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ABSTRACT
A geostatistical perspective on spatial genetic structure may explain methodological issues of quantifying

spatial genetic structure and suggest new approaches to addressing them. We use a variogram approach to
(i) derive a spatial partitioning of molecular variance, gene diversity, and genotypic diversity for microsatel-
lite data under the infinite allele model (IAM) and the stepwise mutation model (SMM), (ii) develop a
weighting of sampling units to reflect ploidy levels or multiple sampling of genets, and (iii) show how
variograms summarize the spatial genetic structure within a population under isolation-by-distance. The
methods are illustrated with data from a population of the epiphytic lichen Lobaria pulmonaria, using six
microsatellite markers. Variogram-based analysis not only avoids bias due to the underestimation of
population variance in the presence of spatial autocorrelation, but also provides estimates of population
genetic diversity and the degree and extent of spatial genetic structure accounting for autocorrelation.

METHODS for the analysis of spatial genetic struc- and Vekemans 2002). However, limited gene movement
ture have mostly been developed for single-locus, can cause isolation-by-distance effects even within con-

diploid genotypic data such as provided by isozymes tinuous populations. The resulting spatial genetic struc-
(Smouse and Peakall 1999). In contrast to this latter ture within a population can be summarized by kinship
marker type, microsatellite data also contain informa- for IAM (Loiselle et al. 1995) or relationship coeffi-
tion on repeat numbers of individual gene copies. Micro- cients for SMM (Streiff et al. 1998). Kinship and rela-
satellite markers are often highly variable, and differences tionship coefficients assess the similarity of homologous
in allele size are interpreted in the light of alternative alleles between individuals and may be expressed as a
evolutionary models. Under the infinite allele model function of geographic distance. Statistical tests for isola-
(IAM), any mutation is assumed to lead to a new allele, tion-by-distance within continuous populations often in-
whereas under the stepwise mutation model (SMM), mu- volve either a Mantel permutation test of Moran’s I (or
tation increases or decreases the number of repeats at related correlation coefficients, e.g., Smouse and Peakall
a microsatellite locus most likely by one (Balloux and 1999) or join-count statistics (Epperson 2003).
Goudet 2002). Neither of these two extreme mutation When assessing genetic diversity, it may be necessary
models seems to fit perfectly to microsatellite loci, so that to exclude comparisons of gene copies within individu-
measures based on IAM and SMM are often reported als if they cannot be assumed to be independent. For
together (Balloux and Lugon-Moulin 2002). The dif- organisms with variable ploidy levels within populations
ference between statistical measures (see below) under such as Taraxacum sp. (Meirmans et al. 2003; Van der
the two models is assumed to indicate the relative impor- Hulst et al. 2003), individuals with a high ploidy level
tance of mutation and drift (Hardy 2003). will receive more weight in the estimation of the popula-

Population genetic analyses are based on gene diver- tion genetic diversity than, e.g., diploid individuals un-
sity under the IAM (cf. FST) and on molecular variance less ploidy level is accounted for. A similar problem
under the SMM (cf. R ST). F ST and R ST quantify the differ- arises for clonal organisms, where the multiple sampling
entiation of isolated populations assuming random mat- of ramets from the same genetic individuum (genet) can
ing within and restricted gene flow among populations.

bias any measure of genetic structure of a population
Both FST and RST can be adapted to pairwise comparisons,

(Parks and Werth 1993; Balloux et al. 2003; Hämmerliand Mantel tests are used to test the correlation with
and Reusch 2003). This is commonly taken into ac-geographic distance between pairs of populations (Hardy
count by retaining a single sample per genet, either
assuming the center of a clonal patch to be its origin
or randomly selecting one sample per genet (Reusch
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a considerable loss of information and increased error ance, namely the genetic distance measure by Goldstein
et al. (1999) and the R ST statistic (Slatkin 1995). None-in the description of the spatial genetic structure within
theless, variogram modeling is rare in population genet-populations.
ics. Piazza and Menozzi (1983) proposed a variogramVekemans and Hardy (2004) identified some impor-
of differences in allele frequencies between popula-tant problems and common misuses of spatial analysis
tions, and Monestiez and Goulard (1997) providedin population genetics.
an application of multivariate geostatistical analysis to

i. The spatial genetic structure is often described in genetic data, but neither approach found much reso-
terms of a maximum distance to which such struc- nance in the population genetic literature.
ture extends. The common practice of assessing the Wagner (2003, 2004) developed a formal integration
extent of spatial genetic structure by the distance at of multivariate analysis and geostatistics in the context
which a Moran’s I correlogram reaches zero (e.g., of plant community ecology. The crucial point of such
Epperson 2003) is misleading, as this estimate de- an integration of spatial and nonspatial analysis is that
pends strongly on the sampling design (Vekemans the semivariance partitions the estimate of the popula-
and Hardy 2004). tion variance by distance class (Wagner 2003). Hence,

ii. The presence of nonrandom spatial genetic struc- the semivariance can be used to partition the results of
ture can be tested using Mantel permutation tests nonspatial analyses, such as population estimates of ge-
for a series of distance classes, and a Bonferroni netic diversity, by distance (multiscale ordination), and
correction is applied to account for multiple tests. variograms can be interpreted in an ecologically more
Vekemans and Hardy (2004) caution that while meaningful way.
the uncorrected test is too liberal, the correction This article extends the spatial partitioning of vari-
makes it too conservative, and they argue that this ance to population genetic data and problems. a geo-
approach should not be used to determine the statistical perspective introduces key geostatistical
scales of spatial genetic structure, as the null hy- concepts and methods and discusses the sensitivity of
pothesis is only the overall absence of spatial ge- commonly used measures of autocorrelation and popu-
netic structure. lation variance. development of methods pursues three

iii. The amount of spatial genetic structure should not specific objectives: (i) to derive a spatial partitioning of
be assessed from the value (e.g., of Moran’s I) for measures of genetic diversity compatible with IAM and
the first distance class, as this absolute value de- SMM, (ii) to develop a method for weighting sampling
pends strongly on the sampling design (Fenster units to reflect different ploidy levels or multiple sam-
et al. 2003; Vekemans and Hardy 2004). pling of ramets within genets without data reduction,

iv. Estimating biological parameters, such as dispersal and (iii) to show how variogram modeling can be used
distances, is valid only if the observed spatial genetic for estimating population genetic parameters and sum-
structure represents a true isolation-by-distance pat- marizing the spatial genetic structure within popula-
tern at dispersal-drift equilibrium (Vekemans and tions. The methods are illustrated with a worked exam-
Hardy 2004), thus assuming that the patterning re- ple (appendix) and with an application to empirical

microsatellite data from a population of the haploid,sults only from limited dispersal, that it has reached
tree-colonizing (epiphytic) lichen Lobaria pulmonaria.a stationary phase, and that the scale of the study is
We conclude with considerations for the robust estima-appropriate (Vekemans and Hardy 2004).
tion of the spatial genetic structure of continuous popu-

Moran’s I, Mantel tests, and join-count statistics were lations.
borrowed from the general field of spatial statistics, orig-
inally developed, e.g., in geography, and adapted to pop-

A GEOSTATISTICAL PERSPECTIVEulation genetic data and questions as necessary. Other
measures of spatial genetic structure, such as kinship Geostatistical concepts and methods: Spatial autocorre-
or relationship coefficients, were developed specifically lation and stationarity: Spatial autocorrelation refers to
for genetic data and are little integrated with spatial the common phenomenon that nearby observations
statistical theory. However, many of the above problems tend to be more similar than distant ones. Positive spa-
are of a general nature and not specific to population tial autocorrelation is assumed to result from any kind
genetics. Particularly, variogram modeling as developed of spatial process, such as pollen flow or seed dispersal in
in geostatistics may provide explanations and alterna- plants. When a variable is studied in space, the observed
tives for the problems raised by Vekemans and Hardy spatial autocorrelation can be quantified for various
(2004). The term variogram refers to a plot of the semi- purposes (Fortin et al. 2001), such as: (i) testing for the
variance (see below) against distance. The well-known presence of autocorrelation, e.g., to meet assumptions
Geary’s c correlogram is actually a standardized vario- for estimating population characteristics; (ii) assessing
gram (Legendre and Legendre 1998). Several popula- the range of autocorrelation, i.e., the distance beyond

which observations are spatially independent; (iii) fittingtion genetic measures and methods rely on the semivari-
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Figure 1.—Empirical variogram (A) and
correlograms (B) for an artificial, spatially
autocorrelated random variable simulated
on a grid of 30 � 30 cells. Each symbol
denotes the semivariance �(r) (circles),
Geary’s c(r) (squares), or Moran’s I(r) (tri-
angles) calculated from all pairs of samples
falling into each distance class r. The value
for the last distance class of each series con-
tains all pairs separated by �20 units and
is drawn at the mean of the respective dis-
tances. (A) The solid line represents the
fitted exponential variogram model. The
dotted line (sill) indicates the population
variance as estimated accounting for auto-
correlation. The dashed line indicates the
practical range, where the curve reaches

95% of the sill. The intercept (nugget variance) is the variance component that is not spatially structured. (B) The solid line
indicates the expected value of Moran’s I(r), which is very close to zero, whereas the dashed line marks the expected value of
Geary’s c(r), which equals one.

a theoretical model to summarize the observed spatial of distance classes r. The Kronecker weight x (r )
ab for the

structure; and (iv) inferring about the underlying spatial pair of observations a and b takes the value x (r )
ab � 1 if

process, such as dispersal distances and differences among a pair of samples belongs to distance class r and
populations. However, geostatistical analysis requires some x (r )

ab � 0 otherwise, and nr is the sum of the weights x (r)
ab

assumption of stationarity, i.e., the structure of spatial auto- for the given distance class, i.e., the number of pairs of
correlation must be the same throughout the study area. gene copies a and b from two samples separated by a
Specifically, it is common to assume weak stationarity, distance falling into distance class r. However, nr de-
where the mean and the variance are constant and the creases for large distance classes r, and bias may arise
autocorrelation depends only on the geographic dis- from the fact that only the observations from the edge
tance between sampling units (Burrough 1995). of the sampled population can contribute to the esti-

Correlograms and the empirical variogram: Geostatistics con- mates for larger distances. It is therefore customary to
siders four statistical moments of a random variable: (i) its limit the description of the spatial structure to half the
mean, (ii) variance, (iii) covariance, and (iv) semivariance maximum distance between sampling units (Cressie
(Burrough 1995). Spatial autocorrelation can be quanti- 1993).
fied on the basis of covariance (Moran’s I) or semivari- Figure 1A shows the empirical variogram and Figure
ance (empirical variogram and Geary’s c correlogram). 1B shows Moran’s I and Geary’s c correlograms of an
Bertorelle and Barbujani (1995) derived alternative artificial, spatially autocorrelated random variable.
versions of Moran’s I and Geary’s c for binary-coded Geary’s c correlogram is a rescaled version of the empiri-
data on the basis of, e.g., DNA sequences or RFLP pat- cal variogram, and Moran’s I correlogram resembles, but
terns. Correlograms are standardized through division is not identical to, 1 � c(r) (Legendre and Legendre
by the sample variance (Moran’s I) or population variance 1998). In the absence of spatial autocorrelation, the
(Geary’s c ; Cliff and Ord 1981): expected value of Geary’s c is E[c(r)] � 1, whereas the

expected value of Morans’s I is E[I(r)] � �1/(N � 1),Moran’s I :
which approaches zero for large sample sizes N (Sokal
and Wartenberg 1983; Epperson 2003).I(r) �

covariance
variance

�
(1/nr)�a�b x (r )

ab (ya � y)(yb � y)
(1/N)�a(ya � y)2

(1)
Variogram modeling: The autocorrelation structure can

be modeled by fitting a theoretical variogram model toGeary’s c :
the empirical variogram. The elementary theoretical
variograms suitable for modeling patterns due to a sin-c(r) �

semivariance
variance

�
(1/2nr)�a�bx (r )

ab (ya � yb)2

(1/(N � 1))�a(ya � y)2
(2)

gle, stationary spatial process are defined by the follow-
ing parameters: (i) model family, such as exponential,Empirical variogram:
spherical, or Gaussian; (ii) nugget variance, i.e., the vari-
ance among adjacent samples; (iii) range, or the distance�(r) � semivariance �

1
2nr

�
a�b

x (r )
ab (ya � yb). (3)

beyond which observations are spatially independent;
and (iv) sill, the constant variance among spatially un-
correlated samples (Figure 1A; Isaaks and SrivastavaGiven N samples, these coefficients are calculated on

the basis of pairs of samples a and b falling into a series 1989).
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TABLE 1

Accuracy and precision of estimates of the population variance for different sampling designs

N Systematic Random Clustered

Estimated population variance 10 1.019 1.026 0.584
20 1.003 1.013 0.757
50 1.011 1.033 0.904

100 1.007 0.997 0.969
Standard deviation of estimates 10 0.477 0.478 0.810

20 0.288 0.330 0.616
50 0.151 0.192 0.401

100 0.024 0.131 0.284
Proportion of autocorrelated pairs 10 0.00 0.016 0.448

20 0.00 0.016 0.218
50 0.00 0.016 0.089

100 0.00 0.016 0.048

The autocorrelated data were generated by dividing an ordered vector of 500 random values from a standard
normal distribution into groups of five consecutive values. The entire groups and the values within each group
were reordered at random, representing a hypothetical transect where always five neighboring locations would
show very similar values, with random steps between groups. The data set has an expected variance of 1.0 and
the proportion of (autocorrelated) within-group comparisons is 0.016. Three types of samples were taken from
the transect: (i) a random sample from all locations, (ii) a systematic sample selecting every fifth location, and
(iii) a clustered sample, where entire groups of five neighboring locations were selected at random. Data
simulation and sampling were repeated 1000 times for each sample size of 10, 20, 50, or 100.

Sensitivity of measures of autocorrelation and popu- (N � 1), assumes independent, spatially uncorrelated
observations, which would correspond to a strictly hori-lation variance: Sensitivity to nonstationarity: The assump-

tion of weak stationarity can be violated in several ways, zontal empirical variogram. In essence, this requires
the assumption of a panmictic population with randomincluding (i) nonstationarity of the mean in the popula-

tion, e.g., in the presence of clinal structure, (ii) nonsta- dispersal, which is likely to be violated in most natural
systems.tionarity of the variance, e.g., if the variability of a micro-

satellite locus increases with increasing number of repeats, Spatial autocorrelation reduces the variance between
closely spaced pairs of observations. The following simu-or (iii) anisotropy, where the autocorrelation structure

depends on direction, e.g., if mean seed dispersal dis- lation illustrates the consequences of spatial autocorre-
lation for estimating the population variance and thustances are larger than average in the predominant wind

direction. Strictly speaking, the stationarity assumption for rescaling Moran’s I and Geary’s c correlograms. An
artificial, autocorrelated variable was sampled in differ-concerns the underlying process and not the observed

pattern, so that it cannot be tested directly (Fortin et ent ways and the estimates of the population variance,
averaged over many replicate simulations, were com-al. 2003). However, the empirical variogram can be used

to check for problems with nonstationarity. A finite, pared to the true value. We compared three sampling
strategies: (i) systematic sampling, with a spacing knownconstant variance will always result in the presence of

a sill, whereas a continued increase of the semivariance to be larger than the range of spatial autocorrelation
to obtain spatially uncorrelated, independent samplingwith distance may indicate a spatial trend in the mean,

possibly coupled with dependence of the variance on the units; (ii) random sampling; and (iii) stratified or clus-
tered sampling, selecting groups of nearby locations tomean. Separate empirical variograms can be calculated

for different directions and compared to check for an- obtain an appropriate representation of short distance
classes for spatial analysis. The criteria for comparisonisotropy. In theory, the same visual inspections could

be performed with correlograms, but only the variogram were accuracy, i.e., the absence of bias so that the mean
of all replicate estimates is close to the true populationoffers the possibility of modeling different components

of variance and, thus, accounting for them. For instance, value, and precision, i.e., low variability of replicate esti-
mates (Palmer 1990). For details of the simulation ex-an exponential variogram function could be used to

model the autocorrelation due to a stationary spatial periment, see the Table 1 legend.
The systematic and the random samples providedprocess, and a linear variogram function could be used

to model the increase in variance with distance due to unbiased estimates, independent of sample size (Table
1). Precision increased with sample size; i.e., the stan-a cline.

Sensitivity to the sampling design: The variogram can be dard deviation of the estimates was reduced. For small
sample sizes, where the chances of randomly selectinginterpreted as a distance-dependent estimate of the popu-

lation variance (Wagner 2003). The commonly used “un- autocorrelated samples were small, the systematic and
the random samples reached a similar precision. Withbiased” estimator of population variance, V̂ � �(y � y)2/



1743Variogram Analysis of Genetic Structure

increasing sample size, however, the random samples be estimated from pairwise comparisons, so that vario-
grams can be defined that provide an estimate of geneticprovided a lower precision than the systematic samples.
diversity as a function of geographic distance.This effect was due to the increasing number of compar-

Variogram of molecular variance: The univariate defini-isons between autocorrelated samples, not their propor-
tion of a variogram (Equation 3) can be extended totion. Parametric statistical tests assume spatially uncorre-
multivariate data. Thus, under the SMM, ya and yb arelated samples, which in this simulation corresponds to
not two observations of the allele size yl of a single locusthe systematic sampling design. For a spatially autocor-
l , but vectors Ya and Yb of two observations of the num-related variable, the increased variability of estimates
ber of repeats at L loci. The empirical semivariance �̂(r)from a random sample may render such tests too liberal.
becomes half the squared Euclidean distance between YaThis means that the actual probability of rejecting the
and Yb and is equal to the sum of the empirical semivari-null hypothesis when it is true (type I error) may be
ances �̂l(r) of the number of repeats yl (Wagner 2003):larger than the stated significance level �.

On average, the clustered samples strongly underesti-
�̂(r) �

1
2nr

�
a�b

�
L

l�1

x (r )
ab (yla � ylb)2mated the population variance (Table 1). This negative

bias was reduced with increasing sample size, as more
and more clusters of samples were selected, thus reduc-

�
1
nr

�
a�b

�
L

l�1

x (r )
ab �̂l(a, b) � �

l
�̂l(r). (4)

ing the proportion of comparisons between autocorrel-
ated pairs of samples. In fact, the variance of the esti-

More generally, a multivariate variogram can be definedmates based on clustered samples was comparable to
as a weighted average �(r) of the component variogramsthe variance for systematic samples with a five times
�̂l(r), with Equation 4 as the special case of wl � 1:

smaller sample size, which can be explained by the sam-
pling of clusters of five strongly autocorrelated loca- �(r) � �

l
wl �̂l(r). (5)

tions. However, the clustered samples provided biased
Most often, the variograms of the L loci will be weightedestimates, whereas the corresponding systematic sam-
by wl � 1/L.ples were unbiased. Hence, the unbiased variance esti-

Under SMM, genetic diversity is related to differencesmator may be negatively biased due to spatial autocorre-
in allele size, where allele size yla is defined as the numberlation. The magnitude of this systematic bias will depend
of repeats of gene copy a at locus l . The molecular varianceon the spatial autocorrelation structure and the propor-
of a single locus l with k alleles can be defined astion of autocorrelated samples, which are functions of

the spatial configuration of the sample rather than sam-
V̂l �

N
N � 1�

k
plk(ylk � yl)2 �

1
N � 1�

a
(yla � yl)2ple size. One may argue that the spatial autocorrelation

structure is an inherent characteristic of a population.
(Renwick et al. 2001), whereHowever, because the estimate of the population vari-

ance depends on the sampling design, it should be
yl � �

k
plkylk �

1
N �

a
yla . (6)based on independent samples.

Correlograms imply division by the sample or popula-
tion variance (see Equations 1 and 2). Because of this, Equations 4 and 6 provide a distance-dependent esti-
it follows that (i) the actual values of Moran’s I(r) and mate V̂(r) of the molecular variance V̂, averaged over
Geary’s c(r) depend on the spatial configuration of the L loci, which can be used as a within-population analog

to R ST to investigate isolation-by-distance effects withinsample, and (ii), for a stationary process, I(r) reaches
a continuous population:a value slightly below zero, and c(r) a value above one,

for distances beyond the range of spatial autocorrela-
V̂(r) � �

a�b
�
L

l�1

wlx (r )
ab

2nr

(yla � ylb)2 . (7)tion. The exact deviation cannot be predicted without
knowing the spatial autocorrelation structure and the
details of the sampling design. This is not accounted The statistical significance of a departure of V̂(r) from
for by subtracting E[I(r)] � �1/(N � 1) for Moran’s its expected value under the null hypothesis of no spatial
I(r). On the other hand, an empirical variogram can autocorrelation can be tested in a Mantel permutation

test (Legendre and Legendre 1998). If the alternativebe used to estimate the real population variance ac-
hypothesis is positive spatial autocorrelation at shortcounting for autocorrelation, usually by fitting a theoret-
distances, a one-sided test with a progressive Bonferroniical variogram model. Hence, the above exemplified
correction can be applied, where the significance levelproblem of Moran’s I and Geary’s c can be avoided.
for the k th distance class is �/k (Hewitt et al. 1997;
Legendre and Legendre 1998; Lichstein et al. 2002).
This correction is appropriate when significant autocor-

DEVELOPMENT OF METHODS
relation is hypothesized to occur in the smallest distance

Definition of genetic variograms: This paragraph shows classes and the aim is to determine the extent of spatial
structure (Legendre and Legendre 1998).how variance-based measures of genetic distance can
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Variogram of gene diversity: The analysis of the genetic dates different ploidy levels or multiple sampling of
structure of a locus l under the IAM is often based on genets. If the different gene copies of the same diploid
join-count statistics. The proportion of unlike joins be- or polyploid organism are not assumed to be indepen-
tween observations is equivalent to the sum of the vario- dent, e.g., due to inbreeding, one may want to restrict
grams of a set of dummy variables zk , where zka � 1 if comparisons to gene copies from different individuals.
gene copy a is of allele k, and zka � 0 otherwise: In organisms with various ploidy levels, one may want

to give equal weight to each individual independent of
�̂l(r) � �

k
�
a�b

x (r )
ab

2nr

(z l ka � z lkb)2 . (8) its ploidy level. Both problems can be solved by modi-
fying the weights x (r )

ab ,
Due to the inherent correlation between the dummy

variables, �̂l(ab) will equal 1 if gene copies a and b are
x �(r )

ab � �x (r )
ab

1
Ni

1
Nj

, i � j

0, i � j ,
different alleles and 0 if they are the same allele.

Gene diversity or expected heterozygosity of a locus (13)
is a key parameter in population genetics under IAM.
Gene diversity Hl is the probability that two gene copies where Ni is the number of gene copies of individual i with
sampled with replacement differ at locus l . The unbi- gene copy a and Nj is the number of gene copies of
ased estimator of gene diversity, Ĥl , at locus l for a individual j with gene copy b. The same type of weighting
sample of N gene copies of k different alleles is can be applied to account for multiple sampling of genets

in clonal organisms. In that case, Ni is the number of gene
Ĥl �

N
N � 1�1 � �

k
p 2

k� (9) copies from genet i , etc.
The permutation test needs to be adapted so that, in-

(Nei 1978). stead of permuting gene copies, the individuals or geno-
On the basis of Equations 8 and 9, the variogram of types are permuted.

multilocus gene diversity Ĥ can be defined as Modeling of genetic variograms: Expected shape of spa-
tial genetic structure: Theoretical models of isolation-

Ĥ(r) � �
L

l�1

wl �̂l(r) � �
a�b

�
L

l�1
�

k

wlx (r )
ab

2nr

(zlka � zlkb)2 . (10) by-distance predict that, in a two-dimensional space and
if certain conditions are met, kinship or relationship co-

Ĥ(r) provides a within-population analog to FST . As efficients between individuals, as well as pairwise FST or
with V̂(r), the significance of an observed autocorrela- RST, vary approximately linearly with the logarithm of dis-
tion in Ĥ(r) can be tested with a Mantel permutation tance (Rousset 1997; Hardy and Vekemans 1999; Hardy
test. 2003). Thus, with some assumptions concerning the

Variogram of genotypic diversity: Genotypic diversity mea- drift-dispersal-mutation equilibrium and the dispersal
sured by Simpson’s diversity D is similar to single-locus function, the observed spatial genetic structure can be
gene diversity Ĥl , but, instead of allele k , the multilocus quantified to infer gene dispersal parameters (Veke-
genotype g is used, so that D is the probability of sam- mans and Hardy 2004). The general approach, as de-
pling two individuals of different multilocus genotypes. scribed by Vekemans and Hardy (2004), is to estimate
The unbiased estimator of genotypic diversity is the probability of identity in state as a function of the

spatial distance between individuals. Because this func-
D̂ �

N
N � 1�1 � �

g
p 2

g� . (11) tion depends on the variability and thus the mutation rate
of the locus, it needs to be standardized, for instance, by

The variogram of genotypic diversity D̂ (Simpson di- reference to random genes from a sample of individuals
versity) is obtained by coding each multilocus genotype (Rousset 2000, 2002). The standardized values F(r) for
by a dummy variable z g , which takes the value z g � 1 if each distance class r are regressed against spatial distance
individual a is of genotype g and z g � 0 if it is not. For (one-dimensional case with linear relationship) or against
a haploid organism, the analysis is based on gene copies, the logarithm of distance (two-dimensional case with expo-
whereas for diploid organisms, genotype coding would nential relationship) to estimate the slope parameter b̂F .normally reflect diploid genotypes. The variogram of As b̂F is negative and depends somewhat on the sampling
genotypic diversity, D̂(r), estimates the probability of design, Vekemans and Hardy (2004) proposed quanti-
sampling two individuals of different multilocus geno-

fying spatial genetic structure by a new statistic, Sp �
types as a function of their distance in space and is

b̂F/(1 � FN), where FN is the relatedness of immediatecalculated as
neighbors competing for the same resources and may
be estimated by F(1), the value of F(r) for the first distanceD̂(r) � �

a�b
�
g

x (r )
ab

2nr

(zga � zgb)2 . (12)
class. If the observed, two-dimensional spatial genetic
structure results solely from isotropic limited gene dis-
persal, if a dispersal-drift equilibrium has been reached,Accounting for ploidy levels and clonality: This para-

graph introduces a weighting scheme that accommo- and if the sampling scale is appropriate for the dispersal
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distance of the organism, then dispersal parameters can landscapes, such as wooded pastures and chestnut or-
be estimated from Sp (Vekemans and Hardy 2004). chards (Scheidegger et al. 2002).

Exponential variogram model: Assuming an exponential re- Data: We studied the spatial genetic structure of a
lationship in a two-dimensional case (see above), the spatial continuous population of L. pulmonaria from the Swiss
genetic structure of a population can be summarized by Jura Mountains. A hierarchical random sample of 461
fitting an exponential variogram model (Figure 1), thalli was collected from a pasture-woodland landscape.

In a first step, 100 circular plots of 1 ha were randomly
�(r) � C 0 	 C 1[1 � e�(3r/b)] , (14)

selected from the wooded parts of the study area. Within
where C 0 is the nugget variance, or the proportion of each plot, all suitable trees exceeding 5 cm in diameter
the variance that is not spatially structured, and C 1 is at breast height were searched for L. pulmonaria. A maxi-
the spatially structured variance component (Legendre mum of 24 thalli were randomly selected from different
and Legendre 1998). The sill C � C 0 	 C 1 provides an trees in each of the 24 plots where the lichen was pres-
estimate of the population variance based on spatially ent. If there were �24 colonized trees, multiple thalli
independent samples, i.e., accounting for spatial auto- were sampled from the same tree, and if there were
correlation. The relative size of the nugget provides an �24 thalli in a plot, every thallus found was included.
estimate of FN: 1 � C 0/C � C1/C � F̂N. This can be set This results in a heterogeneous data set that could ex-
to F(1) by fitting a fixed-nugget model, constraining the hibit spatial autocorrelation at varying scales.
nugget variance to the observed semivariance for the DNA extraction and fragment length determination
first distance class. at six microsatellite loci (LPu03, LPu09, LPu15, LPu16a,

The exponential model approaches the sill C asymp- LPu20a, and LPu27a), specific to the haploid mycobi-
totically. Therefore, the range or slope parameter b indi- ont, using an ABI 3100-Avant automated sequencer (Ap-
cates the practical range of the exponential variogram, plied Biosystems, Foster City, CA), followed Walser et
i.e., the distance at which the curve reaches 95% of the al. (2003). Allele assignment was performed using GE-
sill (Journel and Huijbregts 1978). It can be shown NOTYPER 2.5 software (Applied Biosystems).
that b � �3/b̂F . Directional dispersal or migration may Statistical analyses: Omni-directional variograms of
lead to anisotropy, where the genetic structure depends molecular variance V̂(r) and gene diversity Ĥ(r) were
on direction. If there is reason to expect anisotropy, direc- calculated according to Equations 7 and 10, giving equal
tional variograms can be fitted, providing estimates of the weight to each of the six loci. The first distance class of
slope parameter b for different compass directions. r � 0 contained pairs of thalli from the same tree. The

A confidence interval for the slope parameter b may lag distance was 50 m. The last distance class contained
be estimated using the permutation method for the all sample comparisons at distances �450 m. Autocorre-
confidence interval for the matrix regression coefficient lation was tested per distance class using a one-sided
proposed by Manly (1997). The residuals of the expo- Mantel test with 500 permutations of the thalli and a
nential model are randomly permuted many times to progressive Bonferroni correction of � � 0.05/k for the
obtain the reference distribution of the correlation of k th distance class up to the first nonsignificant value.
the residuals with distance. A series of exponential mod- A second set of variograms, V̂ �(r) and Ĥ �(r), was calcu-
els with varying range parameters is derived, and the lated weighting each thallus by the number of occur-
critical values are determined at which the correlation rences of its multilocus genotype within the population,
of the residuals of these new models with distance is as using modified weights x �(r )

ab (Equation 13). Autocorrela-
strong as for the �/2 and the (1 � �)/2 quantiles of tion was again tested per distance class using a one-sided
the reference distribution. The two critical values pro- Mantel test with 500 permutations of the multilocus
vide the lower and upper limits of the confidence inter- genotypes, using the same settings as above.
val for the range parameter b. An isotropic and four-directional variograms of geno-

typic diversity D̂(r) were also calculated according to
Equation 12, giving equal weight to all samples. Expo-APPLICATION TO THE GENETIC STRUCTURE
nential variogram models were fitted to all variograms,OF L. PULMONARIA
using the weighted least-squares algorithm (Cressie

Model organism: L. pulmonaria is a foliose epiphytic 1993) that minimizes the expression
lichen species of humid temperate and boreal regions
of the northern hemisphere and cooler parts of the

�
r
nr � �̂(r)

�(r ; C 0, C 1, b)�
2

, (15)tropics (Yoshimura 1971). This clonal and recombi-
nant species (Walser et al. 2004), which produces both

where �(r ; C 0, C1, b) is the fitted semivariance for dis-vegetative and sexual diaspores, is considered endan-
tance class r on the basis of the exponential model withgered in most parts of Central Europe (Wirth et al.
parameters C 0, C1, and b.1996) and in other industrialized regions. It is used as

All calculations were performed in R (Ihaka and Gen-an indicator of ecological continuity (Rose 1992) in
natural forests and traditionally managed agro-forestry tleman 1996). The exponential variograms were fitted



1746 H. H. Wagner et al.

persal (Table 2). On the other hand, genotypic diversity
showed a higher degree of autocorrelation for the first
distance class, F̂ (1), which consisted of pairs of samples
from the same tree. The fitting of directional variograms
for genotypic diversity revealed that spatial genetic struc-
ture extended further in the main wind direction
(WSW–ENE; Vittoz 1998) than in the other directions
(Table 2).

The conventional estimates of the population vari-
ance, V̂, Ĥ, and D̂, slightly underestimated the variance
for spatially independent samples, i.e., the total sill C
for all three measures of diversity (Table 2). In this
specific example, however, weighting for recurrent ge-
notypes largely compensated this bias.

Figure 2.—Variogram of gene diversity Ĥ(r) for a popula-
tion of Lobaria pulmonaria. Each symbol denotes the mean

DISCUSSIONsemivariance over six microsatellite loci averaged over all pairs
of thalli within each distance class. The semivariance is un- Advantages of variogram analysis: A geostatistical per-weighted (circles) or weighted for recurrent genotypes (squares).

spective on spatial genetic structure can provide expla-The lines indicate the corresponding fitted exponential mod-
nations to many of the issues raised by Vekemans andels; the dashed line shows the nonspatial model. Values below

the dashed line correspond to positive, and values above the Hardy (2004) and suggest new approaches to address
dashed line to negative, autocorrelation. Solid symbols indi- them. First, the sampling design has a strong influence
cate statistically significant positive autocorrelation based on on the absolute values of Moran’s I or other coefficientsa one-sided Mantel permutation test with progressive Bonfer-

of relatedness, and this may severely limit comparabilityroni correction (� � 0.05).
between studies. The sampling design also affects the
distance at which these measures reach their expected
value in the absence of spatial structuring. Therefore,
this distance provides only a somewhat arbitrary esti-using the R library “GSTAT” (Pebesma and Wesseling

1998; Pebesma 2004). mate of the extent of spatial genetic structure (Veke-
mans and Hardy 2004). This problem affects the analy-Results and discussion: On the basis of the six micro-

satellite markers, we found 92 multilocus genotypes of sis of kinship structure with Moran’s I or relationship
coefficients, where empirical values for larger distancesthe haploid mycobiont of L. pulmonaria. All but 9

multilocus genotypes occurred in single 1-ha plots, and tend to be slightly below zero, whereas in theory negative
kinship coefficients are not allowed (Barbujani 1987).only 1 was spread over �210 m. The probability of

origin by recombination was �0.003 for all recurrent Our simulation experiment showed that this effect is
not simply due to sample size, but relates to the inclusionmultilocus genotypes, suggesting that they arose from

clonal propagation. Weighting for recurrent genotypes of autocorrelated samples in the estimation of the popu-
lation variance, which is commonly used as a referencedrastically reduced effective sample size from 461 thalli to

92 multilocus genotypes. For recurrent genotypes, pairwise for rescaling correlograms and other measures of relat-
edness. Variogram modeling, on the other hand, pro-comparisons were distributed over several distance classes:

the first distance class contained an equivalent of 36.8 vides an estimate of the population variance accounting
for spatial autocorrelation, and its model parameterspairs (instead of 1588 for all samples) and the other

distance classes up to 450 m comprised 47.6–148.6 pairs are scaled by this corrected estimate.
Second, Vekemans and Hardy (2004) suggested that(instead of �2000).

The spatial genetic structure of the studied L. pulmo- if a plot of F(r) against distance r, e.g., a Moran’s I
correlogram, decreases steadily until some distance xnaria population consisted of two patterns caused by

clonal reproduction [variogram of genotypic diversity, and shows no further trend, this distance may be inter-
preted as the extent of spatial genetic structure. In geo-D̂(r)] and sexual reproduction [variograms of molecu-

lar variance, V̂(r), and gene diversity, Ĥ(r); Figure 2]. statistical terms, this means that if the variogram repre-
sents a stationary spatial process as indicated by theWeighting for recurrent genotypes reduced the autocor-

relation of the first distance class and the range estimate presence of a sill, the range b can be estimated. Rather
than visually identifying a critical distance at which theboth for molecular variance and for gene diversity (Ta-

ble 2). After weighting for clones, the range parameters sill is reached, one would fit an exponential variogram
model and estimate the practical range, where the curveb of the fitted exponential variogram models were

smaller for molecular variance, V̂ �(r), and gene diversity, reaches 95% of the sill. This provides an estimate of the
extent of spatial genetic structure. A confidence intervalĤ �(r), than for genotypic diversity, D̂(r), suggesting

larger dispersal distances or several steps of clonal dis- for the range parameter can be constructed using a
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TABLE 2

Variogram parameters for Lobaria pulmonaria

Variogram modeling Conventional estimation:

Diversity measure Weighting F̂ N �
C 1

C 0 	 C 1

b �
3
b̂F

C � C 0 	 C 1 V̂, Ĥ, D̂

Molecular variance V All samples 0.93 121.5 25.1 24.3
Weighted for clones 0.66 58.2 25.7 25.5

Gene diversity H All samples 0.87 135.9 0.67 0.64
Weighted for clones 0.55 69.3 0.68 0.68

Genotypic diversity D All samples 0.71 106.5 1.00 0.98
WSW–ENE — 158.7 1.00 —
WNW–ESE — 77.7 1.00 —
SSW–NNE — 89.7 0.99 —
NNW–SSE — 110.7 1.00 —

Estimated parameters of the exponential variogram model were fitted to the variograms of molecular variance and gene
diversity for a population of Lobaria pulmonaria (N � 461) assessed with six microsatellite markers, with and without accounting
for recurrent genotypes, and for genotypic diversity (clonal structure), with and without accounting for compass direction. The
relatedness between immediate neighbors, F N, is estimated from the autocorrelation of the first distance class of thalli taken
from the same tree. The range parameter b denotes the distance at which the curve reaches 95% of the sill and provides an
estimate of the extent of spatial genetic structure. The total sill C estimates the population diversity (molecular variance, gene
diversity, or genotypic diversity) accounting for spatial autocorrelation, whereas the conventional estimators V̂, Ĥ, and D̂ do not
account for autocorrelation and are, therefore, susceptible to bias.

method developed for matrix regression coefficients by links. This method is related to the cc -correlogram pro-
posed by Bertorelle and Barbujani (1995), whichManly (1997).

Third, the interpretation of Moran’s I as a correlation involves division by the population variance, and could
easily be adapted to dominant markers such as randomlycoefficient or of other measures as the absolute degree

of kinship or relationship is jeopardized by the depen- amplified polymorphic DNA (RAPD), intersimple se-
quence repeat (ISSR), or amplified fragment lengthdence of the empirical values on the sampling design

through an implicit rescaling (see above). The proposed polymorphism (AFLP) markers.
Fourth, Vekemans and Hardy (2004) proposed a newempirical variograms, however, have direct interpretations

independent of the sampling design, as they provide dis- statistic for quantifying spatial genetic structure, Sp � �bF/
FN, which arguably is more robust than either of the twotance-dependent estimates of molecular variance V̂, gene

diversity Ĥ, and genotypic diversity D̂, providing within- component measures that are sensitive to the sampling
design (see above). Rather than taking the ratio of twopopulation analogs to the population pairwise RST and FST

statistics. potentially biased quantities, variogram modeling ac-
counts for the source of this potential bias by estimatingThe variogram of molecular variance, V̂(r), for micro-

satellite data has a straightforward interpretation as the the variance between uncorrelated samples. Hence, the
variogram parameters nugget variance, range, and sillvariance in the number of repeats expected for samples

at a given distance in geographic space. It corresponds can be directly compared between studies. Further-
more, FN can be estimated in two different ways. If thedirectly to a plot of (half) the sum of squared size differ-

ences as used in AMOVA of microsatellite data (Schnei- first distance class contains the direct neighboring sam-
ples, thus representing the smallest possible distance,der et al. 2000) or of D0/2, where D0 is the average

squared difference in repeat numbers for two alleles the semivariance for this distance class can be used as
an estimate of FN (fixed nugget-effect model). Alterna-drawn from the same population (Goldstein et al. 1995).

The variogram of genotypic diversity, D̂(r), can be inter- tively, if the first distance class also contains not directly
adjacent samples, the nugget effect needs to be fitted,preted as the probability of sampling two different

multilocus genotypes as a function of their spatial dis- providing an estimate of FN.
Robust estimation of spatial genetic structure: Weightingtance. The interpretation of the variogram of gene diver-

sity, Ĥ(r), is the probability of sampling two different for clonality and ploidy levels: The lichen example illustrated
the importance of distinguishing between spatial patternsalleles given their distance in geographic space, aver-

aged over different loci. For a single locus, it corre- of clonality and of genetic diversity resulting from sexual
recombination. Specifically, it is crucial to account forsponds exactly to a plot of the proportion of unlike

links against distance, but the variogram definition is clonal patterns when analyzing patterns of genetic diver-
sity within a population. The confounded pattern doescomputationally simpler than the explicit coding of
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not represent the average of the two component pat- in situations with at least 50% nugget variance (Cressie
terns, but their multiplication, so that the degree and 1993). We will perform simulations to assess to what
extent of spatial genetic structure may be severely over- degree robust variogram estimators may help reducing
estimated. sample size within populations.

For diploid organisms, the weighting results in mea- Conclusions: Most measures of spatial genetic structure
sures similar to the kinship coefficient by Loiselle et are rescaled with reference to random samples from the
al. (1995) and the relationship coefficient of Streiff et population. This reference is itself estimated from the data
al. (1998), as links within individuals are excluded. The set and subject to bias unless spatial autocorrelation is
weighting proposed here is more general and can accounted for. Such bias limits the interpretation of abso-
equally be used for organisms with variable ploidy levels lute values of various measures of spatial genetic structure
and applied to the correlation coefficient r by Smouse and poses problems to the comparison between studies
and Peakall (1999) or to join-count statistics (Epper- and to the estimation of biological parameters (Vekemans
son 2003). The proposed weighting of clones solves the and Hardy 2004). Variogram modeling, on the other
problem of arbitrary resampling of recurrent genotypes, hand, estimates its reference value accounting for spa-
which may bias the analysis of spatial genetic structure tial autocorrelation, thus providing parameter estimates
within continuous populations (Reusch et al. 1999; Häm- that are comparable between studies. Furthermore, the
merli and Reusch 2003). Whether to weight for recur- proposed variograms of molecular variance, gene diver-
rent genotypes or not will depend on the research ques- sity, and genetic diversity are directly interpretable with-
tion (e.g., dispersal distances vs. distances between mates) out rescaling, as they provide a partitioning of genetic
and the type of organism under study (e.g., clonal organ- diversity by the distance between samples. While this ar-
isms with physically connected or detached ramets). ticle focuses on microsatellite data as interpreted under

Deviation from exponential relationship: Simulations either IAM or SMM, the approach may be adapted to
showed that under isolation-by-distance on a two-dimen- other types of genetic data. The formal integration with
sional grid, Moran’s I typically drops from positive values variograms makes the theory and tools of geostatistics
at short distances to negative values at intermediate available for population genetics, which may help to
distances before reaching values just below zero for address some important challenges in bridging the gap
larger distances in the absence of a cline (Epperson between empirical studies of spatial genetic structure
2003). In our L. pulmonaria example, the variograms and theoretical approaches to isolation-by-distance.
of molecular variance (not shown) and gene diversity

We thank Magnus Nordborg and two anonymous reviewers for theirshowed evidence for such a humped distribution. This
helpful comments on this and an earlier version of the manuscript.

type of nonmonotonic autocorrelation structure is often This research is part of a project funded by the Swiss National Science
encountered in geostatistical analysis and may arise Foundation under the National Centre of Competence in Research

(NCCR) Plant Survival and through grant 3100A0-105830/1.from a periodic structure (Pyrcz and Deutsch 2003)
or as a sampling artifact (Journel and Huijbregts
1978; Palmer and White 1994). It may be modeled
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APPENDIX: WORKED EXAMPLE

Example data: The example data set consists of two artificial variables y1 and y 2 that describe the fragment lengths
x of two loci in N � 6 haploid individuals A–F along a transect t . There are three multilocus genotypes g with
differing frequencies:

t y 1 y 2 g

A 1 1 4 1

B 2 1 4 1

C 2 2 4 2

D 3 2 1 3

E 3 2 1 3

F 4 2 1 3

Spatial partitioning of molecular variance: The basic elements of spatial covariance are calculated as

�̂l(a , b) �
1
2
(yla � ylb)2 .

For instance, the comparison of gene copy A to gene copies B and D provides

�̂(A, B) �
1
2�

i
(yiA � yiB)2 �

1
2
((1 � 1)2 	 (4 � 4)2) � 0

�̂(A, D) �
1
2�

i
(yiA � yiD)2 �

1
2
((1 � 2)2 	 (4 � 1)2) � 5.

The semivariance �̂i(a, b) for each pair of gene copies is tabulated in the following matrix:

�̂(a, b) A B C D E F

A � 0 0.5 5 5 5

B 0 � 0.5 5 5 5

C 0.5 0.5 � 4.5 4.5 4.5

D 5 5 4.5 � 0 0

E 5 5 4.5 0 � 0

F 5 5 4.5 0 0 �

Matrix of distances r: Common geostatistical analysis omits distances of r � 0, so that an object is never compared
to itself. For organisms such as the epiphytic lichen L. pulmonaria, however, individuals may share the same two-
dimensional geographic coordinates if they grow on the same tree. Therefore, it may be important to distinguish
between different individuals separated by a distance of zero in two-dimensional space and the comparison of an
individual with itself:

r A B C D E F

A � 1 1 2 2 3

B 1 � 0 1 1 2

C 1 0 � 1 1 2

D 2 1 1 � 0 1

E 2 1 1 0 � 1

F 3 2 2 1 1 �

Variogram of molecular variance: The empirical variogram of molecular variance is calculated using Equation 7, as
is illustrated here for distance class r � 2 on the basis of unique pairs only [top or bottom triangle of matrices �(a,
b) and r]:
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V̂(2) �
1

2n2
�

a,b|r(ab)�2
�

i
(y1a � y1b)2 �

1
n2

�
a,b|r(ab)�2

�(a, b) �
1
4
[5 	 5 	 5 	 4.5] � 4.875.

The variance estimates V̂(r) for all distance classes r are listed below. A weighted average of the molecular variance
per distance class V̂(r), weighted by nr, the number of pairs of gene copies, provides the global variance V̂.

h V̂(r) nr

0 0.25 2

1 2.4375 8

2 4.875 4

3 5 1

�rV̂(r)nr/n 2.967 15

The total number of pairwise comparisons, n, is given by n � �rnr � N(N � 1)/2.
Variogram of gene diversity: For the variogram of gene diversity, a dummy variable zl k is defined for each allele

k at each locus l. The semivariance is calculated from the matrix of dummy variables following Equation 8:

zlk z11 z12 z24 z21

A 1 0 1 0

B 1 0 1 0

C 0 1 1 0

D 0 1 0 1

E 0 1 0 1

F 0 1 0 1

�̂(a, b) A B C D E F

A � 0 1 2 2 2

B 0 � 1 2 2 2

C 1 1 � 1 1 1

D 2 2 1 � 0 0

E 2 2 1 0 � 0

F 2 2 1 0 0 �

For each pair of observations a and b, the semivariance �̂(a, b) equals the number of loci at which they differ.
The variogram of gene diversity is

r Ĥ(r) nr

0 0.5 2

1 0.875 8

2 1.75 4

3 2 1

�r Ĥ(r)nr/n 1.133 15

Variogram of genotypic diversity: For the variogram of genotypic diversity following Equation 12, a dummy variable
z g is defined for each genotype g, and the semivariance is calculated from the matrix of dummy variables:

zg z1 z2 z3

A 1 0 0

B 1 0 0

C 0 1 0

D 0 0 1

E 0 0 1

F 0 0 1

�̂(a, b) A B C D E F

A � 0 1 1 1 1

B 0 � 1 1 1 1

C 1 1 � 1 1 1

D 1 1 1 � 0 0

E 1 1 1 0 � 0

F 1 1 1 0 0 �
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As a computational shortcut, the same result can be obtained by setting all values �̂(a, b) � 0 to 1.
The variogram of genotype diversity is

r D̂(r) nr

0 0.5 2

1 0.625 8

2 1 4

3 1 1

�r D̂(r)nr/n 0.496 15

Weighting for recurrent genotypes: Each gene copy a receives a weight wa which is inverse to the number of gene
copies of the same multilocus genotype ga. According to Equation 13, the matrix of weights wawb is

wa

A B C D E F
wb

1⁄2 1⁄2 1 1⁄3 1⁄3 1⁄3 �bwawb

A 1⁄2 � � 1⁄2 1⁄6 1⁄6 1⁄6 1
B 1⁄2 � � 1⁄2 1⁄6 1⁄6 1⁄6 1
C 1 1⁄2 1⁄2 � 1⁄3 1⁄3 1⁄3 2
D 1⁄3 1⁄6 1⁄6 1⁄3 � � � 2⁄3
E 1⁄3 1⁄6 1⁄6 1⁄3 � � � 2⁄3
F 1⁄3 1⁄6 1⁄6 1⁄3 � � � 2⁄3

If G � 3 is the number of genotypes, the sum of all weights is

�wawb � G(G � 1) � 6.

The variogram of molecular variance between genotypes is derived as

V̂(2) �
1
w2

�
a,b|r(ab)�2

wawb · �(a, b) �
1

1/6 	 1/6 	 1/6 	 1/3 �16 · 5 	
1
6

· 5 	
1
6

· 5 	
1
3

· 4.5� � 4.8

r V̂(r) wr

0 0.5 1⁄2
1 3.28 3⁄2
2 4.8 5⁄6
3 5 1⁄6

�rV̂(r)wr/w 3.33 3


