponds to a neutral model. Other “coalescent effective population sizes”
Wright-Fisher model, the pairs of lineages that join at have been defined in, e.g., Gillespie (2000) and Sano
coalescence times are always chosen at random. Thus, et al. (2004), but both differ from our definition. Gilles-
the probabilistic structure of the coalescent tree is deter- pie’s coalescent effective population size was defined

in relation to the presence of hitchhiking but did notmined by the pure death process that keeps track of
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explicitly consider other possible departures from the not met. For example, fluctuating size tends to produce
negative values of F and population subdivision leadsstandard Wright-Fisher model. The definition of Sano

et al. of coalescent effective population size is closer to positive F.
The rest of the article is arranged as follows. In theto ours as it also stems from considering fluctuating

next section, we discuss the case of randomly fluctuatingpopulation sizes but it does not require a linear scaling
population size. We begin with a fairly thorough treat-of time. In other words, our definition implies that the
ment of the analytical results that describe when onecoalescent Ne of Sano et al. exists but the converse is
can and cannot get a coalescent effective populationnot true. Note also that the coalescent effective popula-
size. This is followed by simulations of Fu and Li’s Ftion size proposed here makes sense only when the
for a special case of the model. This section is followedcoalescent approximation applies. In particular this im-
by a more abbreviated one dealing with populationplies that the population size must be much larger than
structure. Again, we begin with an analytical discussionthe sample size (Kingman 1982a,b,c). Furthermore, this
and follow it with simulations in a special case. A discus-definition does not allow for an effective population size
sion section summarizes the results and in the appendixin models that converge to types of coalescent processes
we show how to get the nonlinear time change for “inter-other than the standard coalescent. For instance, there
mediate” rates of population size fluctuations.is no effective population size in models that converge to

the “structured coalescent” (Notohara 1990; Herbots
1997) or the coalescent process described by Wakeley FLUCTUATING POPULATION SIZE
and Aliacar (2001), where there is an “initial scattering

In this section, we discuss the effects of stochasticallyphase” followed by a “collecting phase.”
fluctuating population size on haploid, neutral, single-In this article, we seek to determine when, in the
locus gene genealogies. This differs in a fundamentalpresence of stochastic demography (e.g., fluctuating
way from coalescent theory in the presence of determin-population size or spatial structure), we can define an
istically varying population size.effective population size, Ne , that allows us to do all

If these size fluctuations are fast compared to thecoalescent-based calculations in the same way as we
coalescent timescale, then they will affect the coalescentwould for a Wright-Fisher model with size Ne . Our ap-
only in an average sense. In this case there will be anproach involves both theoretical analysis and simula-
effective population size and the genealogy will be giventions.
by Kingman’s coalescent with a linear time change. If,Our analytical results will provide general insight into
on the other hand, “macroscopic” size fluctuations occurthe effects of fluctuating population size and geographi-
on the same timescale as coalescences, then the re-cal structure on the genealogical process. We will see,
sulting genealogical process will be described by King-for example, that these effects can be averaged to get
man’s coalescent run on a nonlinear, stochastic time-a coalescent effective size if population size fluctuations
scale. In this case, there is no effective population size.and migration rates are sufficiently rapid. To get a feel
The object that one would like to think of as an effectivefor how these limiting results apply to real populations
size in this case changes with time instead of being con-and to gauge their robustness, we use simulations. For
stant; essentially, there is only an “instantaneous” effec-this, we quantify the effects of deviations from the stan-
tive size.dard constant-size Wright-Fisher model with Fu and Li’s

Fast fluctuations—averaging: One often sees in popu-F-statistic (Fu and Li 1993), one of many statistics de-
lation genetics the claim that, when population sizessigned to detect such deviations. We simulated Tajima’s
fluctuate, there is an effective size given by the harmonicD (Tajima 1989) as well but as the result was qualitatively
mean of the possible sizes. To understand when thisthe same; we henceforth deal only with F.
works and, more importantly, when it does not, let usThe F -statistic is defined by
begin with a simple calculation.

Suppose the sizes of a population have some fixed
F � F(�, �s , S) �

� � �s((n � 1)/n)

√�FS � �FS 2
,

discrete set of possible values, denoted by N1, N2, . . . ,
and assume that these sizes are all multiples of some

where n is the sample size, � is the average number of large value N, say Ni � xiN for each i , where the xi are
pairwise nucleotide differences (the average being over fixed positive numbers. As is typical in coalescent theory,
all possible pairs in the sample), S is the number of seg- we think of N as a parameter that gives the magnitude
regating sites, �s is the number of singletons (mutations of population size. Denote by MN(0), MN(1), MN(2), . . .
that appear in only one individual in the sample), and the sequence of population sizes backward in time; i.e.,
�F and �F are constants given the sample size n. This MN(0) is the size of the current generation, MN(1) is
construction yields an expected value that is nearly zero the size of the previous generation, etc. The simplest
(actually, it is slightly negative), assuming the standard possible model of randomly fluctuating size would as-
model and the infinitely many sites model, but is ex- sume that MN(0), MN(1), MN(2), . . . form an indepen-

dent, identically distributed sequence with probabilitiespected to deviate from zero when the assumptions are
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pi � P(MN(�) � Ni) for each time � 	 0. Suppose for does not change and hence, in a simplistic way, one can
think of having an effective size given by the initial size.simplicity that we have a Wright-Fisher model of repro-

duction, so that the probability of two randomly chosen This situation does not, however, entail averaging.
Intermediate fluctuations—no averaging: The re-individuals in generation � � 1 having a common parent

in generation � is 1/MN(�). Then we compute the proba- maining case, in which “large” changes in population
size occur on the same timescale as coalescence events, hasbility that two individuals do not have a common ances-

tor [Nt] generations in the past (i.e., their ancestral been treated mathematically by Kaj and Krone (2003;
see also Donnelly and Kurtz 1999). In this case, therelineages have not yet coalesced),
will be no averaging of the effects of size fluctuations,
and hence there is no effective population size. Rather,P(no coalescence in [Nt] generations) � E

⎡
⎢
⎣

�
[Nt ]

��1
�1 �

1
MN(�) �

⎤
⎥
⎦ the size fluctuations on this scale directly affect the

timescale of the coalescent in a nonlinear, stochastic
� �1 � �

i
pi ·

1
xi N �

[Nt ]

manner. In other words, the coalescent in this setting
is given by a time change of Kingman’s coalescent, but→ exp{�t�pi /xi }
now the time change is a random process and not a

as N → ∞ . In the first equality, we conditioned on the linear function of t, which is what would happen in the
values of the population sizes and then averaged over case of averaging.
all possibilities; in the second equality we used the as- To make this precise, consider a single haploid popu-
sumption that sizes were iid to bring the expectation lation with size MN(�), � generations in the past, and
inside the product and turn the product into a power. write

This calculation suggests that the pairwise coales-
cence rate, when N is large, should be given by �pi/xi . XN(�) �

MN(�)
N

(1)
This means that the pairwise coalescence probability in
one generation is of the form (1/N)�pi/xi . To match

for the relative size process, where N is a parameter thatthe Wright-Fisher dynamics, this last quantity is set to 1
we take to be large. We assume that this process, whenover the effective population size; i.e., the effective size
run on the coalescent timescale, converges to a processNe � (�pi/Ni)�1 is given by the harmonic mean of the
{X(t) : t � [0, ∞)} with state space I � (0, ∞),possible sizes.

The above calculations depend on population size
XN([Nt]) �

MN([Nt])
N

→ X(t), (2)being independent between generations, which is
hardly a realistic assumption. However, using the meth-

as N → ∞.ods in Nordborg and Krone (2002), one can extend
We have in mind, primarily, three kinds of limit pro-this to the case where the sequence (MN(�))�	0 is allowed

cesses:to change every generation according to a discrete-time
Markov chain with state space {N1, N2, . . .} and unique Case i. One-dimensional diffusion: X is a diffusion pro-
stationary distribution (�1, �2, . . .). Then, as in the iid cess with state space given by some interval [a,
example, the effects of fluctuating size “average” be- b], where a 
 0.
tween coalescence events, this time giving an effective

Case ii. Jump process: X is a continuous-time Markovpairwise coalescence rate of ��i/xi and hence an effec-
jump process with bounded jump intensitiestive size Ne � (��i/Ni)�1, which is again a harmonic
and state space I given by a discrete subset ofmean with the averaging being done with respect to
(0, ∞).the stationary distribution. Jagers and Sagitov (2004)

obtain similar results for general reproduction models
Case iii. Mixture: We can also consider combinations ofand stationary Markovian population size with a finite

the above, i.e., diffusion plus occasional large
number of states.

jumps. This includes as a special case determin-
More generally, and using again the methods in

istic continuous size change (e.g., exponential
Nordborg and Krone (2002), the same conclusion is

decay, reflecting exponential growth forward
reached if the size jump probability (per generation) is in time) with occasional random jumps.
of the form pij � qij/N�, whenever 0 � � 
 1. This means
that size fluctuations are fast compared to coalescence Note that case i contains as a trivial special case the
events. usual models of deterministic size fluctuations as dis-

Slow fluctuations: Similarly, if the large changes in cussed, for example, in Griffiths and Tavaré (1994).
population size are sufficiently slow compared to coales- In other words, the diffusion coefficient is zero in such
cence events, then in the limiting (N → ∞) coalescent models.
all the coalescences will occur before there are any Intuitively, for the diffusion limit to occur, the scaled
changes in size. This means that the limiting coalescent size process XN(·) should make frequent (say every gen-

eration) small jumps (of order 1/N). For example, ifwill correspond to a model in which the population size
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I � [a, b] is the state space for the limiting diffusion, The parameter values used in our simulations were
the state space for XN(·) might be of the form IN � I � N2 � 104 and 105, while N1 was fixed at 103. For simplicity,
ZN , where ZN � (1/N)Z is the set of all integer multi- we set q 1 � q 2 and values used were 1, 0.75, 0.5, 10�0.5,
ples of 1/N. 10�1, 10�1.5, . . . , 10�6. The mutation probability per in-

A typical example of case ii occurs when the process dividual per generation was fixed at � � 0.001. For
XN(·) jumps within a fixed discrete set (possibly finite), details about the simulations, see the appendix. Depen-
and the probability of jumping out of a given state in dence on initial size is one of the hallmarks of the
one generation is of order 1/N. Then, for a given N, nonaveraging case. It is tempting to think that one
the holding time in a given state is geometric with pa- might obtain averaging, and hence a linear time change
rameter pN � O(1/N). These geometric holding times in the coalescent, by starting the demographic process
converge to exponential holding times as N → ∞. As we at its stationary distribution. A heuristic argument for
mentioned above, the thing to keep in mind in all these why this will not work can be made along the following
cases is that macroscopic changes in population size lines. Because q 1 � q 2, we expect the demographic pro-
occur on the same timescale as coalescence events. cess to spend as much time in state N1 as in N2 . However,

We show in the appendix that, in the limiting coales- because N1 
 N2 , the coalescence rate is higher while
cent, the pairwise coalescence probability during [0, t] the population size is N1 . The combined effect is that,
is determined by the cumulative coalescence intensity over conditional on a coalescence event happening in gener-
the time interval [0, t], ation �, the population size of generation � is more

likely to be N1, implying that the distribution of the
Yt � �

t

0

1
X(s)

ds , demographic variable at � is no longer given by the
stationary distribution with which we started. When the

where X(t) is the scaled backward size process (Kaj and demographic process is much faster than coalescence
Krone 2003; Donnelly and Kurtz 1999). Thus, when events, however, we would expect this effect to be negli-
there are k lineages, the coalescence intensity grows like gible and the genealogy to behave as in a constant-size
�k2�Yt . In other words, if A(t) is Kingman’s coalescent pro- null model.

As predicted, departures from the null model arecess, the limiting coalescent in the above setting is given
by A(Yt). This is Kingman’s coalescent run according detected only when the fluctuations in population size
to the nonlinear stochastic clock Yt . This can be envi- are intermediate. The range of q that corresponded to
sioned as moving up the standard coalescent tree at a the demographic process being sufficiently intermedi-
rate that varies according to what the current size is. ate to make rejecting the constant-size null model likely
Note that the initial population size matters, unlike what appears to be given by the interval [1/N2 , 1/N1] ex-
happens in the case of averaging. This dependence is tended by 1 order of magnitude on either side, i.e.,
also seen in the simulations when size fluctuations are [10�5, 10�2] for N2 � 104, N1 � 103 and [10�6, 10�2] for
sufficiently slow. Time changes of this form have already N2 � 105, N1 � 103 (Figure 1). For q 
 10/N1, fluctuations
been noted (Griffiths and Tavaré 1994) in cases for are fast enough to give F values that are consistent with
which the past population sizes are assumed known (e.g., a null model with an appropriately averaged constant
a population that is exponentially growing forward in effective size. For q 
 1/(10N2), the size fluctuations
time). The result indicated in this article is much more are slow enough to give F values consistent with popu-
general and accounts for an important source of ran- lation size fixed at the initial value.
domness in the population size process. In fact, one of

Not surprisingly, the extent to which F deviates fromour major goals is to provide some guidance on when
zero increases as the difference between N1 and N2 in-the speed and intensity of the fluctuations in the size
creases. As long as population size fluctuations are small,process produce polymorphism data that are not com-
they have little effect.patible with an equivalent constant-size model.

When size fluctuations do have an effect on F, theSimulation results: We consider a simple model in
effect increases with sample size. This is expected be-which the population size has two possible values and
cause, as the sample size increases, so does the timefalls within the realm of case ii above. This model has
to the most recent common ancestor. However, thebeen studied by Iizuka and co-workers in the context
phenomenon becomes less marked as the sample sizeof inbreeding (Iizuka 2001) and heterozygosity (Iizuka
gets very large. This is a consequence of the fact thatet al. 2002) effective population sizes. Four parameters—
the expected time to the most recent common ancestortwo population sizes, N1 and N2 (with N1 
 N2), and two
reaches a limit as the sample size goes to infinity.transition probabilities, q1 and q2—give the one-step prob-

Figure 2 shows that F tended to be more negativeabilities of size changes from N1 to N2 and from N2 to N1 ,
when the initial population size was the larger one (N2).respectively. Thus, the size process describing the demo-
The reason for this is that the coalescence rate is smallergraphic process is a discrete-time Markov chain with
when the population size is N2 (because N2 
 N1). Thus,state space {N1 , N2} and unique stationary distribution

� with �(N1) � q 2/(q 1 � q 2) and �(N2) � q 1/(q 1 � q 2). since q1 � q2, a population size change before a coales-
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Figure 2.—Fu and Li’s F, for fluctuating population size,
when N1 � 103, N2 � 105, and q 1 � q 2 � 10�4. The top curve
corresponds to initial population size 103 and the bottom curve
to initial population size 105.

Our interest here is in finding conditions under which
the limiting genealogy is identical to a standard coales-
cent relative to a single effective population size. This was
discussed at length by Nordborg and Krone (2002), and
we refer to that article and the references therein for
details. We contend ourselves with a brief summary of
the main ideas, followed by simulations for a special case
to get a feel for when these approximations work in
finite populations.

Figure 1.—F when N1 � 103, � � 0.001, and q 1 � q 2. Each If migration between subpopulations is sufficiently
point represents an average from 10,000 runs starting with fast compared to the coalescent timescale, the effects
the stationary probability of being in N1. (Top) N2 � 104; of subdivision will be felt in the coalescent in an average
(bottom) N 2 � 10 5.

sense only [this is the “strong migration limit” (Nagy-
laki 1980)]. Essentially, the migration process has time
to reach equilibrium between coalescence events.

cence event is more likely when the population size is In this case there will be a coalescent effective popula-
N2 than N1. tion size and the genealogy will be given by Kingman’s

coalescent with a linear time change. If, on the other
hand, migration events are intermediate in the sense

STRUCTURED POPULATIONS that they occur on the same timescale as coalescences,
then the resulting genealogical process will be describedIn this section, we consider the effects of population
by a structured coalescent. In this case, the genealogysubdivision on genealogical processes and discuss under
cannot be thought of a standard coalescent and therewhich conditions averaging occurs. In other words, we
is no coalescent effective population size.seek conditions under which one can think of the popu-

To make this more precise, let us consider a scenariolation as being equivalent to a single panmictic unit
in which a population is broken up into a finite number,with some constant effective size. Here, population sub-
L, of demes and that the size of deme i is the constantdivision might refer to geographical structure with, for
Ni � a iN, where a 1 � · · · � aL � 1; hence N is theexample, fixed-sized demes connected by migration.
total population size. Since coalescence probabilities inMore generally, it refers to any partitioning of the popu-
discrete-time-structured models depend on the loca-lation into different “types” of individuals, with a corre-
tions of the lineages in addition to the total number ofsponding “migration” of types. When appropriately scaled,
lineages, the genealogy is a function of the backwardthe resulting ancestral process often converges to a struc-
configuration process, X(�) � (X 1(�), . . . , XL(�)), wheretured coalescent (Notohara 1990; Herbots 1997) in
Xi(�) denotes the number of ancestors in deme i, � gen-which lineages within a deme can coalesce, as in the coales-

cent, and lineages occasionally migrate between demes. erations into the past. This is a discrete-time Markov
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chain whose state space consists of vectors x � (x 1, . . . , cess converges to a structured coalescent. This mainte-
nance of structure in the limiting genealogy results in,xL), which specify, at any time in the past, the number

of ancestral lineages in each deme. The configuration for example, higher variance for sample data than that
expected under the standard coalescent; thus we do notprocess evolves by (backward) migration and coalescing

of ancestors with the appropriate probabilities as we expect the same pattern of variation as under the null
model.move back in time one generation at a time. In general,

coalescence probabilities change when the configura- The above discussion holds in much more generality
and we refer the reader to Nordborg and Krone (2002)tion process changes. Let bij denote the probability that

a given lineage “migrates” from deme i to deme j one and references therein for a full discussion. For exam-
ple, if the scaling exponents are not all the same, allgeneration back in time. For example, if the forward

migration probabilities are denoted by mij , then we demes connected by fast migration [i.e., scaling expo-
nents in the interval [0, 1)] collapse down to an effec-would have
tively panmictic group; all migration corresponding to
scaling exponent 1 remains in the suitably reducedbij �

Njmji

�kNkmki

. (3)
structured coalescent.

To emphasize the effects of scaling in subdivided pop-Suppose that lineages migrate (backward) indepen-
ulations, we employed the simplest possible model ofdently of one other and that the backward migration
geographical structure, with two subpopulations ofprocess determined by the bij’s is irreducible and aperi-
equal size connected by symmetric migration. Two casesodic with stationary distribution � � (�1, �2, . . . , �L).
of total population size (twice the common subpopula-Finally, assume that the above backward migration prob-
tion size), 103 and 104, were investigated and the scaledabilities scale like bij � �ij/N �, i � j, for some 0 � � �
migration rate (� � bN, where b is the common migra-1. Of course, bii � 1 � �j�ibij � 1 � N���j�ibij . In this
tion probability) varied between 10�1.0 and 102.5, thecase, we say that bij has scaling exponent �.
exponent changing in increments of 0.5. The sampleMigration probabilities with scaling exponent � corre-
was divided equally between the two demes; i.e., halfspond to migration events that take, on average, O(N�)
of the lineages started in one subpopulation and thegenerations to occur. In particular, when 0 � � 
 1,
remaining half in the other. As we have seen, an effectivemigration events occur much faster than coalescence
size is expected to exist when the migration rate is suffi-events (when N is large). In this case, Nordborg and
ciently fast.Krone (2002) show, under mild conditions, that the

As shown in Figure 3, F did not differ much from theancestral process for the discrete-time model can be
value that would be expected under a panmictic nullapproximated by a linear time change of the standard
model with scaled migration rate 101 or larger. This wascoalescent. The coalescence rate when there are r lin-
true for both subpopulation sizes. In other words, Feages is given by
showed the effects of subdivision for b 
 10�2 (resp.,
b 
 10�3) when N � 103 (resp., N � 104) only. Note�r

2 ��
L

k�1

�2
k

a k

.
that the dependence on sample size is prominent only
when the migration rate is very small.

Thus, there is a scaling constant We emphasize that the flat part of the graph corre-
sponding to fast migration is predicted by the theory.

c � �
L

k�1

�2
k

a k

(4) The interesting thing about the simulations is that they
point out how fast the migration has to be and show
the effects of subdivision on F when migration is notthat gives the pairwise coalescence rate, and hence the
fast enough.coalescent effective population size is

DISCUSSIONNe �
⎛
⎜
⎝
�
L

k�1

�2
k

a kN

⎞
⎟
⎠

�1

�
⎛
⎜
⎝
�
L

k�1

�2
k

Nk

⎞
⎟
⎠

�1

. (5)

We have shown that when demographic processes
and coalescence events operate on similar timescales theNote that this can also be thought of as a kind of har-

monic mean size in which the weighting factor �2
k repre- coalescent effective size does not exist. In other words,

the genealogy cannot be expressed by a linear time-scalingsents the stationary probability of finding two ancestral
lineages together in deme k . Thus, when 0 � � 
 1, of the standard coalescent. As was already pointed out by

Nordborg and Krone (2002), the coalescent effectivethe structured model can be thought of as a panmictic
Wright-Fisher model with population size Ne . size is conceptually different from classical notions of ef-

fective size in that its existence implies that the properlyWhen the scaling exponent is � � 1, migration events
occur on the same timescale as coalescence events and scaled ancestral process converges to Kingman’s coales-

cent with a linear time change. This is a strong condi-the stochastic nature of migration does not average out
in the limit. In this case, the discrete-time ancestral pro- tion. Phenomena that can be reduced to an effective
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probability of a state change is not in the range from
one order of magnitude less than the inverse of the
smaller population size to one order of magnitude more
than the inverse of the larger population size. For a
simple model of population structure the same is true
when the probability of migrating is not higher than
the order of magnitude of the inverse of the population
size. Thus the results of the two cases are similar; when
there is one order of magnitude or more difference
between the probability of a demographic change and
the probability of a coalescence event, an effective size
can be assumed.
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APPENDIX

Nonlinear time change for intermediate size fluctuations: Consider the fluctuating size model discussed in the
main text. Let AN(·) be the ancestral process defined by AN(0) � n and AN(�) � number of distinct ancestors �
generations in the past, � 	 1, where n is the original sample size.

To find the coalescence rate for a pair of lineages, we compute the probability (conditional on population size)
that no coalescence has occurred over [Nt] generations and take a limit,

P(no coalescence in [Nt] generations| {MN(·)}) � �
[Nt ]

��1
�1 �

1
MN(�) � � �

[Nt ]

��1
�1 �

1
NXN(�) � (A1)

� exp �� 1
N �

[Nt ]

��1

1
XN(�) �

→ exp ���
t

0

1
X(s)

ds � , (A2)

as N → ∞. This suggests that, in the limiting coalescent, the coalescence probability for a pair of lineages during
[0, t] is governed by an exponential random variable with rate given by �t

0(1/X(s))ds . Thus, as in Griffiths and
Tavaré (1994) for deterministic size fluctuations and Kaj and Krone (2003) in the case of stochastic fluctuations,
we define the cumulative coalescence intensity over the time interval [0, t] by

Yt � �
t

0

1
X(s)

ds .

This applies to any pair of ancestral lineages, so when there are k lineages, the coalescence intensity grows like

�k2 �Yt . In other words, the limiting coalescent process should be given by

lim
N→∞

AN([Nt]) � A(Yt), (A3)

where A(t) is Kingman’s coalescent, and Yt is the increasing, nonlinear stochastic time change. In a more general
context, this result was proven in Kaj and Krone (2003) in terms of weak convergence for the bivariate process
{(N�1XN([Nt]), AN([Nt]))}t 	0 toward {(X(t), A(Yt))}t 	0, as N → ∞.

Relative speed of fluctuations: Following Sano et al. (2004), we give another perspective on the three time-scaling
regimes for the varying size model, now starting from the limit result for the intermediate case and considering two
extremes. To this end, let a be a dummy variable signifying a change in speed of the prelimit process from XN([Nt])
to XN([aNt]). Then {(N�1XN([aNt]), AN([Nt]))}t 	0 tends toward {(X(at), A(a�1Yat))}t 	0 as N → ∞, in agreement with
the result quoted above. Here we recognize the regime of slow demographic change by taking a very small. Indeed,
as a → 0,

1
a

Yat �
1
a �

at

0

1
X(s)

ds � t ·
1

X(0)

so we have linear scaling with effective population size X(0); i.e., on the coalescent timescale, the population size
never changes. Similarly, a very large corresponds to the fast scaling regime. In this case, assuming that X(t) is
ergodic with a steady state X∞ , the limit a → ∞ gives

1
a

Yat � t
1
at �

at

0

1
X(s)

ds � t · E(1/X ∞),

which is linear scaling with effective population size given by the harmonic mean 1/E(1/X ∞).
Recall that X(s) represents the (limiting) scaled size process. As is to be expected, the coalescence intensity Yt

increases at a faster rate when X(t) is smaller. Also, during such periods in which Yt increases faster, there will tend
to be fewer mutations. This was brought out in earlier calculations, as well as in the simulations.
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The program: The simulation program, written in C��, can be obtained from the authors upon request. The
program simulates the combined effect on F of the ancestral and demographic processes. The models used for the
demographic processes were the simplest possible. Fluctuating population size was modeled by a two-state Markov
chain and population structure by two equally sized subpopulations with symmetric migration.

Generations were discrete and population sizes finite. For each set of parameters, even sample sizes from 4 to 60
were simulated and the average value of F from 10,000 runs was calculated. The program does not allow for more
than two lineages to coalesce at a time. This deviation from the Wright-Fisher model will cause a negative bias in
F, but the effect is negligible for the parameter values we used (results not shown; the sample size has to be large
relative to the population size for multiple coalescences to the same individual to matter).

Every generation, a gene can mutate with a fixed probability. If no mutations occur in a given realization, F is
not defined. One can either define F as zero or disregard these cases. We chose a mutation rate high enough so
that our results were unaffected by which method was used.


