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ABSTRACT
Rodent inbred line crosses are widely used to map genetic loci associated with complex traits. This

approach has proven to be powerful for detecting quantitative trait loci (QTL); however, the resolution
of QTL locations, typically �20 cM, means that hundreds of genes are implicated as potential candidates.
We describe analytical methods based on linear models to combine information available in two or more
inbred line crosses. Our strategy is motivated by the hypothesis that common inbred strains of the laboratory
mouse are derived from a limited ancestral gene pool and thus QTL detected in multiple crosses are
likely to represent shared ancestral polymorphisms. We demonstrate that the combined-cross analysis can
improve the power to detect weak QTL, can narrow support intervals for QTL regions, and can be used
to separate multiple QTL that colocalize by chance. Moreover, combined-cross analysis can establish the
allelic states of a QTL among a set of parental lines, thus providing critical information for narrowing
QTL regions by haplotype analysis.

QUANTITATIVE trait locus (QTL) analysis is a phe- identify the gene (Glazier et al. 2002; Abiola et al.
2003). This seemingly straightforward strategy hasnotype-driven, experimental approach to identify

genomic regions that harbor polymorphisms affecting proven to be challenging in many cases (Nadeau and
Frankel 2000), although more optimistic views on thethe distribution of a measurable trait in a mapping pop-

ulation. Knowledge of the number, location, and effects situation have also been expressed (Korstanje and
Paigen 2002).of the genetic loci underlying variability in a trait can

aid our understanding of the biochemical basis of the Many common diseases in humans including osteopo-
rosis, atherosclerosis, diabetes, and hypertension aretrait. Despite the power of QTL analysis, the mapping

approach has some limitations. Detection of a QTL with known to be complex—determined by the interaction
of multiple genetic and environmental factors. Rodentdesirable power and accuracy in an inbred line cross

depends on the genetic diversity between the parental inbred lines can model human disease traits and inbred
line crosses provide a powerful approach to mappingstrains, heritability of the trait, the size of the cross, and

the density of genetic markers (Kao and Zeng 1997). the genetic loci associated with these diseases (Paigen
1995). In many instances, disease-related traits haveIn a single intercross or backcross, it may be difficult
been studied in multiple mouse crosses. We propose ato distinguish multiple tightly linked QTL from a single
strategy to improve the power and resolution of QTLQTL of large effect. Furthermore, the QTL support
mapping by utilizing the combined information in twointerval may be large, typically 20–40 cM for mouse
or more inbred line crosses. These crosses may or maycrosses. Investigators often encounter difficulty when
not include parental lines in common. In any singlethey attempt to narrow the QTL region. Adding markers
cross of two strains, we are limited to discovering onlyis helpful but resolution is fundamentally limited by the
loci that show allelic variation between those strains. Bynumber of recombination events in the cross popula-
looking at multiple crosses, we can sample more alleliction. The direct approach to narrowing a QTL region
variation, and thus we have an opportunity to detectis to pursue mapped loci as targets for positional cloning
additional loci that can be implicated in a disease model.by isolating the QTL region on a fixed background in
If QTL appearing in multiple crosses represent the samea congenic strain, using additional crosses to fine map,
ancestral polymorphic loci, then by combining crossesand then applying techniques such as BAC rescue to
we can achieve greater sample size and power for de-
tecting and localizing these shared QTL.
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the combination of multiple crosses each from two in- ever, it is not possible to know a priori the allelic states
of QTL and different QTL in the same cross may havebred parental strains have been explored as methods

for QTL detection using multiple-allele models (Zeng different patterns of alleles across the parental strains.
The strategy proposed here can exploit the power of a1994; Liu and Zeng 2000). Several reports describing

combined QTL analysis have appeared recently (Wall- biallelic model but does not lose information or restrict
the possible allelic states of the QTL.ing et al. 2000; Hitzemann et al. 2003; Park et al. 2003)

and we expect this trend to continue. When a cross
involves two inbred strains, only two alleles are segregat-

MATERIALS AND METHODSing at any given locus. However, in outbred crosses or
multiway crosses, it is usual to assume that multiple Combined-cross analysis overview: A combined-cross analy-
alleles are segregating at any given locus. The statistical sis involves several steps of data processing and interpretation.

Details of each step are provided in the sections that follow.models required represent a straightforward extension
Here we provide an overview to tie the various steps together.of the usual two-allele models. For example, Rebai et
It is important to emphasize that this is not a rigid prescription.al. (1994) adapted the regression method (Haley and
Each combined data analysis will present unique challenges

Knott 1992) to the case of intercross populations de- and the process of interpretation should be adaptive and inter-
rived from a diallele of multiple inbred lines. However, active.

A preliminary step to combining crosses is to carry out anmultiple-allele modeling of the background genetic vari-
analysis of each individual cross. This will provide a sense ofance in this setting may become formidably complex
the number and locations of QTL, their mode of inheritance,and can impact the overall power to detect QTL. Ignor-
and direction of effects. If the individual crosses are small,

ing background genetic variation may lead to biases in which may be the case if the experiment was designed with
estimates of QTL location and effects (Zou et al. 2001). the intent to combine the data, they may have low power to

detect QTL. A less stringent assessment of the presence ofAn interesting proposal to map QTL by genetic back-
QTL may be appropriate at this stage. A shared QTL is oneground interactions in a set of three intercrosses involv-
that occurs in all of the crosses. Thus the locus must be poly-ing three parental strains was put forth by Jannink and
morphic within each pair of parental lines represented in the

Jansen (2001; Jansen and Stam 1994). Multiple-allele set of crosses. A cross-specific QTL will occur in only one or in
models are general because they can accommodate any a subset of the crosses. If a cross-specific QTL occurs in more

than one but not all of the crosses, it can be analyzed as apattern of inheritance but this generality can result in
shared QTL on the subset of crosses in which it does occur.a loss of power to detect QTL.
The goals of a combined-cross analysis are to identify sharedInbred laboratory mouse strains are known to have
and cross-specific QTL and to improve the localization of

originated from a mixed but limited founder population shared QTL.
(Silver 1995; Beck et al. 2000). The genomes of these The next steps are merging the data and running a genome-

wide scan analysis on the combined data. It is assumed thatstrains were predicted to be a mosaic of regions with
the phenotype data are measuring the same trait in all crosses.origins that can be traced back to a few subspecies (Bon-
Some care must be taken to scale data before merging them.homme 1986). The mosaic structure of variation in the
An indicator variable, cross, is created and included along with

laboratory mouse genome was recently evidenced by any other covariates that may be relevant to the analysis. The
single-nucleotide polymorphism (SNP) analyses indicat- genotype data are merged using a binary encoding that reflects

the expected allele types of a shared QTL. This encoding maying that inbred laboratory mouse strains are largely de-
be based on the parental phenotypes. Now we can carry outrived from two original subspecies (Mus mus domesticus
a combined-cross genome scan using cross as an additive covari-and M. m. musculus) with limited contributions from M.
ate (Comb1) to detect shared QTL. Then we carry out a ge-

m. castaneus. Indeed, for most of the regions investi- nome scan using cross as an interactive covariate (Comb2) to
gated, only two different ancestral haplotypes were ob- detect cross-specific QTL. A significant change in the LOD score

(�LOD1) between these scans indicates that a QTL has cross-served among nine strains (Wade et al. 2002). This ob-
specific effects.servation suggests that we may be able to improve the

The final steps involve a local analysis of each chromosomepower and resolution of QTL detection by combining
that was identified in the combined data genome scans. We

data from two or more inbred line crosses that involve test for presence of two or more linked QTL by computing
multiple strains by assuming a common biallelic mode the change in likelihood between the one QTL and the two

QTL scans (�LOD2) on each chromosome of interest. High-of inheritance. Even in cases where the locus in question
resolution plots of the single and pairwise scans can indicateis not strictly biallelic, the effects of a shared QTL may
the presence of multiple QTL even when a formal test is notbehave as a biallelic locus having only “high” and “low”
significant. The local analysis is intended to clarify the nature

alleles. of QTL that have already been declared to be significant in
In this article, we report a simple but effective ap- the genome-wide scans. In addition, one should consider the

estimated effects of the QTL in the individual and combinedproach for improving the power and resolution of QTL
crosses. A set of QTL allele-effect plots at critical locationsdetection using combined data from two or more inbred
along a chromosome can help to resolve linked and cross-strain crosses. We propose a binary encoding based on
specific QTL.

the biallelic hypothesis to reduce the number of alleles Experimental breeding crosses for QTL mapping: We use
in the genetic model. Recoding improves power when data from four intercross populations involving five strains

to illustrate our method. The five strains (and single-letterthe correct biallelic state of the QTL is identified. How-
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Figure 1.—Box plots of the HDL phenotype by cross. Logarithmic, square-root, and untransformed data are shown.

abbreviations used in this article) are PERA/Ei (P), I/LnJ (I), Integration of genetic marker data: Genetic map positions
for markers in each of the crosses in this study were retrievedDBA/2 (D), CAST/Ei (C), and 129S1/SvImJ (S). The four

crosses, three of which have been previously described, are from the Mouse Genome Database (http://www.informatics.
jax.org). When multiple crosses share the same set of markers,P � I (Wittenburg et al. 2003), P � D, C � D (Lyons et al.

2003a), and C � S (Lyons et al. 2003b). Mice in each of the integration of the marker genotype data is straightforward.
However, data may be merged even if different markers werecrosses were assayed under high-fat diet conditions (Khanuja

et al. 1995) for plasma high-density lipoprotein (HDL) choles- used, provided that a reliable map order and approximate
genetic map positions (in centimorgan units along each chro-terol. The P � I cross includes 305 mice genotyped at 107

markers; P � D has 324 mice and 97 markers; C � D has 278 mosome) are known. Genetic distances between marker loci
may vary somewhat from cross to cross but the precise locationmice and 109 markers; C � S has 277 mice and 100 markers.

Crosses P � I and P � D include both sexes but crosses C � of markers on the genetic map has little practical impact on
QTL analysis. Correct relative ordering of markers is crucialD and C � S include only males. In each of the crosses, F2

progeny were obtained from F1 parents using both directions for combining the genotype data. To merge the data sets in
this study, we computed a set of 128 multiple imputed geno-of crossing, e.g., P � I and I � P, where the first letter denotes

the strain of the maternal parent of the F1 mice used to gener- types on a dense (2-cM) grid of genomic locations, using the
same grid for each cross. We then merged the imputed dataate the F2 progeny. Further details are provided in the refer-

ences listed above. sets and carried out QTL analysis using the method of Sen
and Churchill (2001). In principle the same analysis couldCombining the phenotype data: Plasma HDL cholesterol

was measured in milligram per deciliter units as described in be carried out using an EM algorithm (Lander and Botstein
1989; Kao and Zeng 1997), but the simplicity of merging(Lyons et al. 2003a). Both the mean and the variance of

HDL cholesterol varied significantly across the four intercross imputed data sets is appealing in this application.
Binary encoding of alleles for combined-cross analysis: Thepopulations. Box plots of the raw and transformed data (Fig-

ure 1) indicate that a logarithmic transform overcorrects the power of the genome-wide combined-cross analysis is achieved
by recoding of the parental alleles to a binary allelic pattern.variance heterogeneity, whereas square-root transform, an in-

termediate between the logarithmic and untransformed data, The choice of recoding schemes will depend on the particular
set of crosses under consideration. In our example the crossesstabilizes the variance in HDL levels. Transformation of data

is often applied to achieve approximate normality of residual form a chain (I � P � D � C � S) in which the phenotypes
of the parental strains are alternating. Strains P and C haveeffects. In a combined-cross analysis, crosses with greater vari-

ability in the phenotype will have a greater influence. Thus, high HDL cholesterol and strains I, D, and S have low HDL
cholesterol levels. This suggests a binary recoding of allelesit is important to stabilize the variances in this setting. If no

simple transformation is able to achieve this, data could be as shown in Figure 2.
In a combined-cross analysis any two strains that are pairedstandardized within crosses before combining. In this case,

we used the square-root transform of HDL in all subsequent in an individual cross should have distinct codes (i.e., all crosses
are A � B) and an indicator for the cross should be retainedanalyses.

QTL mapping methods (single-cross analysis): We carried in the recoded data. In this way we can ensure that no informa-
tion is lost. The original identity of any genotype can alwaysout genome-wide scans for both main-effect and interacting

QTL in individual crosses using the method of Sen and
Churchill (2001). Logarithm of odds ratio (LOD) scores
were computed at 2-cM intervals across the genome and sig-
nificance was determined by permutation testing (Churchill
and Doerge 1994). Following the guidelines proposed by
Lander and Kruglyak (1995) we interpret the 0.05 and 0.63
levels as significant and suggestive, respectively. (Note that in
the original reports of these crosses we used a more stringent
definition of suggestive QTL, P � 0.10, genome-wide adjusted.)
Simultaneous-search genome scans for all pairs of markers
were carried out to detect epistatic interactions (Sen and
Churchill 2001; Sugiyama et al. 2001). Significant QTL-
by-QTL interactions are detected as locus pairs with significant
(P � 0.05, genome-wide adjusted) joint LOD score and a
significant (P � 0.001, unadjusted) interaction component.
Support intervals for QTL localization were computed by the Figure 2.—Binary encoding of alleles for combined-cross

analysis of HDL.method of Sen and Churchill (2001).
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TABLE 1

Decoding binary allele patterns from QTL peaks

Prediction
P � I P � D C � D C � S Pattern I � S QTL

� � � � PDCS:I � Chr 5 at 2 cM
� � � � PI:DCS �
� � � � PID:CS � Chr 2 at 48 cM
� � � � PIDC:S �
� � � � P:IDCS � Chr 11 at 20 cM
� � � � PD:ICS �
� � � � PDC:IS �
� � � � PICS:D �
� � � � PIS:DC � Chr 1 at 86 cM
� � � � PIDS:C � Chr 6 at 68 cM
� � � � PCS:ID �
� � � � PS:IDC �
� � � � PDS:IC �
� � � � PIC:DS �
� � � � PC:IDS � Chr 4 at 22 cM

Column 5 lists all possible bipartitions of QTL alleles among five strains. In Columns 1–4 � indicates the
presence/absence of a QTL peak in a cross. Column 6 shows the predicted presence/absence of a QTL peak
in cross I � S and the last column lists QTL found in this study. Chr, chromosome.

be recovered by knowing which cross the animal came from a peak can be ambiguous. It is helpful to examine the “shape”
of the LOD curve to detect clues that multiple linked QTLand which strains are coded as A and B in that cross. Any

crosses between two strains that would both be coded as A may be present. The direction of locus-specific allele effects
in each cross can provide additional evidence regarding the(or B) should be left out of a combined-cross analysis as they

will be uninformative. parental distribution of QTL alleles.
Linear models, LOD scores, and genome scans: In a simpleHaving selected a recoding scheme for combining crosses,

we must immediately acknowledge that not all QTL in the genome scan, we make a comparison between two linear mod-
els of the data,cross will share the same distribution of allelic states across

the set of parental lines. Indeed, transgressive QTL for which
yi � �0 � εi (1)a low parent may contribute a high allele are common. Recod-

ing focuses our search on the most likely QTL configurations. yi � �0 � �1Q i � εi , (2)
At the same time we need to ensure that we do not miss QTL
that have other allele distributions across the strains. QTL where yi are the phenotypes, �0 and �1 are regression coeffi-

cients, and εi are normal errors. The index i runs through allthat fail to meet our expectations can still be detected and
analyzed as described below. We considered the possibility of individuals in the cross(es). We allow the QTL, represented

by genotypes Q i , to scan over a grid of locations covering thegenome-wide scans using all possible binary recoding of al-
leles. However, this approach raises issues of multiple testing genome and plot a LOD score to summarize the evidence for

a QTL at each location. The LOD score, in this case, is thethat are likely to offset any advantages of the binary QTL
model. difference in the log10 likelihood values between models (1)

and (2), where the individual model likelihoods are max-Decoding allelic distributions from QTL peaks: Suppose we
have carried out genome scans on several individual crosses. imized with respect to the regression coefficients. If, instead

of maximizing, we average over �j with respect to a BayesianIdeally we will know for each cross whether the QTL is present
or absent. In practice, there will be a gray area and this could prior distribution, we obtain the log posterior density of the

QTL location (Sen and Churchill 2001). Note that Q i islead to some ambiguity in interpretation. If a QTL is present,
the parental strain must carry different alleles and, if it is treated as a “dummy variable.” For a backcross, Q i may be

coded simply as 0 or 1 but for an intercross, Q i will be repre-absent, parental strains will carry the same allele or alleles
that do not differ in effect. Thus the pattern of presence or sented by two indicator variables and �1 will have two compo-

nents. This convention helps us to avoid unnecessarily compli-absence of QTL peaks provides information about the allelic
distribution across the strains in a set of crosses. When the cated notation. The actual states of the genotypes represented

by Q i cannot be observed directly. These must be inferredcrosses form a chain, it is possible to uniquely determine the
allelic distribution of a QTL from the pattern of presence or from marker data and phenotype values. Proper analysis re-

quires that the QTL genotypes should be treated as missingabsence in the individual cross genome scans (see Table 1).
If the chain is closed to form a loop of crosses (by adding data and an EM, imputation, or other “missing data” algorithm

(Schafer 1997) should be used to compute the maximizedcross I � S in this case), a confirmatory prediction is obtained.
This redundant information could provide a check of the likelihood. The problem of constructing missing data algo-

rithms for QTL analysis has been thoroughly addressedbiallelic model. For other sets of crosses several allelic distribu-
tions may be consistent with the observed pattern of QTL (Lander and Botstein 1989; Kao and Zeng 1997; Sen and

Churchill 2001). Thus, we can focus on the statistical modelpeaks. In practice, some care is needed to properly interpret
a pattern of QTL peaks in multiple crosses. Whereas significant linking genotype to phenotype without having to worry about

the details of the computations.peaks clearly indicate the presence of a QTL, the absence of
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The simple genome scan explicitly assumes that a single I and a low allele in cross P � D. The LOD score contrasting
model (5) and model (3) can be used to construct a genomeQTL is affecting the phenotype. In general a phenotype may

be influenced by multiple QTL as well as by factors such as scan (Comb2) for QTL that show any pattern of effects, not
necessarily the pattern implied by the binary encoding ofsex or treatment variables and interactions among any of these.

How do we go beyond simple genome scans to incorporate a alleles.
The problem of establishing significance levels for genomericher class of models in our search for QTL?

First consider the introduction of a covariate into a genome scans has been extensively studied. Our preferred method is
to use permutation analysis (Churchill and Doerge 1994).scan. Including a term for an additive covariate in each of

models (1) and (2) we obtain the pair of linear models: When performing the permutations, it is important to retain
the pairing of phenotypes and covariates (e.g., cross and sex).

yi � �0 � �1Xi � εi (3) If the X chromosome is scanned, permutations should be
stratified by sex to avoid “illegal” genotypes. Stratification byyi � �0 � �1Xi � �2Q i � εi . (4)
cross preserves the covariance structure of the combined
crosses. A combined-cross analysis involves construction ofA genome scan based on the LOD score contrasting models

(3) and (4) accounts for the effects of a covariate that may several genome scans. The scans are not independent and we
have applied genome-wide adjusted thresholds on a per-scanbe a factor (such as sex) or a continuous covariate (such

as body weight) that has an additive effect on the average basis. The significant QTL are selected using stringent criteria
from the combined scans (Comb1 and Comb2). The individ-phenotypic value. Multiple covariates can be included and

QTL at fixed, unlinked locations can be included as covariates ual cross scans are used primarily for decoding the QTL allelic
distributions and may be interpreted more liberally using ain a scan.

The QTL effect may depend on the state of a covariate. For suggestive threshold for significance.
Testing cross-specific QTL: If a QTL is detected in theexample, a QTL may have an effect only in male mice in a

cross that includes both sexes. To model this we include a genome scan using model (5), we can test for cross-specific
effects by computing the change in LOD score between mod-QTL-by-covariate interaction term in the linear model:
els (5) and (4) at the peak location of the model (5) (Comb2)

yi � �0 � �1Xi � �2Q i � �3Q iXi � εi . (5) genome scan. We refer to this test statistic as �LOD1. It will
be large for any QTL that deviates from the predicted patternTo make inferences about covariate-dependent QTL effects,
of allele effects.one must consider all three models, (3), (4), and (5). One

We use the asymptotic chi-square distribution of the likeli-reasonable approach is to scan the QTL position computing
hood-ratio statistic to establish the significance of �LOD1. Wethe LOD score contrasting model (5) with model (3). This
have not applied any multiple test correction because the testprovides a peak LOD score at the most likely position of the
is carried out at a single, fixed locus. To convert a LOD scoreQTL. We then compute the change in likelihood between
to the chi-square scale, compute 	 2 � 2 ln(10LOD), where lnmodels (4) and (5) at the peak position obtained under model
is the natural logarithm. The degrees of freedom for the chi(5) as a test for the QTL-by-covariate interaction.
square are determined by the difference in the number ofGenome scans for combined crosses: Suppose we are inter-
free parameters between the models being compared. In theested in QTL that may be shared across two or more inbred
example below, �LOD1 has 6 d.f. and the 0.05 LOD criticalline crosses and we have recoded the alleles as described
value is 2.73.above. We can employ the set of linear models (3), (4), and

Resolving linked QTL: When we observe coincident QTL(5) to construct genome scans. In this case Xi is a cross indica-
in two or more crosses it is always possible that these aretor. Model (3) represents the null hypothesis of no QTL and
distinct QTL that have colocalized by chance. This situationmodel (4) represents a shared QTL. Including cross (X i ) as
could be described by a model,an additive covariate accounts for differences in the average

phenotype between crosses but the QTL effect is assumed to yi � �0 � �1X i � �2Q 1i � �3Q 1i X i � �4Q 2i � �5Q 2i X i � εi ,
be the same in all crosses. The LOD score contrasting models (6)
(3) and (4) is used to construct a genome scan (Comb1) for
shared QTL. with two cross-specific QTL. We can fit this multiple-QTL

model using a simultaneous scan of all locus pairs on a singleThe cross term in these models plays the same role as the
polygene term in Liu and Zeng (2000). In a single inbred chromosome. The maximum LOD obtained in the pairwise

scan can be compared to the maximum LOD obtained in theline cross, all individual progeny are equi-correlated and the
correlation structure can be safely ignored. When multiple single-locus scan using model (5). The difference in log10

likelihoods provides a test (�LOD2) for two QTL. This ap-crosses are combined this is no longer true and the cross
term is important to avoid bias in estimation and to obtain a proach may be modified depending on the circumstances.

For example, if we suspect that there are two linked QTL,powerful test with the correct type I error level (Zou et al.
2001). This covariance interpretation suggests that it may be one shared and one cross-specific, we could drop one of the

QTL-by-cross interaction terms from model (6). It is also possi-reasonable to treat cross as a random term in a mixed linear
model. However, we are looking at a small number of crosses ble to scan a chromosome using a three-QTL model.

Significance of �LOD2 can establish the presence of multipleand these crosses are the focus of our inference. Thus, we
have chosen to treat cross as a fixed effect following the recom- linked QTL that might otherwise appear to be a single shared

QTL. The computation involves scanning the QTL locationsmendation of Zou et al. (2001).
QTL effects may vary from cross to cross. For example, the under both models. Hence multiple testing is an issue. The

comparison is made between two models with different num-QTL may be absent in one cross but present in another. Model
(5) includes a QTL-by-cross interaction term that allows each bers of QTL whose locations are free to vary. This leads to a

situation where the usual assumptions of likelihood-ratio test-genotype in each cross to have its own effect. This recapitulates
the multiple-allele model and is essentially identical to the ing do not apply (Self and Liang 1987) and we cannot rely

on standard asymptotic results. Furthermore, the null modelmultiple-allele model of Liu and Zeng (2000). When some
of the crosses share strains in common, model (5) is slightly [model (5)] in this test includes a QTL so it is not obvious how

permutation analysis can be applied. Therefore, we simulatedmore general than the multiple-allele model. For example,
we could have strain P contributing a high allele in cross P � data from a single-QTL model with effect sizes estimated from
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Figure 3.—Genome scans for individual and combined-cross analyses. The y-axis represents the LOD score. Individual crosses
are as labeled. Comb1 is the model (3) vs. model (4) LOD score. Comb2 is the model (3) vs. model (5) LOD score. Significance
thresholds are 0.05 and 0.63 levels (based on 1000 permutations) and are indicated by dashed lines.

the data using model (5) and computed �LOD2 1000 times (chromosomes 5 and 11). Figure 4 shows allele-effect
to establish the critical values. These appear to depend on plots for each of these QTL in each cross. Test statistics
both the QTL effect size and the chromosome size but, for and support intervals are summarized in Table 2.the cases considered here, �LOD2 values that exceed 4.5 may

Among the QTL detected, chromosome 4 stands out asbe regarded as significant evidence for two linked QTL. It is
the most significant and it appears to be the only QTLimportant to emphasize that failure to achieve significance

does not conclusively establish that there is only a single QTL. shared among all four crosses. In the follow sections we
Linked QTL can be difficult to separate. Thus, even a modestly describe the local analysis for each of these six QTL
significant result should be regarded as an indication that regions in order of their significance. In addition theremultiple loci may be involved, because of the implications

is suggestive evidence for QTL on each of chromosomesfor the further steps in identifying the genes, e.g., breeding
7, 9, 15, 17, and 18 in at least one of the crosses. How-congenic mouse strains or analysis of candidate genes.
ever, we did not investigate these loci further.

Chromosome 4: Chromosome 4 presents a significant
QTL in the combined-cross scans and it is significantRESULTS
or nearly so in each of the individual crosses (Figure

Genome-wide analysis of HDL QTL: We combined 3). In each case, the LOD curve shows a single quadratic
the data from four crosses (P � I, P � D, C � D, and peak centered on the region around 20–25 cM. The sup-
C � S) and constructed a cross indicator. Binary allelic port intervals in individual crosses (Figure 5 and Table 2)
states were coded on the basis of the parental pheno- are 20 to 30 cM in width. Allele-effect plots (Figure 4)
types as described above. We then carried out a com- show that in each cross the “B” allele is associated with
bined-cross analysis to identify QTL associated with high HDL cholesterol levels. The test for cross-specific
HDL cholesterol (square-root transformed). Figure 3 allele effects (�LOD1 � 2.18, P � 0.12) is consistent
summarizes the genome-wide scans on the individual with a shared QTL. There is no evidence for multiple
and combined data crosses. The combined-cross ge- QTL in this region (�LOD2 � 3.49, NS). We conclude
nome scan (Comb2) identified four significant QTL that the chromosome 4 locus is likely to represent a

shared QTL with allelic distribution PC:IDS, consistent(chromosomes 1, 2, 4, and 6) and two suggestive QTL
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Figure 4.—Allele-effect plots. Rows in
the grid show QTL peak locations and col-
umns show crosses. Shaded parts indicate
evidence for a QTL in the individual
crosses. The y-axis on each part is square
root of HDL cholesterol centered on the
cross-specific mean. Error bars are �1 SE.

with parental phenotypes. The combined-cross support has a peak at 86 cM but it is bimodal with a minor peak
at 50 cM. The test for cross-specific effect (�LOD1 �interval based on the shared-QTL model (Comb1) is

16–28 cM. This represents a substantial narrowing of 7.8, P � 0.001) indicates that this QTL is not consistent
with the binary encoding. On the basis of the assump-the QTL region to �10 cM.

Chromosome 1: Chromosome 1 presents a significant tion of a single shared QTL, the most likely biallelic
distribution is PIS:DC. Higher HDL levels are associatedLOD score in the region around 86 cM in the combined-

cross genome scan (Comb2) and significant peaks in with the P and S alleles (Figure 4).
We carried out a secondary analysis using only crossescrosses P � D and C � S. The C � S LOD curve is uni-

modal with a peak at 76 cM. The P � D LOD curve also P � D and C � S and encoded the alleles as PS:DC.

TABLE 2

HDL QTL summary

Chr P � I P � D C � D C � S Comb1 Comb2 �LOD1 �LOD2

1 5.72, 86 cM 4.82, 76 cM 1.23, 86 cM, 10.51, 86 cM 9.28* 3.83
(70–94) (66–98) NS (76–90)

2 5.68, 48 cM 1.66, 46 cM, 9.21, 48 cM 7.60* 3.09
(40–56) NS (42–56)

4 3.41, 24 cM 3.17, 20 cM 6.86, 20 cM 3.65, 22 cM 16.34, 22 cM 18.51, 22 cM 2.18 3.49
(10–44) (8–34) (10–34) (0–36) (16–28) (16–28)

5 5.51, 0 cM 0.86, 0 cM, 6.00, 2 cM 5.18* 4.25
(0–10) NS (0–14)

6 4.25, 68 cM 4.06, 68 cM 9.67, 68 cM 5.63* 4.54*
(42–74) (48–74) (46–74)

11 3.23, 28 cM 2.91, 34 cM 2.83, 26 cM 5.80, 20 cM 3.19* 4.05
(10–54) (6–46) (14–44) (12–48)

LOD score, peak position, and support intervals are listed for significant or suggestive QTL found in this study. Significant
QTL are shown in italics. Comb1 indicates the combined analysis assuming a shared QTL in all crosses. The LOD score is based
on model (4) vs. model (3) and binary encoding PC:IDS. Comb2 indicates the combined-cross analysis with cross-specific effects
[model (5) vs. model (3)]. The �LOD1 test is used to detect cross-specific effects [model (5) vs. model (4)] at the peak location
of the Comb2 scan. Significant (P � 0.05) values of �LOD1 are 
2.73. The �LOD2 test is used to detect multiple linked QTL
[model (6) vs. model (5)] on a chromosome. Significant values of �LOD2 (P � 0.05) are 
4.5. *P � 0.05. Chr, chromosome.
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peak at 48 cM in the combined-cross genome scan (Fig-
ure 3, Comb2). A similar peak occurs in cross C � D
but there is no evidence for a chromosome 2 QTL in
any of the other crosses. The test for cross-specific QTL
(�LOD1 � 7.60, P � 0.001) is significant. Effect plots
suggest that a recessive D allele is associated with high
HDL in cross C � D. We conclude that the chromosome
2 QTL is cross-specific with allele distribution PID:CS.
The QTL is segregating in only one cross so there is no
further advantage to combining cross data in this case.
The QTL support interval based on cross C � D is 40–
56 cM.

Chromosome 6: Chromosome 6 presents a significant
peak at 68 cM in the combined-cross scan (Figure 3,
Comb2). Significant peaks are also in the shared-QTL
scan (Figure 3, Comb1) and in cross C � D. A suggestive
peak occurs in cross C � S at 70 cM. In crosses P � I
and P � D, chromosome 6 does not reach the suggestive
level. The cross-specific QTL test (�LOD1 � 5.63, P �
0.001) is significant and the allele-effect plots (Figure
4) confirm that chromosome 6 is not a shared QTL.
We conclude that the chromosome 6 QTL has allele
distribution PIDS:C, where the C allele is associated with
lower HDL. The alternative coding PIC:DS cannot be
definitively ruled out in light of the consistent but weak
evidence for a QTL present in cross P � D.

Chromosome 5: Chromosome 5 presents a suggestive
peak at 0 cM in the combined-cross scan (Comb2) and

Figure 5.—Localization of the chromosome 4 QTL for four a significant peak in cross P � I. The cross-specific QTL
individual crosses and combined crosses. The QTL alleles are

test (�LOD1 � 5.2, P � 0.001) is significant and isencoded as PC:IDS. The solid curve is the LOD score and the
confirmed by the allele-effect plots (Figure 4). We con-dashed curve is the posterior probability density of the QTL

location. Triangles indicate markers that were genotyped in clude that chromosome 5 allele distribution is I:PDCS
the individual crosses and the 2-cM-spaced tick marks indicate with the I allele contributing an additive effect associ-
the location of imputed pseudomarkers. Shaded boxes delimit ated with lower HDL levels. As this QTL appears only
95% support intervals for the QTL location.

in cross P � I, there is no advantage to combining data.
The chromosome 5 support interval based on cross P �
I is 0–10 cM.For this analysis, �LOD1 � 0.06 (P � 0.99), which is

consistent with a shared QTL. The test for two QTL Chromosome 11: Chromosome 11 presents sugges-
tive peaks at 26 and 20 cM, respectively, in the com-(�LOD2 � 1.84, NS) does not suggest the presence of

multiple QTL. However, there are a number of reasons bined-cross scans (Figure 3). The cross-specific test
(�LOD1 � 3.19, P � 0.023) is only marginally signifi-why we should remain open to the possibility of multiple

linked QTL in this region. First, we note that the peak cant. The individual cross scans show peaks that are
nearly significant in crosses P � I and P � D whereasLOD scores in the individual crosses differ in location

by 10 cM. Second, the combined-cross support interval the crosses C � S and C � D present no evidence for
a QTL on chromosome 11. Together with the allele(68–102 cM; Figure 6, Comb1) is not substantially nar-

rower than the interval obtained by analyzing cross P � effects (Figure 4), these observations suggest that the
chromosome 11 QTL most likely has a P:IDCS alleleD alone. Finally, the combined LOD curve is not uni-

modal. In a separate study Wang et al. (2004) have distribution.
On this assumption, we recoded the alleles and com-shown that a polymorphism in Apoa2 (at 92 cM) is

responsible for the C � S QTL. Strains P and D do not bined crosses P � I and P � D. The cross-specific test
in this case (�LOD1 � 0.57, P � 0.85) is consistent withdiffer at the causal polymorphism in Apoa2. The most

likely candidate for the P � D QTL is an uncharacterized a shared QTL and there is no evidence for multiple
QTL (�LOD2 � 1.72, NS). The support interval basedlocus that lies 6 cM proximal to Apoa2 (B. Paigen,

personal communication). This example underscores on the shared-QTL model (Figure 6, Comb1) spans the
region from 20 to 44 cM, still quite broad but narrowerthe importance of critically examining the LOD curves

in a combined-cross analysis and the care that must be than the individual cross support intervals.
Pairwise genome scans identified an interaction be-taken in the interpretation of nonsignificant test results.

Chromosome 2: Chromosome 2 presents a significant tween loci on chromosomes 4 and 11. A significant LOD
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Figure 6.—Posterior density of chromosome 1 (left) and chromosome 11 (right) QTL locations after recoding as shared QTL
on a subset of the crosses. QTL alleles on chromosome 1 are encoded as PS:IDC. QTL alleles on chromosome 11 are encoded
as P:IDCS. Details are as in Figure 5.

peak was detected in cross C � D at chromosome 4 at or made explicit. New software tools are available that
enable an analyst to carry out explicit and general linear24 cM and chromosome 11 at 20 cM. The LOD for a

two-QTL model with interaction is 12.08 (P � 0.05, modeling of QTL (R/qtl, Broman et al. 2003; pseudo-
marker, Sen and Churchill 2001). These tools presentgenome-wide adjusted). The component of the LOD

attributable to interaction alone is 4.53 (P � 0.0003, an opportunity to explore the architecture of complex
traits in greater depth than ever before. Combined-crossunadjusted). An allele-effect plot for the interaction is

shown in Figure 7. The pattern of the interaction sug- analysis is just one of many possible applications that
can be developed.gests that a homozygous CC genotype on chromosome

11 is required for the effect of chromosome 4 to be The binary encoding strategy described here is espe-
cially promising for application using the commonexpressed in this genetic background.

A second interacting locus pair was detected in cross strains of inbred laboratory mice due to the effectively
biallelic nature of many polymorphic loci (Wade et al.C � S between two loci on chromosome 11 at 10 and

25 cM. The two QTL plus interaction LOD score is 14.27 2002). Combining data from two or more inbred line
crosses on the basis of a binary allele-effects model may(P � 0.05, genome-wide adjusted) and the component

of the LOD attributable to the interaction is 12.86 (P � be applicable to other diploid organisms with similar
breeding history to the laboratory mouse. The key as-0.001). Tightly linked and interacting QTL are always

suspect. Closer inspection of this interaction revealed sumption is that there is a substantial prior probability
that two common QTL alleles will be shared among thethat the mouse with highest HDL level among all crosses

(HDL � 378 mg/dl, Figure 1) has a pair of recombina- parental lines.
tion events on proximal chromosome 11 and this is the
only mouse with genotype (CC/SS � AA/BB) at these
loci. In light of the singular nature of this event, we are
inclined to disregard the finding. However, it does hint
at the possibility that the suggestive QTL region on
chromosome 11 region may harbor a more complex
genetic architecture than we can resolve with these
crosses.

Figure 7.—Interacting allele effects between the chromo-
some 4 and chromosome 11 QTL in cross C � D. The two

DISCUSSION leftmost parts show the main effects of QTL on chromosomes
4 and 11 and the rightmost part shows their joint effect. The

Linear models are implicitly used in genome scans vertical scale is the square root of HDL. Points indicate the
and in most QTL analyses. However, the central role of mean phenotype for each genotypic group and the bar indi-

cates 95% confidence intervals for the mean (�2 SE).linear models in QTL analysis is often not recognized
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A combined-cross analysis may be conducted as a post the parental strain phenotypes (e.g., “in silico mapping”;
Grupe et al. 2001) are likely to miss many importanthoc meta-analysis of existing data. However, there may

be some advantages to planning multiple-cross mapping features of the genetic architecture of complex traits.
The results obtained with the test for multiple QTLexperiments. Eliminating potential confounding factors

and conducting the crosses in a controlled, uniform �LOD2 in this study were somewhat disappointing. A
previous study using an advanced intercross designenvironment minimizes gene-by-environment interac-

tions and increases the likelihood that shared QTL will (Wang et al. 2003) suggested that chromosomes 1 and
5 are likely to harbor multiple HDL QTL. However, asbe detected. There are tradeoffs to consider. A typical

mapping study is constrained by the total number of these QTL appear to be tightly linked in coupling phase,
the combined intercrosses do not provide sufficient res-individuals that can be generated and phenotyped. Gen-

erating progeny from multiple strains offers an advan- olution to separate the effects. The evidence for multi-
ple linked QTL on chromosome 6 is consistent with ourtage in that more QTL can be detected. However, as

we have seen in the example here, some of these QTL previous analysis of this QTL (Lyons et al. 2003a). In
other studies (M. A. Lyons, R. Li, G. A. Churchill andwill be segregating in only a subset of the total progeny

and this will reduce the power compared to a single- B. Paigen, unpublished results) we have successfully
resolved multiple linked QTL with unambiguously sig-cross study of the same total size. For example, four

crosses of 250 individuals each should provide reason- nificant �LOD2 results. For the purpose of combining
crosses we recommend liberal interpretation of this testable power to detect QTL that account for 5–10% of

the total variance even if allelic differences are limited and careful attention to other sources of evidence. In
the combined-cross analysis we make an assumptionto just one of the crosses. On the other hand, a single

cross with 1000 progeny should have power to detect regarding the biallelic nature of QTL that occur in more
than one cross. These assumptions may not be alwaysQTL with effect sizes on the order of 2% of total variance

but fewer loci are likely to be segregating. correct but they move us forward. The conclusions of
a combined-cross analysis are intended to provide guid-The advantages of combined-cross analysis are in-

creased power for detecting QTL and improved localiza- ance in follow-up studies. The possibility of multiple
linked QTL and multiple alleles at a single locus musttion of shared QTL. As demonstrated in our example,

these gains may be modest and will not by themselves always be kept in mind.
In conclusion, we have described and demonstratedprovide gene-level resolution of QTL. We propose that

combined-cross analysis could serve as a preliminary the utility of combining multiple crosses for QTL map-
ping. This technique offers an opportunity to betterstep to QTL localization by haplotype analysis (Wade

et al. 2002; Wiltshire et al. 2003). A combined-cross utilize existing data from resource-intensive breeding
crosses and should have immediate benefits for QTLanalysis can (usually) determine the parental allelic

states on the basis of the pattern of QTL found in the analysis studies in the laboratory mouse. Application of
the analysis techniques described here should improveindividual crosses. Knowledge of the parental alleles can

be leveraged to achieve very high resolution of QTL the power and resolution of QTL studies and will pro-
vide further insights into the genetic determinants oflocation by comparing the haplotypes of the parental

lines in the QTL support interval to the predicted the complex phenotypes.
biallelic pattern. In many instances this could provide We are thankful to Saunak Sen, Karl Broman, and Hao Wu for
resolution of a QTL to a very small and manageable their contributions in the development of the software. This work is

supported by National Institutes of Health grants GM070683 andnumber of genes for follow-up studies. Some allowance
HL55001. The American Physiological Society and the American Livermust be made for the existence of third alleles in crosses
Foundation supported M.A.L. and Deutsche Forschungsgemeinschaftthat include wild-derived mouse strains. In our example,
provided support for H.W.
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