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ABSTRACT
We introduce here a Bayesian analysis of a classical admixture model in which all parameters are

simultaneously estimated. Our approach follows the approximate Bayesian computation (ABC) framework,
relying on massive simulations and a rejection-regression algorithm. Although computationally intensive,
this approach can easily deal with complex mutation models and partially linked loci, and it can be
thoroughly validated without much additional computation cost. Compared to a recent maximum-likeli-
hood (ML) method, the ABC approach leads to similarly accurate estimates of admixture proportions in
the case of recent admixture events, but it is found superior when the admixture is more ancient. All
other parameters of the admixture model such as the divergence time between parental populations, the
admixture time, and the population sizes are also well estimated, unlike the ML method. The use of
partially linked markers does not introduce any particular bias in the estimation of admixture, but ML
confidence intervals are found too narrow if linkage is not specifically accounted for. The application of
our method to an artificially admixed domestic bee population from northwest Italy suggests that the
admixture occurred in the last 10–40 generations and that the parental Apis mellifera and A. ligustica
populations were completely separated since the last glacial maximum.

HYBRID populations have been central to theories likelihood-based methods, including Bayesian (Chikhi
on adaptation and speciation (Barton 2001), et al. 2001) and maximum-likelihood (Wang 2003) ap-

and their study has encountered a new interest since it proaches, are computationally intensive but have been
was shown that they could be ideal in detecting disease shown to produce estimates with smaller variances
genes (Chakraborty and Weiss 1988). The assessment across independent replicates or simulations, especially
of the degree of admixture of a given population has when the estimate was based on a small number of loci
traditionally relied on the comparison of allele frequen- (Wang 2003; Choisy et al. 2004). A promising alterna-
cies between two potential parental populations and a tive to these methods has been the development of an
putative hybrid population (Roberts and Hiorns 1965; approach using nongenetic information to more pre-
Chakraborty and Weiss 1988; Long 1991). Recently, cisely define the contribution of sampled populations
these methods have been improved by incorporating to the hybrid (Gaggiotti et al. 2002, 2004). Finally,
information on the molecular diversity present in the recognizing that a major drawback of all these former
admixed and in parental populations (Bertorelle and approaches is to require an explicit definition of the
Excoffier 1998; Dupanloup and Bertorelle 2001) source populations, some recent methods have at-
or by explicitly taking into account the genetic drift of tempted to identify admixed individuals without requir-
allele frequencies since the admixture event (Chikhi et ing the source parental populations to be defined
al. 2001; Wang 2003). However, the accuracy of the (Pritchard et al. 2000; Dawson and Belkhir 2001;
estimation of the contribution of the parental popula- Anderson and Thompson 2002; Falush et al. 2003),
tions to the hybrid depends highly on the extent of but their statistical power remains to be assessed.
differentiation between parental populations (Bertor- As stated previously, a common problem with most
elle and Excoffier 1998) and the time elapsed since of the previous methods is their inability to explicitly
the admixture event (Chikhi et al. 2001; Choisy et al. handle mutations (but see Bertorelle and Excoffier
2004). No single method was found to date superior to 1998; Dupanloup et al. 2004), whereas this is likely to
others in all circumstances (Choisy et al. 2004). Recent be particularly important when the admixture event is

ancient. While ML methods have the potential to pro-
vide accurate estimations of demographic and muta-
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tations have to be taken into account at both indepen-
dent and partially linked markers remains problematic.
A powerful Bayesian alternative to likelihood computa-
tion for parameter estimation has been introduced re-
cently (Fu and Li 1997; Tavaré et al. 1997; Pritchard
et al. 1999; Estoup et al. 2001), dubbed as approximate
Bayesian computation (ABC; Beaumont et al. 2002;
Marjoram et al. 2003). This approach does not require
the computation of likelihoods, but simply relies on the
comparison of summary statistics computed on ob-
served data with those computed on data simulated
under a model for which the parameters of interest are
known (Beaumont et al. 2002; Marjoram et al. 2003).
Although the ABC method relies on summary statistics
and thus does not use all available data, it has been
shown to provide very accurate results in the analysis
of relatively simple evolutionary scenarios where full
maximum-likelihood methods were available (Beau-
mont et al. 2002; Marjoram et al. 2003). Hence, by
construction, ABC methods have the potential to con-
sider models of any complexity, provided only that data Figure 1.—Admixture model considered in this study. A
can be simulated under the model. Recent applications hybrid population is created tADM generations ago from a mix-
of the latest developments of ABC methods (Beaumont ture of two parental populations that diverged tDIV generations

before admixture time. Except for the admixture event itself,et al. 2002) illustrate their potential for the analysis of
all populations are genetically isolated. The demographiccomplex demographic scenarios (Estoup and Clegg
model is characterized by seven parameters, which are the2003; Estoup et al. 2004). Recent coalescent-based pack- effective number of genes in the ancestral (N0), parental (N1

ages (e.g., Hudson 2002; Laval and Excoffier 2004) and N2), and admixed (NA) populations; the times of admix-
provide an efficient tool for simulating genetic data ture (tADM) and divergence (tDIV); as well as the admixture

proportion (�) taken as the relative contribution of parentalunder complex scenarios (including introgression or
population 1 to the admixed population.hybridization scenarios) and have the potential to gen-

erate data for independent or partially linked markers.
Such versatile simulation packages make it possible,

in Figure 1 and similar to that used in previous studieseven for biologists unfamiliar with simulation algo-
(e.g., Long 1991; Bertorelle and Excoffier 1998;rithms, to perform parameter estimation under the ABC
Wang 2003; Choisy et al. 2004).framework and consider various evolutionary scenarios.

The genetic model: Unlike almost all methods consid-In this article, we apply the ABC method to the estima-
ering that gene frequencies evolve only through genetiction of all the parameters of an explicit admixture model
drift, our approach also takes mutations into account(Figure 1) defined previously (Bertorelle and Excof-
(as in Bertorelle and Excoffier 1998). This involvesfier 1998; Wang 2003) and described in methods. We
the choice of a mutation model and of its parameters.use the SIMCOAL2 coalescent simulation program
We restricted our study to microsatellite markers for(Laval and Excoffier 2004) to generate a large num-
which we used a multistep mutation model, sometimesber of microsatellite data sets for random values of the
called generalized stepwise mutation (GSM) model (Zhi-admixture model parameters, on which several sum-
votovsky et al. 1997; Estoup et al. 2002), requiring twomary statistics are evaluated. These simulated summary
parameters per locus: the mutation rate (�i) and thestatistics are used for parameter estimation in a series
coefficient (Pi) of the geometric distribution of theof test data sets, which allows us to validate our approach
length by which a new mutant allele differs from itsand to compare its performance with a previously pub-
ancestor. However, these two series of parameters arelished maximum-likelihood (ML) method (Wang 2003).
considered as nuisance parameters, and we will pay at-The method is then applied to the case of an admixed
tention only to their average values across loci: � and P.population of honeybees from northwestern Italy.

Data thus consist here of multilocus genotypes of n
individuals sampled from each of the three populations.

The ABC approach: The rationale and the full de-
METHODS

scription of the ABC method are given in Beaumont
et al. (2002). In short, the approach involves three suc-The demographic model: To compare the behavior

and performances of our approach with previous meth- cessive steps detailed in Figure 2. The first step (simula-
tion step) consists of simulating many (typically 1 mil-ods, we used a classical admixture scenario described



1729ABC Estimation of Admixture

statistics, retaining the simulations that are arbitrarily
close to the observations, and rejecting the other simula-
tions. Finally, the third step is the estimation of the
parameters by performing a multiple and locally
weighted linear regression on the summary statistics
associated with the retained simulations. The set of sim-
ulations retained for parameter estimation was selected
by strictly following Beaumont et al. (2002), by comput-
ing a Euclidean distance (�) between simulated and
observed summary statistics and retaining the 1000 sim-
ulations having the smallest � distance (being closest)
to the test data set.

The SIMCOAL2 program (Laval and Excoffier
2004), freely available on http://cmpg.unibe.ch/soft
ware/simcoal2, has been used to generate microsatellite
data sets in the first step, and a new program (abcEst)
has been developed for parameter estimation (step 3
in Figure 2). The program abcEst (Windows or Linux
version) is available from L. Excoffier upon request.
Compared to the published version of the SIMCOAL2
program, two enhancements were added: the imple-
mentation of the generalized stepwise mutation model
and the possibility of having different mutation rates at
different loci. Microsatellite allele size constraints were
included in our simulations by imposing reflecting
boundaries at the edge of an allele size range of 30
continuous allelic states (Feldman et al. 1997; Pollock
et al. 1998). This range is consistent with empirical data
on repeat numbers at microsatellites in various species
(e.g., Garza et al. 1995; Goldstein and Pollock 1997;
Estoup et al. 2000).

Regarding mutation modeling, we draw for each sim-
ulation an average mutation rate across loci � from a
log Uniform distribution, and individual locus mutation
rates are then drawn from a Gamma distribution with
mean equal to �. A similar procedure is also used for
the average and individual locus coefficients of the geo-
metric distribution of step lengths P and Pi (see Table
1 for details). Note that we have chosen to implement
this hierarchy of parameters and did not draw locus-

Figure 2.—Synopsis of the ABC parameter estimation ap- specific parameters �i and Pi from unique distributions,
proach. Step 1 usually includes a loop over hundreds of thou- since the average parameters � and P would have been
sands to millions of simulations. It is the most time-consuming virtually identical across simulations of a large number
task, generally involving several days of computations. In con-

of loci and equal to the mean of the priors. Their estima-trast, the computations in steps 2 and 3 usually take seconds
tion would thus have been meaningless. Note also thator minutes. To validate the ABC approach, steps 2 and 3

can be repeated hundreds of times on pseudo-observed data we have chosen a relatively broad prior for � compared
generated by step 1-type simulations based on fixed prede- to previous studies (e.g., Wilson and Balding 1998),
fined parameter values. such as to cover a wide range of possible mutation rates

(see Table 1).
In addition to the 9 basic parameters of the admixture

model (the admixture proportion �, the four effectivelion) multilocus data sets with characteristics similar to
the observed data set (same number of samples, same population sizes, the time of divergence tDIV, the time

of admixture tADM counted in generations, and the muta-number of individuals per sample, same number of
loci), using parameter values randomly drawn from tional parameters � and P), 11 composite parameters

were computed and recorded. They correspond, respec-some prior distributions (as defined in Table 1). The
second step consists of comparing the simulated data set tively, to the times of divergence and admixture scaled

by the population sizes (t/Ni , with t � tADM or tDIV, andto an observed data set, by mean of a series of summary
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TABLE 1

Prior distributions of simulated parameters

Quantiles

Parameters Distribution Mean Mode 5% 50% 95%

N0, N1, N2, NA Log Uniform[100, 40,000] 6,690 100 135 1,993 29,676
� Uniform[0, 1] 0.500 IR 0.05 0.500 0.950
tADM Log Uniform[1, 1,000] 143 1 1.4 30.8 704
tDIV Log Uniform[100, 100,000] 14,540 100 141 3,170 70,942
� Log Uniform[10�4, 5 � 10�3] 1.3 � 10�3 10�4 1.2 � 10�4 7.1 � 10�4 4.1 � 10�3

�i Gamma(2, 2/�) 1.3 � 10�3 1.7 � 10�4 5.6 � 10�5 5.5 � 10�4 4.9 � 10�3

P Uniform[0, 0.5] 0.250 IR 0.025 0.250 0.475
Pi Beta(a, b)* 0.250 IR 0.023 0.250 0.482

N0, N1, N2, and NA, effective population size (number of gene copies) in ancestral (N0), parental (N1 and N2), and admixed
(NA) populations, respectively; �, contribution of parental population 1 to the admixed population; tADM, time since admixture;
tDIV, divergence time between parental populations before admixture; � and �i, average and individual-locus mutation rates,
respectively; P and Pi, average and individual-locus parameters of the geometric distribution of the GSM, respectively; *Prior
distribution for Pi is as follows: if P � 0.001 then P � Beta(a, b) with a � 0.5 � 199P and b � a(1 � P)/P ; otherwise P � 0.
IR, irrelevant.

i � 0, 1, 2, or A), to the population sizes scaled by the pect heterozygosity to be informative for the estimation
of population size, but it should also depend on themutation rate (	i � 2Ni�, with i � 0, 1, 2, and A), and

to the times of divergence and admixture scaled by admixture proportion in the hybrid population. Also,
pairwise FST’s are expected to bring information aboutthe mutation rate (
 � 2t�, with t � tADM or tDIV). The

estimation procedure was thus carried out separately divergence times between parental populations and
about admixture proportions. The mY admixture coeffi-on the 9 basic parameters as well as on the 11 composite

parameters. cient should obviously bring information on admixture
proportion, while D� in the admixed population shouldSummary statistics: The following 15 summary statis-

tics were computed on all the simulated microsatellite decay with admixture time, but also depend on the
absolute sizes of the populations (drift). However, wedata sets: the average number of alleles over loci for

each of the two parental and the admixed population did not attempt here to define an optimal set of statistics
or to study the effect of removing or adding summarysamples, the average heterozygosity over loci and aver-

age modified M statistics (Garza and Williamson 2001) statistics, which could be the subject of a later study.
Simulated data sets: A first series of 106 data sets wasover loci for the same three samples, the (��)2 genetic

distance (Goldstein et al. 1995) between the two paren- simulated and consisted of 50 diploid individuals (100
genes) typed at 50 independent microsatellite loci. Thistal population samples, the measure of differentiation

FST (Weir and Cockerham 1984) between all three pairs large data set was fractioned into subsets to study the
effect of sample size and number of loci on parameterof population samples, the average extent of linkage

disequilibrium D� between independent markers in the estimation, and thus data sets consisting of 5, 10, 20,
and 50 loci studied in samples of 20 and 100 genes wereadmixed population, and the mY admixture coefficient

estimator (Bertorelle and Excoffier 1998). The for- obtained. A second series of 106 data sets, consisting of
50 diploid individuals typed at a mixture of 20 indepen-mula of the modified M statistics is �L

l�1kl/�L
l�1(1 � rl),

where kl is the number of alleles at the l th locus, rl is dent and partially linked loci, was simulated. The 20
loci consisted of two unlinked groups of 10 partiallythe difference in number of repeats between the largest

and the smallest allele at locus l (i.e., the range of allele linked loci. Each group of 10 partially linked loci was
itself divided into two subsets of 5 completely linkedsizes), and L is the number of loci. Compared to its

original definition (Garza and Williamson 2001), it loci (genetic distance of 0 cM), 1 cM distant from each
other. The 190 pairs of loci thus fell into three linkagejust avoids a division by zero when a gene sample is

fixed for a single allele. Note that the summary statistics categories: unlinked (100 pairs of loci), partially linked
at 1 cM (50), and totally linked (40). The coefficientwere chosen such as to capture different features of the

data, both at the within- and at the between-population of linkage disequilibrium D� was computed separately
in the three categories of markers, thus adding twolevel. This choice is partially arbitrary, since there is

currently no objective way to define an optimal set of summary statistics to these simulated data sets with re-
combination. Note that our choice of three categoriesstatistics (Beaumont et al. 2002), but we have tried to

use statistics thought to be informative for some of the of linkage is somewhat arbitrary. While the “completely
linked” and independent sets of markers are easy toparameters of our model. For instance, one would ex-
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TABLE 2

Effect of the number of independent loci on the estimation of the admixture rate � by the ABC and Wang’s (2003) methods

ABC

100,000 simulations 1,000,000 simulations WANG03

Sample No. of Coverage Factor Coverage Factor Coverage Factor
size loci Bias RMSE 95% 2 Bias RMSE 95% 2 Bias RMSE 95% 2

20 5 �0.057 0.232 0.99 0.98 �0.029 0.228 0.99 0.99 0.003 0.212 0.95 0.98
10 �0.055 0.181 1.00 0.99 �0.046 0.171 1.00 1.00 0.016 0.157 0.89 1.00
20 �0.044 0.125 1.00 1.00 �0.054 0.118 0.99 1.00 �0.010 0.114 0.93 1.00
50 �0.012 0.071 1.00 1.00 �0.010 0.074 0.99 1.00 0.003 0.074 0.93 1.00

100 5 �0.089 0.175 1.00 1.00 �0.078 0.162 1.00 1.00 �0.026 0.134 0.89 1.00
10 �0.051 0.125 1.00 1.00 �0.043 0.112 1.00 1.00 �0.009 0.091 0.86 1.00
20 �0.035 0.091 1.00 1.00 �0.025 0.079 0.99 1.00 �0.009 0.070 0.87 1.00
50 �0.003 0.058 1.00 1.00 �0.010 0.042 0.99 1.00 �0.004 0.039 0.89 1.00

Simulated conditions are independent loci. � � 0.3, tADM � 5, tDIV � 5000, N0 � N1 � N2 � 300. Bias and root mean square
error (RMSE) are expressed in relative units. Coverage 95% represents the number of times among 100 that the true value of
� (0.3) lies within the estimated 95% confidence interval. Factor 2 represents the number of times that the true value of � lies
within an interval limited by 50 and 200% of the estimated � value.

justify and are commonly found in many data sets, the evaluation was thus performed in seven situations. Due
to the huge amount of computations needed for thespacing of 1 cM was chosen such as to have a different

amount of loss of potential disequilibrium created by comparisons presented here, a few parameters were
fixed across the simulations. The population sizes (num-the admixture process over the time periods studied

below. Indeed, one would expect that markers 1 cM bers of genes) were set to 300, the average mutation
rate to 0.0005 (reviewed in Ellegren 2004), and theapart would lose �5, 63.4, and 98.2% of the original

disequilibrium caused by the admixture after 5, 100, geometric coefficients P to 0.3 (e.g., Estoup et al. 2002).
The first situation modeled a recent admixture (tADM �and 400 generations, respectively, thus allowing one to

potentially use linkage disequilibrium (LD) to estimate 5 generations, i.e., tADM/Ne � 0.0167), an ancient diver-
gence (tDIV � 5000 generations, i.e., tDIV/Ni � 16.7), andadmixture time.

Performance evaluation and test data sets: The per- an admixture proportion of 0.3. This situation was used
to evaluate the effects of different numbers of loci and offormances of our ABC approach were evaluated in a

series of samples having fixed values of the admixture different sample sizes (Table 2). The other six situations
were chosen to evaluate the effects of increasing themodel. For each combination of parameters, the SIM-

COAL2 program was used to generate 100 data sets, on time of admixture for two different admixture propor-
tions and of having partially linked markers. The perfor-which summary statistics were computed and then used

as pseudo-observed summary statistics. The same data mance of our ABC method and of WANG03 was charac-
terized by the relative bias (average difference betweenset was also used as input to a recent ML method (Wang

2003) denoted hereafter WANG03. The latter method the estimate and the true value divided by the true
value), the relative root mean square error (RMSE—squarehas been chosen for a comparison with our approach,

because it has been shown to produce good estimates root of the mean square error divided by the true value),
the 95% coverage (proportion of times in which theof admixture coefficients, and because it estimates other

parameters of the admixture model that can be also true value is within the equal-tailed 95% confidence or
credible interval around the estimate), and the factor 2compared with those of our ABC method. Moreover,

compared to the method of Chikhi et al. (2001), Wang’s (proportion of times in which the estimated value is in
an interval bounded by values equal to 50 and 200%ML method was notably faster, allowing us to get 100

estimates for fixed simulated parameter values in a rea- that of the true value). All measurements of bias, RMSE,
and factor 2 were computed by taking the mode of thesonable amount of time.

It is worth noting that while the simulation of 1 million posterior distribution as a point estimate. The factor 2
parameter is intuitively appealing and brings qualita-data sets and the computation of their associated sum-

mary statistics for our ABC approach is time consuming tively different information than the 95% coverage. It
indeed tells users how often the estimator is arbitrarily(�12 hr on 15 computer nodes), the ABC estimation

of the parameters on a given test data set takes only close (factor 2 here) to the true value, while the inclu-
sion of the true value within a confidence interval doesseconds to minutes, so that the evaluation of the perfor-

mance of our estimation procedure can be easily not imply that the estimated parameter is “close” to its
true value, as this depends on the width of this interval.achieved without much additional computing cost. This
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Figure 3.—Posterior distributions of some parameters of the admixture model. We contrast here posterior distributions
obtained from an analysis performed on a set of 1 million (solid line) or 100,000 (dashed line) simulated summary statistics. In
both cases, the estimation and the posterior distribution were obtained by a local weighted regression (Beaumont et al. 2002)
on the 1000 simulations closest to the test data set. True parameter values are shown as vertical boldface lines: N � 300 for all
population sizes; admixture rate, � � 0.3; divergence time between populations, t DIV � 5000 generations; admixture time, t ADM �
5; mutation rate, � � 5 � 10�4; and parameter of the geometric distribution of mutation steps, P � 0.3. Note that the posterior
distributions shown here are the output of a single (randomly chosen) analysis, and that they are not averaged over 100 replicates
as reported in Tables 2–4.

All measures of performance were estimated over 100 analysis of a single (randomly chosen) case from 106 or
105 simulations. While the modes of the distributionssimulated test data sets. Note that 100 replicates may

not be enough to get very accurate estimates of relative (taken as a point estimate) obtained from the analysis of
106 or 105 simulations are very similar, the distributionsRMSEs, so that the numbers for this measure should

be considered as indicative only. obtained from 106 simulations are usually narrower and
would lead to smaller credible intervals. We note here
that the ABC method generally produces a small nega-

RESULTS
tive bias consisting of underestimating the contribution
of the source population contributing the least to theRecent admixture events: The performance of the

ABC method on the recovery of admixture proportions admixed population, but that this bias becomes negligi-
ble with a larger number of loci.� for different numbers of loci and different samples

sizes is reported in Table 2 and compared to the ML The ABC and Wang’s ML methods are found consis-
tent as their accuracy increases with larger samples sizesmethod of Wang (2003). This comparison is based on

a scenario that can be considered as advantageous for and larger numbers of loci. They both produce esti-
mates that are almost always closer than a factor 2 fromadmixture estimation, because it involves a small admix-

ture time (5 generations) and a long divergence time the true value. The only notable difference between the
two methods is in the coverage of the 95% confidence(5000 generations) relative to the population size (300

genes). In that case, when ABC estimation is performed intervals around the estimated values: the ABC method
tends to produce conservative (too broad) intervals,on 1 million simulated samples, its performance is very

similar to Wang’s ML method, as attested by the relative while Wang’s ML method gives too narrow intervals
with larger samples where the true value is found onlyRMSE, especially when the number of loci is high (20 or

more). As expected, estimations obtained with 1 million in �90% of the cases.
Old admixture events: In Table 3, we report the effectsimulations are more accurate than those obtained with

100,000 simulations. However, the latter are already of older admixture times on the estimation of the admix-
ture rate for 20 independent or 20 partially linked loci.quite good with virtually identical negative relative bias

and only slightly larger relative RMSE. Note, however, While the ABC and Wang’s ML methods have very simi-
lar performance for short admixture time, the ABCthat the same trend is visible in Figure 3, where we

report the posterior distributions obtained from the method produces more accurate results when the ad-
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TABLE 3

Effect of admixture time and partial linkage on the estimation of the admixture rate � by the ABC and Wang’s (2003) methods

ABC WANG03

t ADM Bias RMSE Coverage 95% Factor 2 Bias RMSE Coverage 95% Factor 2

20 unlinked loci
� � 0.1 5 �0.107 0.193 1.00 0.99 �0.015 0.126 0.90 1.00

100 0.029 0.575 0.91 0.80 �0.470 0.643 0.52 0.16
400 0.574 0.875 0.99 0.71 0.568 2.294 0.23 0.13

� � 0.3 5 �0.025 0.079 0.99 1.00 �0.009 0.070 0.87 1.00
100 �0.045 0.253 0.94 0.97 �0.123 0.412 0.52 0.84
400 �0.032 0.384 0.99 0.92 0.348 1.078 0.12 0.43

20 partially linked loci
� � 0.1 5 �0.060 0.311 0.97 0.94 �0.031 0.323 0.38 0.95

100 0.326 1.013 0.85 0.55 �0.077 1.059 0.37 0.37
400 0.970 1.314 0.98 0.54 0.351 2.218 0.13 0.05

� � 0.3 5 �0.050 0.194 0.93 1.00 �0.013 0.172 0.33 1.00
100 �0.040 0.436 0.89 0.83 �0.049 0.570 0.32 0.69
400 0.161 0.554 0.99 0.84 0.359 1.244 0.04 0.25

Simulated conditions are 106 simulations; sample size, 100 genes. � � 0.3, t DIV � 5000, N0 � N1 � N2 � NA � 300.

mixture event occurred 
100 generations ago, as shown to three times lower than that obtained from the ML
method for the oldest admixture times (400 genera-by much smaller relative RMSE values, higher factor 2

scores, and much better coverage properties for the tions).
Estimation of divergence and admixture times: Wang’sABC than for the ML method. For both unlinked and

partially linked loci, it is important to note that the ML method provides estimates of composite parameters
such as divergence and admixture times scaled by popu-coverage of the ABC 95% confidence intervals is always

very good. On the other hand, confidence intervals pro- lation sizes; we report in Table 4 the corresponding
parameters obtained from the ABC method. Becausevided by the ML method become poorer with longer

admixture time for unlinked loci and are already much this ML method assumes that no mutation occurred
since the divergence of the two parental populations,too low in the case of a recent admixture studied with

partially linked loci. The latter effect is certainly due to and thus that genetic differences between populations
are due to a pure drift process, it leads to grossly under-the fact that the ML method assumes that the loci are

unlinked. As a consequence, loci that are correlated estimated divergence and admixture times and presents
poor coverage property, even for recent admixtures. Byprovide similar information and tend to generate thin-

ner distributions because they overestimate the amount contrast, the divergence time scaled by parental popula-
tion size N2 (tDIV/N2) is only slightly overestimated withof information in the data. This is not the case for the

ABC method since we explicitly model the correlation the ABC method from both linked and unlinked mark-
ers, with good coverage and factor 2 scores. The admix-between partially linked markers in our simulations.

While 20 independent loci provide accurate estima- ture time scaled by parental population size N2 (tADM/
N2) is very well estimated by the ABC method when ittion of admixture rates, there is a serious drop in the

quality of the ABC estimates based on partially linked is relatively ancient and is underestimated only by 12
and 48% on average when it is recent (five generations)markers, especially for very unequal contribution of the

parental population to the admixed population (i.e., � � for unlinked and linked markers, respectively. This pa-
rameter is also, to a lesser extent, well estimated by the0.1). The decrease in ABC accuracy between linked and

unlinked loci is especially marked for older admixture ML method when admixture is recent. However, it is
increasingly underestimated for older admixture times,events. Curiously, the ML method is less affected than

the ABC method by partial linkage, in the sense that its resulting in a virtual absence of coverage by the ML
confidence intervals for admixture times �100 genera-performance evaluated by the relative bias and RMSE

does not degrade much when partially linked markers tions. Finally, the admixture time scaled by the admixed
population size NA (tADM/NA) is only relatively well esti-are used instead of independent markers. However, al-

though the ABC method somewhat suffers from the use mated by the ML method for recent admixtures. Its
estimation follows a more complex pattern for the ABCof nonindependent loci, its relative RMSE remains two
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TABLE 4

Effect of admixture time and partial linkage on the estimation of various composite parameters
by the ABC and Wang’s (2003) methods

ABC WANG03

Parameters t ADM Bias RMSE Coverage 95% Factor 2 Bias RMSE Coverage 95% Factor 2

t DIV/N2

Unlinked loci 5 0.134 0.427 0.99 0.97 �0.976 0.976 0.00 0.00
100 0.226 0.633 0.96 0.85 �0.982 0.982 0.00 0.00
400 0.232 0.636 1.00 0.83 �0.978 0.978 0.00 0.00

Linked loci 5 0.343 0.727 0.97 0.84 �0.975 0.975 0.00 0.00
100 0.315 0.673 0.98 0.89 �0.980 0.980 0.00 0.00
400 0.226 0.636 0.99 0.80 �0.978 0.978 0.00 0.00

t ADM /N2

Unlinked loci 5 �0.122 0.534 0.97 0.73 �0.720 0.759 0.20 0.19
100 0.007 0.581 0.99 0.79 �0.841 0.849 0.00 0.00
400 0.039 0.460 0.97 0.88 �0.969 0.970 0.00 0.00

Linked loci 5 �0.478 0.556 0.98 0.45 �0.690 0.734 0.22 0.23
100 �0.019 0.561 0.97 0.69 �0.883 0.889 0.00 0.00
400 �0.048 0.536 0.98 0.78 �0.964 0.965 0.00 0.00

t ADM /NA

Unlinked loci 5 �0.531 0.575 0.85 0.37 �0.625 0.639 0.02 0.19
100 0.101 1.489 1.00 0.68 �0.764 0.766 0.00 0.00
400 0.014 0.337 0.98 0.96 �0.904 0.904 0.00 0.00

Linked loci 5 �0.565 0.740 0.83 0.27 �0.773 0.798 0.05 0.09
100 0.059 1.148 1.00 0.65 �0.773 0.776 0.00 0.00
400 0.018 0.442 1.00 0.88 �0.911 0.912 0.00 0.00

Simulated conditions are 10 6 simulations, 20 loci, sample size 100 genes, � � 0.3, t DIV � 5000, N0 � N 1 � N 2 � N A � 300.

method. The bias is large and negative for recent admix- Table 5, but follows the same pattern as 	2) are very
well estimated even for old admixture times, while theture events, and it becomes positive and associated with

a large RMSE for tADM � 100; for older admixture times scaled size of the admixed population (	A) is better
estimated with increasing admixture times. For tADM �(tADM � 400), the bias becomes very low and the relative

RMSE drops considerably. This pattern is probably due 400, 	A estimation shows virtually no relative bias (�0.4%),
a relative RMSE (31%) becoming very similar to that ofto the poor estimation of the admixed population size

NA for short admixture times, since small or large popu- 	2 (26%), and an excellent factor 2 score (98%). The
relatively flat posterior distribution of 	A for recent ad-lation sizes will not create very contrasting patterns of

diversity in a few generations, while they should lead to mixtures (five generations) underlines the absence of in-
formation in the data for such recent events (Figure 3). Onmore contrasted patterns for longer evolutionary peri-

ods such as a few hundred generations. the other hand, the mean parameter of the geometric
distribution of the GSM model P is well estimated withABC estimation of mutation-scaled parameters: In

Table 5, we present results on the estimation of compos- 20 loci and does not seem much affected by the age of
admixture. Finally, we note that the coverage of theite parameters depending on mutations. These parame-

ters are computed only in the ABC method so that 95% confidence intervals is very good for all parameters
and tends to be too conservative except for P.comparison with Wang’s ML method is not possible.

The scaled divergence time 
DIV is relatively well esti- Application to a honeybee data set: This honeybee
data set has been previously described and analyzed inmated for short admixture time (17% of positive bias)

and its relative RMSE is only slightly increased with Choisy et al. (2004). The population under study is
located in Courmayeur at the extreme north of thelonger admixture times, resulting in a small drop (96–

89%) for the factor 2 score. The scaled admixture time Aosta valley (northwestern Italy) and represented by a
sample of 33 worker bees (one per colony). It is consid-
ADM is increasingly better estimated with older admix-

ture events, in keeping with results obtained for the ered an artificially admixed population between two
different subspecies of Apis mellifera, the West-Europeanscale parameter tADM/N2. The relatively poor recovery of

this parameter for recent admixture is also visible in black honeybee (A. m. mellifera) and the Italian yellow
honeybee (A. m. ligustica). The two parental populationsFigure 3, where the posterior distribution of 
ADM is not

centered at all around the true value in that case. The are represented in the analysis by a sample of A. m.
mellifera from the sanctuary of Ouessant (French Brit-scaled population sizes 	A and 	2 (	1 is not shown in
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TABLE 5 mates reach 7.2–8.3. A. m. ligustica and A. m. mellifera
have long been considered as two very distinct subspe-Effect of admixture time on the estimation of various
cies of honeybees. At the end of the 1980s (e.g., Ruttnercomposite parameters depending on the mutation
1988), the current theory based on paleogeography andrate, as well as the admixed population

size (NA ) by the ABC method morphometry was that the Quaternary ice ages were
responsible for the separation of the two subspecies,

ABC so the divergence time was estimated at �50,000 years
before present (BP). However, mitochondrial studiesCoverage Factor

Parameters t ADM Bias RMSE 95% 2 showed that these two subspecies belonged to two highly
divergent lineages having probably diverged �1 million
 DIV � 2� t DIV 5 0.170 0.437 1.00 0.96
years ago (Garnery et al. 1992). Quite recently, Franck100 0.128 0.447 1.00 0.96
et al. (2000) showed that the subspecies ligustica had400 0.231 0.575 1.00 0.89
actually a hybrid origin using a much larger sample of


 ADM � 2� t ADM 5 �0.158 0.439 0.97 0.85 colonies, and that its genetic pool was a mixture of
100 �0.034 0.429 0.99 0.80 two lineages: the M lineage constituted mainly by the
400 �0.016 0.412 0.97 0.89

mellifera subspecies and the C lineage encompassing the
South-European subspecies carnica and cecropia, as well	2 � 2N2� 5 0.069 0.248 1.00 1.00
as the Asian caucasica. According to Franck et al. (2000),100 �0.025 0.272 0.98 0.97

400 0.032 0.257 0.98 0.98 the admixture might have taken place any time after
the Riss period (in the last 130,000 years), and it is

	A � 2NA� 5 2.666 3.425 1.00 0.24 probably rather ancient. The estimated divergence time
100 �0.147 0.477 1.00 0.82

could thus not correspond to the separation of the C400 �0.004 0.307 0.99 0.98
and M lineages, but rather to the time when the admixed
ligustica and the mellifera subspecies were last separated.P 5 �0.024 0.210 0.97 0.98

100 �0.019 0.239 0.95 0.95 If we admit the timing given by Franck et al. (2000), a
400 �0.052 0.246 0.95 0.95 sensible estimate would be some time during the last

ice age (which at maximum occurred 22,000–14,000
NA 5 5.594 6.230 0.99 0.01 years BP), when honeybee populations were restricted100 0.675 0.924 1.00 0.75

to southern Mediterranean refuges (namely the Iberian400 0.090 0.315 1.00 0.99
and Italian peninsulas, respectively). Taking population
sizes as above, we get divergence time estimate intervals
of 150–500 years with Wang’s ML estimates and 14,400–tany, n � 49) and a sample of A. m. ligustica from Forli
33,200 years with our ABC approach. Wang’s ML esti-(Emilia-Romania, n � 19), an area of intensive queen
mates for the time of divergence of the two subspeciesrearing for exportation. All sampled honeybees were
hence appear clearly underestimated, while the ABCcharacterized at eight microsatellite loci, and the admix-
method gives estimates much more compatible withture coefficient of the Courmayeur sample has already
our current knowledge of the evolutionary history ofbeen estimated by six different methods (see Choisy et
European honeybee populations.al. 2004 for more details). Such estimates of the propor-

The ABC approach also allows the estimation of sev-tion of A. m. mellifera genes in the Courmayeur genetic
eral other parameters not estimated by Wang’s MLpool ranged from 0.195 to 0.371 (Choisy et al. 2004).
method (Table 6), such as the mutation scaled popula-Table 6 shows that our ABC estimate (0.259) is well
tion sizes (	’s) and the times of divergence 
DIV or admix-within this range, as is Wang’s ML estimate (0.287).
ture 
ADM. Using the mode of the posterior distributionThese two methods also agree in their estimates of the
of the average mutation rate (1.85 � 10�4), we obtaintime of admixture, which is �0.01–0.02 in units of N.
an estimate of 23,665 generations (47,330 years) for theConsidering that effective population sizes (in number
divergence time and 26 generations (52 years) for theof gene copies) in European honeybee subspecies are
time of admixture. Both values are in excellent agree-of the order of 1000–2000 [Estoup et al.’s (1995) Table
ment with those mentioned above and with other studies4], this implies a rather recent admixture of 10–40 gen-
(Ruttner 1988; Franck et al 2000). The average geo-erations, corresponding to 20–80 years (using an aver-
metric coefficient P of the GSM mutation model is veryage generation time of 2 years for the queens). This is
high (0.446) and very close to the upper bound of ourin good agreement with the development of the Italian
prior distribution (Table 1). This extreme value impliesqueen selling industry in Europe in the middle of the
a surprisingly large proportion of mutations leading totwentieth century. As expected from our previous simu-
non-single-step mutations (precisely 0.446; Estoup et al.lations (Table 4), the two methods provide very different
2002). This probably results from the fact that this dataestimates of the time of divergence of the two parental
set does not fit well to the modeled scenario. Morepopulations scaled by effective population sizes. Wang’s

ML estimates are �0.15–0.25, whereas the ABC esti- specifically, the potential hybrid nature of one parental
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TABLE 6

Estimated parameters of the admixture model for the Courmayeur honeybee sample

ABC WANG03

Parameters Mode 95% CI Mode 95% CI

� 0.26 0.11–0.38 0.29 0.15–0.40

Parameters scaled by population sizes
t DIV/N1 8.25 3.11–97.39 0.25 0.15–0.38
t DIV/N2 7.17 2.00–64.56 0.15 0.076–0.242
t ADM/N1 0.018 0.0003–0.071 0.0053 �0.0005–0.019
t ADM/N2 0.007 0.0002–0.044 0.0176 �0.0005–0.035
tADM/NA 0.027 0.0003–0.062 0.0170 0.009–0.025

Parameters scaled by the mutation rate
	0 2.27 0.04–12.34
	1 0.73 0.29–1.62
	2 1.15 0.57–2.50
	A 0.61 0.02–6.06

DIV 8.76 2.20–74.67

ADM 0.001 0.0002–0.053

Parameters of the mutation model
� 1.85 � 10�4 3.9 � 10�5–8.8 � 10�4

P 0.45 0.32–0.51

Simulated conditions are 106 simulations, prior distributions are as in Table 1. CI, credibility interval.

population (ligustica) may have widened the distribution gests that the absolute size of old admixed populations
could be well estimated under our framework. This isof allele lengths in the corresponding sample, forcing

the analysis to increase the average length of the muta- probably because our method implicitly attempts to re-
construct the genetic composition of the admixed popu-tion steps to cope with this widened allelic distribution.
lation at the time of admixture, which puts us into a
framework very similar to a temporal spacing of samples,

DISCUSSION which is the ideal situation for estimating population
sizes independently from mutation rates (e.g., William-This study shows that the ABC framework allows a
son and Slatkin 1999; Anderson et al. 2000; Berthierfine analysis of an admixture model, providing very satis-
et al. 2002).factory estimates of admixture rate (�), mutation-scaled

Compared to Wang’s ML method, our ABC approachparental population sizes (	1 and 	2), and divergence
shows comparable performance for the estimation oftime 
DIV, as well as those of the mutation model. Esti-
the admixture coefficient when admixture is recent, butmates of scaled ancestral population size (	0) are usually
leads to increasingly better relative results when thepoor, and those of the admixed population size (	A)
admixture time is older. We attribute this better perfor-are good only when the admixture time is large. The
mance to the specific handling of mutations, which can-mutation-scaled admixture time (
ADM) is itself very well
not be neglected when admixture time is ancient. How-estimated when the admixture event is relatively old
ever, to estimate admixture coefficients, methods based(100 or more generations), while it leads to reasonable
on a pure drift process are not handicapped by muta-point estimates but large credible intervals when it is
tions having occurred before the admixture, as theyvery recent. Unscaled parameters, such as raw popula-
merely result in larger diversity in parental populations.tion sizes and raw divergence and admixture times, were
Drift-based (like current likelihood-based) methods seemusually not estimated as well as the scaled parameters
also to better deal with short divergence time between(results not shown), as they do not have independent
parental populations (e.g., 200 generations instead ofand contrasting effects on genetic diversity. However,
5000) than does our ABC procedure when the admix-it is worth noting that the size of the admixed population
ture is recent (results not shown). However, this advan-NA was very well estimated in the case of old admixture
tage is valid only for recent admixtures (e.g., �50 genera-events (i.e., 400 generations). As shown in Table 5, the
tions). Another advantage of the present ABC approachrelative bias on NA is indeed �10% when the admixture
is its ability to correctly estimate other parameters oftime is 400 generations, while it was �560% for an

admixture event only 5 generations old. This result sug- the admixture model, such as divergence and admixture
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times. These parameters are often as important as the of simulated summary statistics from which the estima-
tion procedure proceeds (e.g., 106 iterations). However,admixture coefficient itself. The better performance of

our approach is probably linked to the fact that we are reasonable point estimates can be obtained using much
fewer simulations and hence shorter computation timesusing information not specifically handled by Wang’s

ML method, such as information on patterns of LD and (e.g., 105 iterations). It seems reasonable to anticipate
that progress in simulation algorithms and higher com-mutations, as well as range of allele size. Moreover, our

ABC approach allows us to explicitly include informa- puting power will be available in future years, promoting
the ABC method as the method of choice for analyzingtion on partial linkage between markers, so that, in

contrast to Wang’s ML method, accurate confidence complex evolutionary scenarios and, more specifically
in the context of the present study, for old admixtureintervals are also obtained in this case.

While the admixture model analyzed here (with a models in which mutation cannot be neglected or when
nonindependent markers are available.hybrid population and two isolated parental popula-

tions at mutation-drift equilibrium) corresponds to the We are grateful to Lounès Chikhi and Mark Beaumont for their
standard model assumed by most methods of estimation comments on the manuscript. L.E. was supported by Swiss National

Science Foundation grant 3100A0-100800, as well as a grant from theof admixture coefficients (e.g., Long 1991; Bertorelle
Institut de la Recherche Agronomique during his 2004 sabbatical visitand Excoffier 1998; Wang 2003; Choisy et al. 2004),
at the Centre de Biologie et de Gestion des Populations. This studyreal models of admixture may be much more complex.
was also partially supported by a grant from the French Bureau des
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