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ABSTRACT
Several tests of neutral evolution employ the observed number of segregating sites and properties of

the haplotype frequency distribution as summary statistics and use simulations to obtain rejection probabili-
ties. Here we develop a “haplotype configuration test” of neutrality (HCT) based on the full haplotype
frequency distribution. To enable exact computation of rejection probabilities for small samples, we derive
a recursion under the standard coalescent model for the joint distribution of the haplotype frequencies
and the number of segregating sites. For larger samples, we consider simulation-based approaches. The
utility of the HCT is demonstrated in simulations of alternative models and in application to data from
Drosophila melanogaster.

SELECTIVELY neutral models of within-species evo- (Hudson et al. 1994). Alternatively, because haplotype
frequency distributions may differ greatly across demo-lution consist of a model that describes the geneal-
graphic scenarios (Nei et al. 1975; Donnelly 1996),ogy of sampled DNA sequences and a model for the
haplotype tests can also help to identify deviations fromstochastic process of mutation along the branches of the
the demographic assumptions of the standard neutralgenealogy. Typical neutral models use the coalescent
model.process (Nordborg 2001, for example) to describe the

Some of the first haplotype tests, such as the Ewens-genealogy and the infinitely many sites model (Watt-
Watterson homozygosity test, were based on the Ewenserson, 1975) for the mutation process. Many theoretical
(1972) sampling theory for the infinitely many allelespredictions have been made under the standard neutral
mutation model. Because “allele” in this model andmodel, in which the particular coalescent model chosen
“haplotype” in the infinitely many sites model have theis the one with constant population size.
same meaning, the Ewens (1972) theory provides theAs an alternative to computationally intensive compari-
conditional distribution of the haplotype frequency vec-sons of likelihoods of DNA sequence data under null and
tor C given the sample size n and the number of distinctalternative models (Griffiths and Tavaré 1994; Kuhner
haplotypes K, under the standard neutral model (Tavaréet al. 1998; Thomson et al. 2000), summaries of variation
and Ewens 1998, Equation 6). In the Ewens-Wattersonin a sample of sequences are often used in testing neutral
test, haplotype homozygosity (F ) is estimated for a sam-models (Kreitman 2000; Nielsen 2001; Ford 2002).
ple of DNA sequences at a nonrecombining locus asTest statistics computed from the data are compared to
the sum of the squares of observed haplotype rela-theory-based predictions. If such predictions are un-
tive frequencies (Watterson 1977, 1978). Given n, theavailable or intractable, hypothesis testing is performed
value of F is compared to the known null distribution,using simulations of the appropriate model.
and the neutral model is rejected if F is unusually highSeveral neutrality tests use summary statistics based
or low. A subsequent “exact test” was based on whetheron the frequency distribution of haplotypes in a sample
C itself was unlikely given n and K (Slatkin 1994, 1996).of DNA sequences from a particular region of a genome

Other, more recently devised, haplotype-based tests(Table 1). These “haplotype tests” are sometimes used
reject the null hypothesis when the haplotype frequencyto detect positive selection on particular haplotypes
distribution is unlikely under the same neutral model,
given the number of mutations, or segregating sites (S),
observed in the data (these tests are also conditioned
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TABLE 1

Haplotype-based tests of the neutral coalescent

Quantity on which Reference for theoretical
Test test is based predictions about quantity Reference for test

Ewens-Watterson homozygosity test �(F |K, n) Ewens (1972); Watterson (1977) Watterson (1977, 1978)
Exact test conditional on K �(C |K, n) Ewens (1972) Slatkin (1994, 1996)
Hudson et al. haplotype test �(M |S, n, �) This article Hudson et al. (1994)

(HHT)
Haplotype no. test (HNT) �(K |S, n, �) Griffiths and Tavaré (1996); Depaulis and Veuille (1998);

this article Depaulis et al. (2001);
Markovtsova et al. (2001);
Wall and Hudson (2001)

Haplotype diversity test (HDT) �(H |S, n, �) This article Depaulis and Veuille (1998);
Depaulis et al. (2001);
Markovtsova et al. (2001);
Wall and Hudson (2001)

Haplotype configuration �(C |S, n, �) This article This article
test (HCT)

Additional haplotype tests are discussed by Fu (1996, 1997), Kreitman (2000), and Sabeti et al. (2002). Fu (1998) provides
a related but not haplotype-based test that uses the configuration of segregating sites in the sample.

tive has contributed to this shift in emphasis; in neutral lated from C, the recursion can also enable exact com-
putation of rejection probabilities for the HHT, HNT,models, conditional on the total length (L) of the gene-

alogical tree that underlies the data, �[S |L] is propor- and HDT. For large S and n, use of the recursion is slow,
and we discuss simulation techniques for all four tests. Wetional to L (Hudson 1990, for example). Thus, condi-

tioning on S loosely serves as a proxy for conditioning describe simulation-based extensions that allow for more
complex null hypotheses, which may include such phe-on tree length.

Three main test statistics have been used in haplotype- nomena as migration and recombination. We also con-
sider various ways for addressing the problem that �based tests conditioned on S (Hudson et al. 1994;

Depaulis and Veuille 1998): the absolute frequency might not be “known”; in particular we argue that the
effect of � on haplotype tests can be addressed by usingof the most frequent haplotype (M), the number of

distinct haplotypes (K ), and the haplotype diversity (H). prior information about � from genomic surveys. Fi-
nally, we consider the power of the HCT, HHT, HNT,For each test statistic, many approaches are possible for

implementing the test. We term tests based on M, K, and and HDT against alternative models, and we apply the
tests to an example from Drosophila melanogaster. TheH the Hudson et al. haplotype test (HHT), haplotype

number test (HNT), and haplotype diversity test (HDT), mathematical notation used here is shown in Table 2.
respectively, allowing each name to apply to the collec-
tion of implementations of the relevant test.

THEORY
Here we develop a “haplotype configuration test” of

neutrality (HCT) conditional on S. This test is analogous Joint distribution of C and S: We abbreviate �(C �
c, S � s |n, �) by q(c, s |n, �). This provides the probabilityto the exact test of Slatkin (1994, 1996), which does

not take S into account. The HCT tests if the haplotype that for n lineages and mutation parameter � the hap-
lotype configuration is c � (c 1, c 2 , . . . , cn) and s segre-frequency vector C is an unlikely configuration, given

S (and the mutation parameter �). The haplotype con- gating sites are observed, where c k is the number of
haplotypes with absolute frequency k. We also abbreviatefiguration C conveniently summarizes the pattern of

variation among DNA sequences; it perhaps incorpo- �(C � c |S � s, n, �) by q(c|s, n, �) and �(C � c |n, �)
by q(c|n, �). We wish to express q(c, s|n, �) in terms ofrates more information about the data than do M, K, and

H, but its use is less cumbersome than full-likelihood probabilities for states one event backward in time,
where an “event” is either a coalescence of two lineagesinference based on the DNA sequences themselves.

First, we derive a recursion for the joint distribution or a mutation. Using the standard neutral coalescent
model with population size N (Nordborg 2001, for�(C, S |n, �), and we show how it can be used to obtain

the conditional distribution �(C|S, n, �). This recur- example) and an infinitely many sites mutation model
with mutation parameter �, time is scaled in units of Nsively calculated conditional distribution allows exact

computation of rejection probabilities for the HCT for generations so that the waiting time until the most re-
cent coalescence is exponentially distributed with ratesmall values of S and n. Because M, K, and H are calcu-
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TABLE 2

Notation

Symbol Quantity represented

n Sample size
� Mutation parameter (� � 2N�)
N Haploid population size [or scaling constant for the neutral coalescent model (Nordborg 2001)]
� DNA sequence length times mutation rate per base pair per generation
� Recombination parameter (� � 2Nr)
r DNA sequence length times recombination rate per base pair per generation
l DNA sequence length measured in base pairs
I No. of segments into which a recombination graph subdivides a DNA sequence
� Exponential population growth parameter
� Migration parameter in the two-island model in which both populations each have size N/2 (� � 2Nm)
m In the symmetric two-island model, the fraction of individuals per population who migrate each generation
S No. of segregating sites
M Absolute frequency of the most frequent haplotype (that is, the number of sampled copies of the haplotype)
K No. of haplotypes
H Haplotype heterozygosity (or haplotype diversity)
F Haplotype homozygosity (F � 1 � H)
G A univariate haplotype summary statistic in general (for example, M, K, or H)
Wn Waiting time until n lineages coalesce to n � 1 lineages
L Total length of a genealogy with n lineages
C � (C1, . . . , Cn) Haplotype frequency vector (or haplotype configuration)
Ck No. of distinct haplotypes with absolute frequency k
ek Vector with k th coordinate 1 and other coordinates 0
�i,j Kronecker’s � (1 if i � j, 0 otherwise)

Corresponding lowercase letters are used for particular instances of random variables.

n(n � 1)/2 and so that for each lineage, the waiting q(c, s |n, �) �
�

� 	 n � 1�
c 1

n
q(c, s � 1 |n, �)

time until a mutation is exponentially distributed with
rate �/2. Because n lineages are present and because

	 �
n

k�2

k(c k 	 1)
n

q(c � e1 � ek�1 	 ek , s � 1|n, �)�mutations on different lineages occur independently of
one another, the waiting time (backward in time) until

	
n � 1

� 	 n � 1 ��
n�1

k�1

k(ck 	 1)
n � 1

q(c 	 ek � ek	1, s |n � 1, �)� . (1)a mutation happens on any lineage is exponentially
distributed with rate n�/2. The probability that the most

In (1), ek is the n-dimensional vector with the k th coordi-recent event is a coalescence is (n � 1)/(� 	 n � 1),
nate equal to 1 and all other coordinates equal to 0.and the probability that it is a mutation is �/(� 	 n �
For convenience, we treat all vectors as having length1), regardless of the time of the event. Suppose the
n, appending extra zeros to the ends of vectors of smallerevent is a coalescence (a branching, if viewed forward
lengths. We also specify the following rules:in time). Then for each of k � 1, 2, . . . , n � 1, it is

possible that a haplotype of absolute frequency k 	 1
was generated by branching from a haplotype that had
frequency k in the previous step. The probability that
the event produces a haplotype of frequency k 	 1 is
the fraction of lineages whose haplotypes had frequency

q(e1, s |1, �) � �s,0

q(c, s |n, �) � 0 if s 
 0

For any k, q(c, s |n, �) � 0 if ck 
 0

q(c, s |n, �) � 0 if �
n

k�1

kck � n

q(c, s |n, �) � 0 if �
n

k�1

ck � s 	 1

For any n, q(en, s |n, �) � 0 if s � 0.

k in the previous step, or k(ck 	 1)/(n � 1).
If the event is a mutation, with probability c1/n the

mutation occurs along a lineage of absolute frequency
one, leaving the haplotype configuration unchanged. For
each of k � 2, 3, . . . , n, it is also possible that a lineage

(2)

(3)

(4)

(5)

(6)

(7)

whose haplotype has frequency k experiences the muta- Induction using (1) with (2)–(7) can be used to derive
tion. In this situation, which has probability k(ck 	 1)/ various well-known results, as well as new expressions for
n, a haplotype of frequency k is replaced by a singleton n � 3 and n � 4 (Table 3). For larger n, the expression
haplotype and a haplotype of frequency k � 1. becomes unwieldy and numerical evaluation of (1) at

particular � values is preferable (Table 4).These cases are combined to produce the recursion:
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TABLE 4

Joint probabilities of haplotype configuration and number of segregating sites for n � 5 and � � 1

Configuration (c) q(c|n, �) q(c, 0|n, �) q(c, 1|n, �) q(c, 2|n, �) q(c, 3|n, �) q(c, 4|n, �) q(c, 5|n, �) �∞
s�6q(c, s |n, �)

(5, 0, 0, 0, 0) 0.0083 0 0 0 0 0.0022 0.0023 0.0039
(3, 1, 0, 0, 0) 0.0833 0 0 0 0.0273 0.0231 0.0147 0.0181
(2, 0, 1, 0, 0) 0.1667 0 0 0.0740 0.0435 0.0235 0.0124 0.0132
(1, 2, 0, 0, 0) 0.1250 0 0 0.0521 0.0334 0.0187 0.0100 0.0108
(1, 0, 0, 1, 0) 0.2500 0 0.1608 0.0482 0.0209 0.0101 0.0050 0.0050
(0, 1, 1, 0, 0) 0.1667 0 0.0958 0.0368 0.0172 0.0085 0.0042 0.0042
(0, 0, 0, 0, 1) 0.2000 0.2000 0 0 0 0 0 0

q(c|n, �) is given by the Ewens sampling formula (12), and q(c, s |n, �) is obtained from (1).

Summing (1) from s � 0 to ∞ and rearranging terms value g, is obtained by summing q(c, s|n, �) over the con-
figurations that produce the value g :produces the following recursion for q(c|n, �):

�(G � g, S � s |n, �) � �
{c:G(c)�g }

q(c, s |n, �). (16)[n(n � 1) 	 (n � c1)�]q(c|n, �) � ��
n

k�2

k(ck 	 1)q(c � e1 � ek�1 	 ek |n, �)

Conditioning on S: The conditional probability of C,	 n �
n�1

k�1

k(ck 	 1)q(c 	 ek � ek	1|n � 1, �) .
given S, n, and �, is the quotient of the joint probability

(8) of C and S and the probability of observing S segregating
sites:Conditions associated with (8) are obtained from sums

of corresponding conditions for (1) from s � 0 to ∞:
q(c |s, n, �) �

q(c, s |n, �)
�(S � s |n, �)

. (17)

The denominator is the sum of the numerator over all
q(e1|1, �) � 1

For any k, q(c |n, �) � 0 if ck 
 0

q(c |n, �) � 0 if �
n

k�1

kck � n .
configurations and equals

�(S � s |n, �) �
n � 1

�
�

n�1

j�1

(�1)j�1�n � 2
j � 1 �� �

� 	 j�
s	1

(18)

(9)

(10)

(Tavaré 1984, Equation 9.5). Equations similar to (17)

(11)

It can be shown that (8) is equivalent to a recursion
satisfied by the Ewens (1972) sampling formula and
used in its proof (Karlin and McGregor 1972, Equa- apply for M, K, and H ; if G represents one of these statistics,
tion 9). Thus, the solution to (8) with the initial condi- then
tion (9) is the Ewens sampling formula (Ewens 1972;
Tavaré and Ewens 1998, Equation 3): �(G � g |S � s, n, �) �

�(G � g, S � s |n, �)
�(S � s |n, �)

. (19)

q(c|n, �) �
n!
�(n)

�
n

k�1
��k�

ck 1
ck!

, (12)

STATISTICAL TESTS
where �(n) � �(� 	 1) · · · (� 	 n � 1), c1, c2, . . . , cn

The exact computation of q(c|s, n, �) suggests the follow-are nonnegative integers, and �n
k�1kck � n . It is straight-

ing haplotype configuration test (HCT).forward to verify that (12) indeed satisfies (8).
Joint distribution of univariate haplotype summary sta- Procedure 1—exact implementation of the haplotype configuration

tistics and S: The statistics M, K, and H are functions of test:
the frequency vector C as follows:

1. Under the null hypothesis of neutrality, use (17) to
M � max{k :Ck � 0} (13) compute the probabilities of all haplotype configura-

tions, given s, n, and the known �.
K � �

n

k�1

Ck (14) 2. Sum the probabilities of all haplotype configurations
whose probabilities under the null model are less than
or equal to the probability of the observed configura-H � 1 � �

n

k�1

Ck�kn�
2

. (15)
tion c. That is, compute

P � �
{b:q(b|s,n,�)
q(c|s,n,�)}

q(b|s, n, �). (20)For a given n, only finitely many haplotype configurations
are possible; thus, M, K, and H each have a finite range.
The probability that one of these statistics, G, equals a 3. Reject the null hypothesis at level � if P 
 �.
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if �(G 
 g) � �/2 but �(G 
 g) 
 �/2, reject the nullTwo-tailed haplotype tests based on univariate summary
hypothesis at level � with probability [�/2 � �(G 
 g)]/statistics can be implemented in a similar manner (one-
�(G � g); if �(G � g) � �/2 but �(G � g) 
 �/2, reject

tailed versions of these tests are also possible). the null hypothesis at level � with probability [�/2 � �(G �
g)]/�(G � g).Procedure 2—exact implementation of (two-tailed) haplotype tests

based on univariate summary statistics: Corrections for one-tailed versions of the HHT, HNT,
and HDT are analogous. The conservative procedures1. Under the null hypothesis of neutrality, use (19) to
1 and 2 are suitable for data analysis; the small-samplecompute the probabilities of all possible values of the
correction is most useful when it is important for a rejec-summary statistic G given s, n, and the known �.
tion region to have fixed size, as in evaluations of the power2. If g denotes the observed value of G in the data, reject
to reject the null hypothesis under alternative models.the null hypothesis at level � if �(G 
 g) 
 �/2 or if

�(G � g) 
 �/2.
SIMULATION-BASED IMPLEMENTATIONSFor the tests based on M, K, and H, the null hypothesis

is rejected if a particular aspect of the observed haplotype Thus far, we have assumed that the sample size and
frequency distribution is a rare occurrence. Using the number of segregating sites are small enough that numeri-
HCT, however, the null hypothesis is rejected when the cal iteration of the recursion is feasible. We have also
observed haplotype frequency distribution itself is rare. assumed a simple demographic model without recombina-
Rare configurations will typically—but not always—have tion and that � is known exactly. We now discuss imple-
unlikely values for one or more of M, K, and H. mentations of the HCT and the other tests when these

For three choices of �, Table 5 shows exact probabilities ideal conditions do not hold. First, we consider simulation
for C, M, K, and H, given s � 10 and n � 7, obtained methods, demographic models, and recombination, con-
numerically from (17) and (19). The probabilities shown tinuing to assume that � is known; we then discuss ways
provide rejection probabilities for the four tests. In Table in which uncertainty in � might be incorporated.
5, certain haplotype configurations may be unlikely, even Methods for simulation: Earlier articles on haplotype
if their values of M, K, and H are centrally located with tests have described various simulation-based implementa-
respect to null distributions of these statistics. For example, tions. These algorithms will be generally applicable to the
(0, 2, 1, 0, 0, 0, 0) is highly unlikely for s � 10 and � � HCT as well. Although exact computation from (17) and
4.08: the HCT rejects the null hypothesis at P � 0.0285. (19) is appropriate for small s and n, simulation is neces-
However, the frequency of the most frequent haplotype sary as s and n increase.
(3), the number of haplotypes (3), and the haplotype The procedures that simulate from the correct condi-
diversity (0.6531), are all rather ordinary for the given tional distribution �(C |S, n, �) might be classified as Mar-
parameter values. kov chain Monte Carlo methods (Markovtsova et al.

It is also possible that from among the HHT, HNT, and 2000, 2001), importance sampling methods (Depaulis et
HDT, one or more tests might reject the null hypothesis al. 2001), and acceptance-rejection algorithms (Tavaré
at smaller � than does the haplotype configuration test. et al. 1997; Wall and Hudson 2001). A simple and
For example, in Table 5 with � � 4.08, (7, 0, 0, 0, 0, 0, often highly efficient approach is the following version
0) is unusual at the � � 2 � 0.0328 � 0.0656 level for of algorithm 1 of Tavaré et al. (1997).
the HHT, HNT, and HDT, but only at � � 0.1113 using

Procedure 3—acceptance-rejection algorithm for generatingthe HCT.
samples from �(C |S, n, �):Because C, M, K, and H can take on only finitely many

values for a given n, there is some probability that (for 1. Simulate the coalescence times Wn , Wn�1, . . . , W2 as
example) �(G 
 g) 
 �/2 but �(G 
 g) � �/2. In such independent exponentially distributed random vari-
cases, procedures 1 and 2 do not reject the null hypothesis ables, with Wj � exp[ j( j � 1)/2].
and thus are slightly conservative. This situation often 2. Compute the total branch length of the resulting
arises with small samples, for which not many numbers genealogical tree, L � �n

j�2 jWj .
can be possible values of the test statistics. It occurs most 3. Accept the simulated collection of Wj values with
often for M and K, each of which has only n possible probability u, where
values. A small-sample correction for the HCT is to append
to step 3 of procedure 1: u �

e�L�/2(L�/2)S

e�SS S
. (22)

if P � � but P � Q 
 �, where
Otherwise, discard the Wj and return to the initial

Q � �
{b:q(b|s,n,�)�q(c|s,n,�)}

q(b |s, n, �), (21)
step.

4. Simulate the branching structure of the genealogy byreject the null at level � with probability (� � P 	 Q)/Q.
randomly joining lineages until one lineage remains
and associate the Wj with corresponding branchingFor the other tests, we can append to step 2 in proce-

dure 2: events.
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TABLE 5

Exact conditional probabilities of haplotype configurations and summary statistics for s � 10, n � 7,
and various values of �, obtained from (17) and (19)

Cumulative
Configuration (c) q(c|s, n, �) probability �[M � M(c)] �[M 
 M(c)] �[K 
 K(c)] �[K � K(c)] �[H 
 H(c)] �[H � H(c)]

� � 1
(7, 0, 0, 0, 0, 0, 0) 0.0058 0.0058 1.0000 0.0058 1.0000 0.0058 1.0000 0.0058
(5, 1, 0, 0, 0, 0, 0) 0.0597 0.2899 0.9942 0.2539 0.9942 0.0655 0.9942 0.0655
(3, 2, 0, 0, 0, 0, 0) 0.1329 0.7891 0.9942 0.2539 0.9345 0.2834 0.9345 0.1985
(1, 3, 0, 0, 0, 0, 0) 0.0554 0.2302 0.9942 0.2539 0.7166 0.6462 0.8015 0.3388
(4, 0, 1, 0, 0, 0, 0) 0.0850 0.4498 0.7462 0.6416 0.9345 0.2834 0.8015 0.3388
(2, 1, 1, 0, 0, 0, 0) 0.2109 1.0000 0.7462 0.6416 0.7166 0.6462 0.6612 0.5497
(0, 2, 1, 0, 0, 0, 0) 0.0408 0.1238 0.7462 0.6416 0.3538 0.9229 0.4503 0.5905
(1, 0, 2, 0, 0, 0, 0) 0.0510 0.1748 0.7462 0.6416 0.3538 0.9229 0.4095 0.7380
(3, 0, 0, 1, 0, 0, 0) 0.0964 0.5462 0.3584 0.8709 0.7166 0.6462 0.4095 0.7380
(1, 1, 0, 1, 0, 0, 0) 0.1099 0.6561 0.3584 0.8709 0.3538 0.9229 0.2620 0.8479
(0, 0, 1, 1, 0, 0, 0) 0.0230 0.0289 0.3584 0.8709 0.0771 1.0000 0.1521 0.8709
(2, 0, 0, 0, 1, 0, 0) 0.0749 0.3648 0.1291 0.9704 0.3538 0.9229 0.1291 0.9459
(0, 1, 0, 0, 1, 0, 0) 0.0246 0.0534 0.1291 0.9704 0.0771 1.0000 0.0541 0.9704
(1, 0, 0, 0, 0, 1, 0) 0.0296 0.0830 0.0296 1.0000 0.0771 1.0000 0.0296 1.0000

� � 4.08163
(7, 0, 0, 0, 0, 0, 0) 0.0328 0.1113 1.0000 0.0328 1.0000 0.0328 1.0000 0.0328
(5, 1, 0, 0, 0, 0, 0) 0.1877 0.7826 0.9672 0.4818 0.9672 0.2205 0.9672 0.2205
(3, 2, 0, 0, 0, 0, 0) 0.2174 1.0000 0.9672 0.4818 0.7795 0.5812 0.7795 0.4379
(1, 3, 0, 0, 0, 0, 0) 0.0439 0.1975 0.9672 0.4818 0.4188 0.8792 0.5621 0.6251
(4, 0, 1, 0, 0, 0, 0) 0.1433 0.4231 0.5182 0.8310 0.7795 0.5812 0.5621 0.6251
(2, 1, 1, 0, 0, 0, 0) 0.1717 0.5948 0.5182 0.8310 0.4188 0.8792 0.3749 0.7968
(0, 2, 1, 0, 0, 0, 0) 0.0150 0.0285 0.5182 0.8310 0.1208 0.9865 0.2032 0.8118
(1, 0, 2, 0, 0, 0, 0) 0.0192 0.0477 0.5182 0.8310 0.1208 0.9865 0.1882 0.9134
(3, 0, 0, 1, 0, 0, 0) 0.0824 0.2799 0.1690 0.9594 0.4188 0.8792 0.1882 0.9134
(1, 1, 0, 1, 0, 0, 0) 0.0422 0.1536 0.1690 0.9594 0.1208 0.9865 0.0866 0.9556
(0, 0, 1, 1, 0, 0, 0) 0.0037 0.0037 0.1690 0.9594 0.0135 1.0000 0.0444 0.9594
(2, 0, 0, 0, 1, 0, 0) 0.0308 0.0786 0.0406 0.9944 0.1208 0.9865 0.0406 0.9902
(0, 1, 0, 0, 1, 0, 0) 0.0042 0.0079 0.0406 0.9944 0.0135 1.0000 0.0098 0.9944
(1, 0, 0, 0, 0, 1, 0) 0.0056 0.0135 0.0056 1.0000 0.0135 1.0000 0.0056 1.0000

� � 10
(7, 0, 0, 0, 0, 0, 0) 0.0671 0.2141 1.0000 0.0671 1.0000 0.0671 1.0000 0.0671
(5, 1, 0, 0, 0, 0, 0) 0.2818 1.0000 0.9329 0.6061 0.9329 0.3488 0.9329 0.3488
(3, 2, 0, 0, 0, 0, 0) 0.2269 0.7182 0.9329 0.6061 0.6512 0.7305 0.6512 0.5758
(1, 3, 0, 0, 0, 0, 0) 0.0304 0.0853 0.9329 0.6061 0.2695 0.9450 0.4243 0.7608
(4, 0, 1, 0, 0, 0, 0) 0.1547 0.4913 0.3939 0.8989 0.6512 0.7305 0.4243 0.7608
(2, 1, 1, 0, 0, 0, 0) 0.1225 0.3366 0.3939 0.8989 0.2695 0.9450 0.2392 0.8833
(0, 2, 1, 0, 0, 0, 0) 0.0067 0.0108 0.3939 0.8989 0.0550 0.9959 0.1167 0.8900
(1, 0, 2, 0, 0, 0, 0) 0.0089 0.0197 0.3939 0.8989 0.0550 0.9959 0.1100 0.9606
(3, 0, 0, 1, 0, 0, 0) 0.0617 0.1471 0.1011 0.9816 0.2695 0.9450 0.1100 0.9606
(1, 1, 0, 1, 0, 0, 0) 0.0199 0.0550 0.1011 0.9816 0.0550 0.9959 0.0394 0.9805
(0, 0, 1, 1, 0, 0, 0) 0.0011 0.0011 0.1011 0.9816 0.0041 1.0000 0.0195 0.9816
(2, 0, 0, 0, 1, 0, 0) 0.0154 0.0351 0.0184 0.9982 0.0550 0.9959 0.0184 0.9970
(0, 1, 0, 0, 1, 0, 0) 0.0012 0.0023 0.0184 0.9982 0.0041 1.0000 0.0030 0.9982
(1, 0, 0, 0, 0, 1, 0) 0.0018 0.0041 0.0018 1.0000 0.0041 1.0000 0.0018 1.0000

Cumulative probability refers to the sum of the probabilities of all configurations that have probability at most q(c|s, n, �).
The value � � 4.08163 was chosen using (26). Unlike � � 4.08163, the values � � 1 and � � 10 are not likely to produce 10
segregating sites.

5. Independently place S mutations uniformly on the Procedure 3 is then repeated until a prespecified num-
ber of genealogies have been accepted. The empiricalgenealogy.

6. Record the haplotype configuration C (and the quanti- distribution of C is then used in procedure 1 to decide
whether or not to reject the null hypothesis. To imple-ties M, K, and H).
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ment the HHT, HNT, and HDT, the empirical distribu- Rousset 1995), it is conceivable that such an algorithm
might be developed for this test as well.tions of M, K, and H are used in the final step of proce-

dure 2. Demographic models: The approach in procedure 3
is versatile, in that the null model need not be theThe efficiency of procedure 3 derives from the fact

that it accepts or rejects the simulation before placing standard constant-size coalescent. A more complex de-
mographic model can be accommodated by substitutingS mutations on the branching diagram. It is less efficient

to place mutations on the genealogy with a Poisson its distributions for the waiting times and the branching
structure in steps 1 and 4, respectively.process with mean L�/2 and only afterward accept trees

that have accumulated exactly S mutations. The denomi- For example, in place of a population with constant
size N, consider an exponentially growing populationnator of (22) is the maximum of the numerator over

all values of L, ensuring that acceptance will occur rea- of present population size N with growth parameter �.
At t time units of N generations in the past, populationsonably often, except if S is much larger or much smaller

than is suggested by the value of � (Tavaré et al. 1997). size was N exp[��t]. To use this model as the null, after
step 1, for each j, replace Wj by f(Wj), whereIt is noteworthy that even with the efficient algorithm

of procedure 3, for large n, due to the large number
of possible configurations, the HCT has computational f(Wn) �

ln(1 	 �Wn)
�

(23)
limitations not shared by the other tests. For a given
sample size n, the number of possible values of the test (Slatkin and Hudson 1991; Nordborg 2001, Equa-
statistics for the HHT or HNT is only n. For the HDT, tion 8), and for j � {2, 3, . . . , n � 1},
up to a linear transformation, the set of possible values
of the statistic is equal to the set of numbers that can

f(Wj) �
ln(1 	 ��n

k�jWk) � ln(1 	 ��n
k�j	1Wk)

�
.equal the sum of the squares of the elements of a parti-

tion of n into positive integers (Sloane 2005, entry (24)
A069999). The configurations that produce the smallest

For each j, f(Wj) gives the time to coalescence of jand largest sums of squares, which equal n and n2, re-
lineages to j � 1, measured in units of N generations.spectively, are (n, 0, . . . , 0) and (0, 0, . . . , 0, 1).
Because variable population size does not change theBecause the parity of the sum of squares in any partition
branching structure of the genealogy, the rest of proce-of n must be the same as that of n, (n2 � n 	 2)/2
dure 3 is identical under exponential populationprovides an upper bound on the number of possible
growth.values of the HDT statistic. Even for sample sizes that

With a population structure model, such as island migra-are presently considered large, using a large number of
tion, as the null, it is simpler to simulate the appropriateaccepted simulated genealogies (exceeding the number
waiting times and branching structure concurrently inof possible values of the test statistic by a factor of at least
place of step 1 (Hudson 1990), omitting step 4.100), it is feasible to approximate the probabilities of all

Recombination: Using the ancestral recombinationpossible values of M, K, and H.
graph (Hudson 1983; Griffiths and Marjoram 1996;Unlike the other tests, however, the HCT has the
Nordborg 2001), procedure 3 can be extended to allowform of an exact test; such tests are characterized by
recombination in the null model. Suppose the recombi-enumeration of the probabilities of all possible data sets
nation parameter for a DNA sequence region is � �under the model and summation of the probabilities
2Nr, where l is the number of base pairs in the regionof all data sets that are at most as probable as the ob-
and r is l times the recombination rate per base pair perserved data set (Mehta and Patel 1998). For these
generation. Simulation of the ancestral recombinationtests, the number of possible data sets increases very
graph for n lineages consists in repeatedly simulatingrapidly with some property of the data (such as the
an exponentially distributed random variable for the timenumber of alleles at the locus, in exact tests of Hardy-
of the next coalescence (appropriately transformed if theWeinberg proportions). For the HCT, the number of
model includes population growth) and another expo-haplotype configurations, equivalent to the number of
nential random variable for the time of the next recom-unordered partitions of n into positive integers, p(n),
bination. The smaller of the two times gives the type ofgrows quickly with n (Abramowitz and Stegun 1965,
the next event, which is then allowed to occur, the largerp. 836). While n � 10 has only 42 partitions, n � 50
time is discarded, and uniform random variables arehas 204,226, and there are �4 � 1012 for n � 200.
simulated to decide which lineages participate in theBecause enumeration of the probabilities of all config-
event. From the graph, a genealogical tree is producedurations is impossible for large samples, the HCT is
at each base pair, so that nearby base pairs are morelimited to sample sizes n for which it is feasible to gener-
likely than distant base pairs to have equivalent treesate at least 100p(n)samples from �(C |S, n, �). As Markov
(Rosenberg and Nordborg 2002, Figure 3, for exam-chain Monte Carlo algorithms have been developed for
ple). The graph splits the sequence into I segments withother exact tests in genetics to avoid the enumeration

problem (Guo and Thompson 1992; Raymond and lengths l1, . . . , lI , such that all base pairs within a
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segment have equivalent genealogies, and such that re-
combination events occur only at segment boundaries.
Denote the total branch length of the genealogy of
segment i by Li .

Procedure 4—acceptance-rejection algorithm for generating
samples with recombination from �(C |S, n, �, �):

1. Simulate an ancestral recombination graph for n lin-
eages with recombination rate �, until all parts of
the DNA sequence reach most recent common ances-
tors.

2. Compute the total branch length of the genealogical
tree at an “average” site, L � �I

i�1liLi/l.
3. Accept the simulated graph with probability u, where

u �
e�L�/2(L�/2)S

e�SS S
. (25)

Otherwise, discard the graph and return to the initial
step.

4. Independently place S mutations uniformly on the
genealogy.

5. Record the haplotype configuration C (and the
quantities M, K, and H).

This procedure enables haplotype tests to be performed
conditional on a known recombination parameter as
well as on the known mutation parameter. In the com-
puter program we have implemented, which proceeds
more slowly than the algorithm in procedure 4, place-
ment of mutations occurs concurrently with the simula-
tion of the graph in step 1. In place of step 3, the graph
is accepted if S mutations are placed, and steps 2 and Figure 1.—Haplotype configuration test rejection probabil-
4 are omitted. ities as functions of �, for s � 10 and n � 7. (A) Probabilities

of haplotype configurations, obtained from (17). (B) P-valuesTreatment of �: Because � does not affect the condi-
for the HCT, obtained from (20). For each value of � at whichtional distribution of C given the sample size and the
two configurations have equal probability—that is, when thenumber of haplotypes, its value is not of concern in
curves for the configurations cross in A—HCT P-values for

neutrality tests based on the Ewens (1972) sampling the two configurations both experience discontinuities in �.
theory. However, � does affect �(C |S, n, �) and analo- In B, data for a given configuration are shown with the same

color and pattern as used to depict the configuration in A.gous distributions for M, K, and H. As an example,
in Table 5, for � � 1, the most common and rarest
configurations are (2, 1, 1, 0, 0, 0, 0) and (7, 0, 0, 0, 0,
0, 0), respectively, while (5, 1, 0, 0, 0, 0, 0) is most

�̂W � S���
n�1

i�1

1/i� . (26)
common and (0, 0, 1, 1, 0, 0, 0) is rarest for � � 10.
Thus, as has been reported for other neutrality tests
(Fu 1996, 1998; Markovtsova et al. 2001; Wall and Equation 26 gives �̂W � 4.08; had this estimate been

used, it would have been concluded that the observedHudson 2001), it might be expected that the value of
� used can affect rejection probabilities for the HCT, configuration is significantly unlikely at � � 0.05 (P �

0.0477; see the middle part of Table 5).as well as for the HHT, HNT, and HDT.
Table 5 indicates that nominal and actual rejection This variation in P-values as � fluctuates suggests that

for tests that depend on �, the standard method forprobabilities for the HCT can differ substantially if the
value of � used is a poor estimate. For example, suppose obtaining rejection probabilities when they vary with

the unknown value of a nuisance parameter—using thethat the true � equals 1 and that the configuration (1,
0, 2, 0, 0, 0, 0) is observed with s � 10. The actual maximal rejection probability across possible values of

the parameter (Berger and Boos 1994)—is overly con-HCT rejection probability is P � 0.1748. If no prior
knowledge about � was available, a sensible procedure servative. Indeed, in the example of s � 10 and n � 7,

for each of the 14 haplotype configurations possiblewould be to base P-values on a value of � estimated using
an estimator such as that of Watterson (1975), with s � 0, there is some value of � for which the configu-
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TABLE 6

Conditional probabilities of haplotype configurations and summary statistics for
s � 10 and n � 7, obtained from simulations

Configuration Cumulative
(c) q(c|s, n, �) probability �[M � M(c)] �[M 
 M(c)] �[K 
 K(c)] �[K � K(c)] �[H 
 H(c)] �[H � H(c)]

Bayesian approach with a prior of � � unif[0, 20] (procedure 3)
(7, 0, 0, 0, 0, 0, 0) 0.0437 0.1764 1.0000 0.0437 1.0000 0.0437 1.0000 0.0437
(5, 1, 0, 0, 0, 0, 0) 0.2297 1.0000 0.9563 0.5306 0.9563 0.2734 0.9563 0.2734
(3, 2, 0, 0, 0, 0, 0) 0.2198 0.7703 0.9563 0.5306 0.7266 0.6405 0.7266 0.4932
(1, 3, 0, 0, 0, 0, 0) 0.0374 0.1327 0.9563 0.5306 0.3595 0.9047 0.5068 0.6779
(4, 0, 1, 0, 0, 0, 0) 0.1473 0.3958 0.4694 0.8629 0.7266 0.6405 0.5068 0.6779
(2, 1, 1, 0, 0, 0, 0) 0.1547 0.5505 0.4694 0.8629 0.3595 0.9047 0.3221 0.8326
(0, 2, 1, 0, 0, 0, 0) 0.0144 0.0244 0.4694 0.8629 0.0953 0.9900 0.1674 0.8470
(1, 0, 2, 0, 0, 0, 0) 0.0159 0.0403 0.4694 0.8629 0.0953 0.9900 0.1530 0.9350
(3, 0, 0, 1, 0, 0, 0) 0.0721 0.2485 0.1371 0.9696 0.3595 0.9047 0.1530 0.9350
(1, 1, 0, 1, 0, 0, 0) 0.0319 0.0953 0.1371 0.9696 0.0953 0.9900 0.0650 0.9669
(0, 0, 1, 1, 0, 0, 0) 0.0027 0.0053 0.1371 0.9696 0.0100 1.0000 0.0331 0.9696
(2, 0, 0, 0, 1, 0, 0) 0.0231 0.0634 0.0304 0.9953 0.0953 0.9900 0.0304 0.9927
(0, 1, 0, 0, 1, 0, 0) 0.0026 0.0026 0.0304 0.9953 0.0100 1.0000 0.0073 0.9953
(1, 0, 0, 0, 0, 1, 0) 0.0047 0.0100 0.0047 1.0000 0.0100 1.0000 0.0047 1.0000

Fixed-S approach (Hudson et al. 1994)
(7, 0, 0, 0, 0, 0, 0) 0.0373 0.1216 1.0000 0.0373 1.0000 0.0373 1.0000 0.0373
(5, 1, 0, 0, 0, 0, 0) 0.1951 0.7889 0.9627 0.4852 0.9627 0.2324 0.9627 0.2324
(3, 2, 0, 0, 0, 0, 0) 0.2112 1.0000 0.9627 0.4852 0.7676 0.5838 0.7676 0.4435
(1, 3, 0, 0, 0, 0, 0) 0.0417 0.1633 0.9627 0.4852 0.4162 0.8733 0.5565 0.6254
(4, 0, 1, 0, 0, 0, 0) 0.1402 0.4257 0.5148 0.8292 0.7676 0.5838 0.5565 0.6254
(2, 1, 1, 0, 0, 0, 0) 0.1680 0.5938 0.5148 0.8292 0.4162 0.8733 0.3746 0.7935
(0, 2, 1, 0, 0, 0, 0) 0.0159 0.0322 0.5148 0.8292 0.1267 0.9837 0.2065 0.8094
(1, 0, 2, 0, 0, 0, 0) 0.0198 0.0520 0.5148 0.8292 0.1267 0.9837 0.1906 0.9090
(3, 0, 0, 1, 0, 0, 0) 0.0798 0.2855 0.1708 0.9557 0.4162 0.8733 0.1906 0.9090
(1, 1, 0, 1, 0, 0, 0) 0.0424 0.2057 0.1708 0.9557 0.1267 0.9837 0.0910 0.9514
(0, 0, 1, 1, 0, 0, 0) 0.0043 0.0043 0.1708 0.9557 0.0163 1.0000 0.0486 0.9557
(2, 0, 0, 0, 1, 0, 0) 0.0323 0.0843 0.0443 0.9933 0.1267 0.9837 0.0443 0.9879
(0, 1, 0, 0, 1, 0, 0) 0.0053 0.0096 0.0443 0.9933 0.0163 1.0000 0.0121 0.9933
(1, 0, 0, 0, 0, 1, 0) 0.0067 0.0163 0.0067 1.0000 0.0163 1.0000 0.0067 1.0000

Cumulative probability refers to the sum of the probabilities of all configurations that have probability at most q(c|s, n, �).
For the Bayesian approach, empirical probabilities are based on 10,000 accepted genealogies; for the fixed-S approach, empirical
probabilities are based on 10,000 genealogies.

ration is reasonably likely (Figure 1A). In this example, implement this approach, we can add a step 0 to proce-
dure 3:if the largest rejection probability across all values of �

were used, for the HCT, no configuration would lead
simulate a value of � from fprior(�).to rejection at � � 0.05, or even at � � 0.2 (Figure 1B).

Because point estimates of � generally have large vari- Under exponential growth or recombination, � and �
ances (Felsenstein 1992; Fu and Li 1993), a strategy can also be chosen from priors, so that evaluation of
of maximizing the rejection probability only over a con- rejection probabilities is performed conditional on the
fidence set for � (Berger and Boos 1994), and not over prior rather than on a fixed growth or recombination
the full range (0, ∞), is also likely to be quite conservative. rate. Using a uniform prior on [0, 20] for � (with no
This is especially true as P-values can vary considerably growth or recombination), we implemented procedure
in the vicinity of a point estimate (consider Figure 1B 3 with s � 10 and n � 7 (Table 6). The distribution for
at log10�̂W � 0.61). Thus, an alternative method is to sub- the Bayesian approach is similar to that for �̂ � 4.08;
stitute a distribution of values for � in a Bayesian proce- for the example configuration (1, 0, 2, 0, 0, 0, 0), the
dure (Kelly 1997; Fu 1998; Depaulis et al. 2001). In HCT rejection probability is 0.0403, close to the value
this scheme, a prior probability density, fprior(�), is cho- obtained using the point estimate. Other priors, such
sen, and rejection probabilities are evaluated using the as uniform distributions on [0, 100] or [0, 500], produce

similar results (not shown).density that is proportional to �(C |S, n, �)fprior(�). To
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An alternate approach to uncertainty in � is a simula- model. For various choices of s and n, we used procedure
3 with �̂W for � to obtain the distributions of C, M, K,tion strategy that does not explicitly use �. In this proce-

dure (Hudson 1993; Hudson et al. 1994), equivalent to and H under the null model. For given choices of s and
n, the empirical null distributions of C, M, K, and Hassuming an implicit density, fimp(�|S, n), and simulating

from a density proportional to �(C |S, n, �)fimp(� |S, n), were based on a set of 106 accepted simulations; for n 

30, this number was found sufficient to ensure that thethe waiting times and branching structures of genealo-

gies are simulated under the neutral coalescent. On distributions were accurately estimated. The rejection
regions for the tests were defined using procedures 1each genealogy, S mutations are placed, uniformly and

independently. The null distribution of C is taken as and 2, employing simulated probabilities in place of the
exact probabilities and using the correction for smallthe empirical distribution of its values for the simulated

trees. If the estimate �̂W is close to the true value �, this sample size: haplotypes on the rejection region bound-
ary for the chosen significance level were assigned anprocedure produces similar rejection probabilities to

both the fixed-� approach that assumes � � �̂W and the appropriate rejection probability in (0, 1), and all other
haplotypes were placed either inside or outside the re-Bayesian procedure in the previous paragraph. How-

ever, if �̂W and � differ substantially, the conditional jection region.
For each choice of s and n and each alternative model,distributions of test statistics by this kind of fixed-S simu-

lation may also be quite different from their conditional the power to reject the null for significance level � was
equal to the fraction of 105 simulations of the alternativedistributions given S and � (Markovtsova et al. 2001;

Wall and Hudson 2001). This observation is supported whose haplotypes lay in the �-rejection region. Note
that in contrast to the simulations of the null model,also by our simulation with 10 mutations and n � 7

(Table 6). The probability distribution for fixed-S simu- which were used to simultaneously estimate a large num-
ber of quantities, namely the probabilities of all possiblelation is quite similar to the exact distribution shown

in Table 5 with � � �̂W, and the HCT rejection probabil- haplotype frequencies or values of a test statistic, simula-
tions of the alternative were used only to estimate whatity for the example configuration (1, 0, 2, 0, 0, 0, 0) is

0.0520. fraction of replicates lay in the rejection region. Thus,
in comparison with the null model, to obtain repeatableTables 5 and 6 and Figure 1 show that the effect of

� on haplotype tests is not negligible, and that erroneous results, the alternative model required fewer replicates.
Simulations of the alternative model require use ofconclusions might be reached if the observed number

of segregating sites is not close to expectation. The a value of �. As discussed earlier, when the null hypothe-
sis is true, a sensible choice is to use a value of � estimatedproblem is not fixed by using a distribution of values

for � estimated from the same data that are to be ana- by assuming that the null is true—for example, �̂W. Thus,
when the alternative hypothesis is true, a sensible choicelyzed using the tests, as such a distribution will likely

produce results similar to those obtained with a point of � on which to condition the simulations is a value that
would have been estimated assuming that the alternativeestimate. However, the use of diverse regions spread

across a genome decreases the variance of an estimate was true. For a general model in which the expected
total branch length of a genealogical tree is �[L], theof � dramatically (Innan et al. 2003). Thus, with genomic

polymorphism data, � can be estimated at many loci generalized expression analogous to �̂W is 2S/�[L].
In models with recombination, the recombinationindependent of the region of interest, and the genomic

estimate can be treated as the known value of �. A rate affects the variation across sites in branch lengths
of genealogical trees but not the expected total branchcollection of values spread around a genomic point

estimate might also be used in a Bayesian procedure, length of a randomly chosen site (Pluzhnikov and
Donnelly 1996). Thus, the expected total branchalthough this approach will probably not differ greatly

in outcome from use of only the point estimate. length is the same as in the absence of recombination,
and consequently we used �̂W for the simulations of theThe application of a genomically estimated � requires

the assumption of a constant value of � across the ge- alternative model.
For exponential population growth and two-popula-nome. However, variables such as GC-content and re-

tion symmetric island migration models, however, thecombination rate may lead to considerable variation in
branch lengths of genealogies differ from those of the� (Begun and Aquadro 1992, for example). In such
standard model. Our simulations of the alternativecases, the “known” � could be estimated within classes

of regions that have similar GC-content, levels of recom-
bination, or values of other quantities that influence �.

model employed 2s/�[L]

	

for �, where �[L]

	

was the
mean total branch length in 105 simulations of the
model. Note that this choice makes the value of � at
which tests were performed dependent on the parame-

POWER
ters of the alternative model. Once the value of � was

We investigated the power of the four haplotype tests selected, an independent set of simulations was used
for the estimation of power.to detect deviations from the standard coalescent



1774 H. Innan et al.

Figure 2.—Power of four tests to reject the standard neutral model at significance level � � 0.05, for three values of s (10,
30, and 75) and three types of alternative models—from top to bottom, recombination, exponential population growth, and
island migration. In each plot, n � 30 (in the migration model, the sample was separated into two populations each with sample
size 15). Simulation of the null model used procedure 3; simulation of the alternative model used procedure 4 in the case of
recombination and appropriately modified versions of procedure 3 in the cases of exponential population growth and island
migration (see Demographic models).

Recombination: If no recombination takes place, the For relatively large recombination rates, all tests were
able to reject the null model in favor of the recombina-strong correlation of genotypes at neighboring sites

makes it fairly likely that if two DNA sequences both tion model, with power greater in the scenarios with
smaller s (Figure 2). For small s, power was comparablecontain a mutation at a particular site, they will also

share the same haplotype. Thus, many individuals may for the four tests, whereas for intermediate and large s,
the HCT had poorer relative performance than the otherhave the same haplotype, and configurations with high

M, low K, and low H are common. tests. The HNT performed particularly well, in agreement
with previous observations about the informativeness ofRecombination decouples neighboring sites, so that

for large recombination rates, neighboring genotypes K about the recombination rate (Schierup and Hein
2000; Wall 2000; Myers and Griffiths 2003).are nearly independent. Thus, two sequences with the

same genotype at one site will have the same haplotype Exponential population growth: Because coalescences
are more probable in smaller populations, by increas-only if at each of the s � 1 remaining sites they share

the same genotype—an unlikely event whose chance of ing the population size in recent generations compared
with that of ancient generations, exponential popula-occurring is the product of s � 1 probabilities. Conse-

quently, given s and n, as recombination rate increases, tion growth makes it more likely that lineages will persist
into the distant past without coalescing. Thus, growthM decreases, K and H increase, and C tends toward con-

figurations that contain many haplotypes of frequency 1, increases lengths of terminal branches of coalescent
trees in comparison with those of internal branches.such as se1 	 en�s for small s and ne1 for large s.
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Figure 3.—Power of four tests to reject the standard neutral model at significance level � � 0.05 for a null model including
recombination (� � 10) and two types of alternative models—exponential population growth (top) and island migration (bottom).
Simulation of the null model used procedure 4; simulation of the alternative model used appropriately modified versions of
procedure 4. The simulations were otherwise the same as in Figure 2.

Mutations on terminal branches create single-copy hap- for intermediate and large s. Similarly to the population
lotypes, so that growth increases the frequencies of con- growth simulations, the HHT and HDT performed poorly
figurations with low M, high K, and high H. As in the for small s, with similar results when recombination was
recombination case, the configurations se1 	 en�s and included in the null hypothesis (Figure 3). As in both the
ne1 become probable for small and large s, respectively. recombination and the growth scenarios, the HNT was

In the simulations with exponential growth, the HCT the most generally powerful test for small s.
had comparable power to the HNT for small and inter-
mediate s (Figure 2). The HHT and HDT performed
rather poorly for small s, improving as s increased. As APPLICATION TO DATA
in the recombination simulations, the HNT was the

In a data set for the Sod locus in D. melanogaster (Hud-most generally powerful test. Although some exceptions
son et al. 1994), 55 segregating sites were observed inwere observed (for example, with s � 10), similar results
a sample of size 10, with C � (5, 0, 0, 0, 1, 0, 0, 0, 0,were usually obtained when the null hypothesis in-
0). Thus, M � 5, K � 6, and H � 0.7. Using (26),cluded recombination (Figure 3).
�̂W � 19.44. To demonstrate the application of the fourIsland migration: With a large migration rate, the
haplotype tests, we used procedures 3 and 4 (appropri-behavior of the two-population island migration model
ately modified in the case of exponential populationapproaches that of the standard neutral model (Nord-
growth) conditional on point estimates for � (Table 7).borg and Krone 2002, for example). Thus, haplotype
For � � 0, the estimate of � employed (26); for � � 0, thefrequencies for large migration rates will be similar to
estimate was obtained using simulations, as described inthose under the null model. As the migration rate de-
the previous section.creases, however, lineages coalesce separately in the two

As was observed by Hudson et al. (1994), M � 5 ispopulations, with no intervening migrations. The time
highly unusual under the standard neutral model, asuntil one of these lineages migrates to the other popula-
well as under models that include small amounts oftion is long, so that genealogies have two long internal
population growth and recombination. In each case,branches. These branches contain most mutations, lead-
the HHT and HDT reject the null hypothesis at verying to configurations with high M, low K, and low H.
low P-values. The HCT is significant below the 5% levelThe simulations produced reasonable power with low
in all cases, while the two-tailed HNT is not significant atmigration rates and low power with high migration rates

(Figure 2). The HCT and HNT had comparable power the 5% level for low levels of growth and recombination.
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TABLE 7 or population structure, whereas an excess of common
variants can reflect positive selection or balancing selec-Probabilities for data from Hudson et al. (1994) (�10�5):
tion. Similarly, conditional on the number of segregat-c � 5e1 	 e 5 , s � 55, and n � 10
ing sites, an excess of rare haplotypes may reflect pop-
ulation growth or recombination, while an excess of� � 0 � � 0.1 � � 1 � � 10
common haplotypes may reflect population structure

� � 0 C 1699 1442 469 3 or positive selection. As is done for tests based on theM 755 635 222 2
site frequency spectrum, the HCT, HHT, HNT, andK 5481 4702 1764 50
HDT can be used to scan genomes for atypical regions:H 781 647 224 2
for the haplotype tests, to accommodate variability

� � 0.01 C 1722 1394 460 6 across regions in the number of segregating sites, outly-
M 752 592 230 3 ing regions can be identified as those with extreme
K 5627 4629 1762 46 rejection probabilities (rather than extreme values of
H 778 612 234 3 the test statistic).

While the HCT perhaps takes into account more in-� � 0.1 C 1776 1381 427 4
formation about the data than do the HHT, HNT, andM 766 582 217 2
HDT, the various tests reject the null hypothesis underK 5672 4552 1672 52

H 792 602 222 2 different conditions. The HCT is designed to detect
general deviation from the predicted haplotype fre-

� � 1 C 1617 1289 368 9 quency distribution; although this test may not be opti-
M 726 565 182 4 mal for specific alternative scenarios, it may have theK 5258 4332 1554 36

potential to identify more diverse departures from theH 751 581 182 4
null hypothesis than can be detected with the univariate
statistics. Some alternative hypotheses, such as multial-� � 10 C 674 540 193 4

M 316 268 97 2 lelic balancing selection or positive selection for differ-
K 2463 2044 795 29 ent haplotypes across subgroups of a structured popula-
H 320 271 98 2 tion, might be better suited to the HCT, as they may

be unlikely to produce anomalous values of M, K, or H.� � 100 C 8 1 0 0
For other alternatives, such as positive selection on aM 3 1 0 0
single haplotype, univariate statistics such as M may beK 24 12 9 1

H 3 1 0 0 most appropriate. Regardless of which tests are used,
however, genomic data sets will perhaps increase theValues are based on 105 accepted genealogies using a point
confidence that can be placed in P-values for haplotypeestimate of �, estimated from (26) for � � 0 and using
tests and other neutrality tests, because in many species
� will no longer need to be estimated from the same

2s/�[L]

	

for � � 0, with �[L]

	

based on 105 separate simulated
genealogies. If the observed configuration is c, the values in
the table are (�105): �(C 
 c), �[M � M(c)], �[K 
 K(c)], data on which the tests are being performed.
and �[H 
 H(c)], where probabilities are estimated from the
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