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ABSTRACT
Many commercial inbred lines are available in crops. A large amount of genetic variation is preserved

among these lines. The genealogical history of the inbred lines is usually well documented. However,
quantitative trait loci (QTL) responsible for the genetic variances among the lines are largely unexplored
due to lack of statistical methods. In this study, we show that the pedigree information of the lines along
with the trait values and marker information can be used to map QTL without the need of further crossing
experiments. We develop a Monte Carlo method to estimate locus-specific identity-by-descent (IBD)
matrices. These IBD matrices are further incorporated into a mixed-model equation for variance compo-
nent analysis. QTL variance is estimated and tested at every putative position of the genome. The actual
QTL are detected by scanning the entire genome. Applying this new method to a well-documented
pedigree of maize (Zea mays L.) that consists of 404 inbred lines, we mapped eight QTL for the maize
male flowering trait, growing degree day heat units to pollen shedding (GDUSHD). These detected QTL
contributed �80% of the variance observed among the inbred lines. The QTL were then used to evaluate
all the inbred lines using the best linear unbiased prediction (BLUP) technique. Superior lines were
selected according to the estimated QTL allelic values, a technique called marker-assisted selection (MAS).
The MAS procedure implemented via BLUP may be routinely used by breeders to select superior lines
and line combinations for development of new cultivars.

IN line-crossing experiments, the prerequisite for map- difference between the two lines (y). If two lines share
ping quantitative trait loci (QTL) is a segregating IBS at a particular locus, x is defined as 1 and otherwise

population derived from the crosses of some carefully 0. The total number of observations (data points) is
chosen inbred lines. The mapped QTL largely depend n(n � 1)/2, where n is the total number of inbred lines
on the parental lines selected, leading to inconsistent included in the analysis. Using this method, Grupe et
results from one experiment to another. However, many al. (2001) identified numerous QTL responsible for the
commercial inbred lines are available in crops (Cui et variation of 10 traits in 15 inbred lines of laboratory
al. 1999). Genetic variance among these lines is largely mice (Mus musculus L.). Although Chesler et al. (2001)
unexplored due to lack of appropriate statistical meth- and Darvasi (2001) have questioned the above in silico
ods. To harvest the entire genetic variation among lines QTL-mapping method, Chesler et al. (2001) still be-
using current QTL mapping procedures, one may need lieve that detecting QTL from inbred lines may indeed
to design a diallel crossing experiment that includes all be possible. Recently, Parisseaux and Bernardo (2004)
lines as parents. This would be extremely difficult in explored the usefulness of in silico mapping via a mixed-
terms of space, time, funds, and analytical methods. model approach and found that their method can de-

Is it possible to use all the existing lines to map QTL tect QTL highly repeatable across different populations.
without use of segregating progeny? The answer is yes, The method of Parisseaux and Bernardo (2004) as-
but not with the conventional QTL-mapping proce- sumed that the marker effects are fixed, whereas in this
dures. Grupe et al. (2001) proposed a method known article the effects of QTL linked to markers are assumed
as in silico QTL mapping. The method is a simple corre- random. In this study, we propose a variance-compo-
lation analysis with one variable defined as the indicator nent-based method for QTL mapping using data from
of an identity-by-state (IBS) allele shared by a pair of multiple commercial inbred lines. The proposed method
inbred lines (x) and the other variable as the phenotypic is a variant of association mapping (Risch and Meri-

kangas 1996) except that the response and explanatory
variables are defined differently.

1Corresponding author: Department of Botany and Plant Sciences, The advantages of using inbred lines for QTL map-University of California, 900 University Ave., Riverside, CA 92521-0124.
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rized as follows: (1) the phenotypic value of each inbred strated that the phenotype-based BLUP is useful for
identifying superior single crosses (Bernardo 1996a,b).line can be measured in replicated experiments across

environments, which results in reduced environmental The phenotype- and marker-based BLUP is even more
useful for identifying superior lines for plant breedingand measurement errors; (2) the genotypes of inbred

lines are constant across generations (breeding true); (Bernardo 1998).
(3) cumulative historical recombination events are used
so that QTL can be mapped at a fine scale; (4) experi-

METHODS
mental hybrids and their segregating progeny are no
longer needed; and (5) after QTL mapping, the allelic Mixed-model analysis: Let n be the number of inbred

lines in a pedigree. Denote the number of founder linesvalues of QTL for each inbred line can be predicted
using the best linear unbiased prediction (BLUP) so by n0 and the number of nonfounders by n1 , where n0 �

n1 � n . Let u � {uk }n 0�1 be a vector for the effects ofthat breeders can select superior lines and line combina-
tions for development of new cultivars. the QTL of all founders and v � {vk }n 0�1 be a vector of

The star phylogeny of the inbred lines may be a first- polygenic effects of all the founders. The phenotypic
value of the j th line may be described by the followingorder approximation if no historical records of the in-

bred lines are available. In laboratory mice, partial infor- mixed model,
mation is available about the genealogy of the strains

yj � Xjb � Zju � Wjv � εj , (1)
(Beck et al. 2000) and this information should be incor-
porated into the mapping program. In plant breeding, where Xj is an incidence matrix for the fixed (nonge-

netic) effects; b is a vector of the fixed effects; εj is themost crop varieties of self-pollinated crops are inbred
lines and their parentages are well documented. These residual error assumed to be normally distributed with

mean zero and variance � 2, denoted by εj � N(0, � 2);inbred lines were usually generated from repeated
selfings of a hybrid derived from two parents. So, each and uk � N(0, � 2

u), vk � N(0, � 2
v ), and � 2

u and � 2
v are

the variances of the QTL and the polygene, respectively.line is literally a recombinant inbred line with respect
to its parents. The progeny carry mosaic segments of The remaining symbols are defined as follows. Zj is an

incidence matrix for the QTL effects and defined as athe founder chromosomes. Using molecular markers,
one can trace each chromosome segment of a progeny 1 � n 0 vector with all elements being zero except one

element. The nonzero element is unity, which occursback to the origin of the founder chromosome. If two
lines are traced back to the same founder for the chro- at the position corresponding to the founder whose

allele has been transmitted to the j th line. Wj is anmosome segment in question, the two segments are said
to be identity by descent (IBD), which is the building incidence matrix for the polygenic effects and defined

as an 1 � n 0 vector with the k th element being theblock of the random-model methodology of genetic
mapping (Elston and Stewart 1971; Lander and probability that the k th founder allele has been passed

to the j th line. Because all lines in the pedigree areGreen 1987; Xu and Atchelly 1995; Sobel and Lange
1996). In contrast to the IBS method, the IBD analysis inbred (homozygous for all loci), dominance effects

cannot be modeled. Theoretically, epistatic effects cancan eliminate spurious association due to factors other
than physical linkage. We infer the IBD values shared be included in the model, but we decided to exclude

them in this study to simplify the method. Therefore,by all pairs of lines and construct the IBD matrix for
each locus. The IBD matrix varies from one locus to we are exclusively dealing with an additive model in this

study. The polygenic effects are the collective effects ofanother, which provides the power to separate different
loci in terms of genetic variances contributed by the all loci affecting the quantitative trait that are unlinked

to the QTL. The entire data array may be expressed byloci.
Our approach is similar to the two-step IBD-based the following model in matrix notation,

method of George et al. (2000), who first estimated
y � Xb � Zu � Wv � ε . (2)

the locus-specific IBD matrices using existing software
(Heath 1997) and then incorporated these IBD matri- The expectation and variance matrix of the above model

areces into a mixed-model program for variance compo-
nent analysis. The difference between our method and

E(y) � Xb (3)
that of George et al. (2000) is that our pedigrees are
made of all inbred lines whereas their method handles and
pedigrees initiated from outbred founders.

Var(y|Z, W) � ZZT� 2
u � WWT� 2

v � I� 2, (4)
QTL mapping is the first step toward marker-assisted

selection. The mixed-model methodology provides all respectively. Note that these variances are defined as
the genetic variances among the inbred lines (homozy-the machinery for evaluation of the inbred lines in terms

of the allelic values of the identified QTL. Once the gotes), and as such they are twice the genetic variances
defined in outbred populations. The variance matrixelite genes are identified, they can be used for marker-

assisted selection for development of superior cultivars defined this way is conditional on Z and W. In genetic
mapping, these incidence matrices are not observablecarrying all the desirable genes. It has been demon-
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but estimated from marker information. Therefore, the use the average of ZZT over the replicated Monte Carlo
actual variance matrix is defined as simulations to approximate Pu � E(ZZT). We simulate

Z one row (a vector) at a time from the top (founders)
Var(y) � V � E[Var(y|Z, W)] � Var[E(y|Z, W)]

to the bottom (descendants) of the pedigree. As usual
� E(ZZT)� 2

u � E(WWT)� 2
v � I� 2 in pedigree analysis, individual lines are required to

be listed according to their chronological order; i.e.,� Pu � 2
u � Pv � 2

v � I� 2, (5)
parental lines must be listed before their progeny. This

where Pu � E(ZZT) is called the IBD matrix for the requirement will guarantee that the incidence matrices
QTL and Pv � E(WWT) is the additive relationship of the parents are sampled before those of their prog-
matrix for the polygene. It should be mentioned that eny. First, we order the founders from 1 to n 0 and the
Var[E(y|Z, W)] � 0 because E(y|Z, W) � Xb is a constant progeny from n 0 � 1 to n 0 � n 1 . The Z vectors for
in the mixed model. The additive relationship matrix the founders are actually given and no simulation is
depends on the pedigree information and the IBD ma- required. For example, the Z vector for the k th founder
trix of the QTL depends on the QTL position and the is simply a vector with all elements equal to zero except
marker information. Methods to estimate these matrices that the k th element is 1. Essentially, each founder is
are described in the next section. We now focus on the given a unique label from 1 to n 0 , from which the Z
variance component analysis and significance test. vector can be constructed. Each progeny is also given

We take a genome-scan approach to searching for a label from 1 to n 0 , but this label is unknown. For
QTL from one end of the genome to the other end. At example, if the j th line (progeny) received the i th
each putative position, we calculate the IBD matrix and founder allele, the label for line j is i and thus Zj is a
plug in this matrix to PROC MIXED of SAS (SAS Insti- vector with all elements equal to zero except that the
tute 1999), which allows us to input unstructured vari- i th element is one. In other words, Zj will be the same
ance matrices. PROC MIXED also calculates the likeli- as the Z vector of the i th founder. Therefore, the labels
hood value, which is required for the significance test. serve as the blueprint for all the progeny from which
To test H0 : � 2

u � 0, we need to run the program twice, the Z vectors are reconstructed.
once to obtain the likelihood value under the full model, Let l j be the label for line j for j � 1, . . . , n . If j is

one of the founders, say founder k, then l j � k for k �
L 1 � �

1
2
[ln|V̂| � ln|XT V̂�1X| � r̂T V̂�1r̂ � (n � p)ln(2�)], 1, . . . , n 0 . If j is not a founder, the parental lines of j

must be known. Let m and f be the male and female(6)
lines from which line j is derived. Note that in plants m

where V̂ � Pu �̂ 2
u � Pv �̂ 2

v � I�̂ 2, r̂ � y � X(XT V̂�1X)� and f are used simply to distinguish the two parents.
XT V̂�1y, and p is the rank of X and the other to obtain The labels for the two parents and the progeny are
the likelihood value under the reduced model, denoted by lm, l f , and l j , respectively. Note that line j

is not the direct progeny of the two parents. It is a
L 0 � �

1
2
[ln|V̂0 | � ln|XT V̂ �1

0 X| � r̂T
0 V̂ �1

0 r̂0 � (n � p)ln(2�)], recombinant inbred line (RIL) derived from the two
parents. Therefore, l j takes either lm or l f but not both.(7)
We can use the following equation to describe the recur-

where V̂0 � Pv �̂ 2
v � I�̂ 2 and r̂0 � y � X(XT V̂�1

0 X)�
rent relationship,

XT V̂�1
0 y. The method is called the restricted maximum

likelihood (REML) in which the vector of fixed effects l j � zj lm � (1 � z j) l f , (9)
has been integrated out. The likelihood-ratio test statis-

where z j is an indicator variable defined astic is defined as

� � �2(L 0 � L 1), (8) z j � �1 if j carries the allele from the male parent
0 if j carries the allele from the other parent.

which is compared to a critical value for declaration of
statistical significance. The critical value was calculated For a random locus without any marker information, z j
by the quick method developed by Piepho (2001). The takes either 1 or 0 with an equal chance. With marker
genome-wide type I error for the analysis was set at 5%. information, the probability will be p(z j � 1|Im) � pj ,
Note that the relationship between � and the logarithm which may be different from 1⁄2, where Im stands for
of odds (LOD) score in the likelihood-ratio test is LOD � marker information. Once pj is calculated, we can sam-
�/(2 ln 10). ple the value of z j from a Bernoulli distribution with

IBD matrix of QTL and additive relationship matrix: parameter pj . These sampled labels are used to recon-
The IBD matrix of a QTL is a function of the incidence struct the Z matrix and thus the IBD matrix. The ex-
matrix Z. However, this incidence matrix is not observ- pected IBD matrix is then approximated by repeated
able and must be estimated from information of mark- simulations using
ers linked with the putative QTL. There is no explicit
form for the probability distribution of Z. However, we Pu � N�1�

N

i�1

Z(i )Z(i )T, (10)
can take a Monte Carlo approach to simulating Z and
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where N is the total number of repeated simulations problem so that the inverse of the IBD matrix for QTL
is no longer included in the mixed-model equationand Z(i ) is the simulated Z matrix in the i th replicate.

The conditional probability, p(zj � 1|Im) � pj , is calcu- (Henderson 1984; SAS Institute 1999). Once the
QTL effects are evaluated, these inbred lines can belated using a multipoint method (Rao and Xu 1998).

The interval-mapping procedure (Lander and Botstein ranked and selected.
1989) for RIL has an identical formula to that for a BC
design except that the recombination fraction used in

APPLICATIONSBC, r, is replaced by

QTL mapping in maize: We applied this method toc � 2r/(1 � 2r) (11)
a maize (Zea mays L.) pedigree consisting of 404 inbred

in the RIL type of pedigree analysis. lines with 103 founders and developed over 70 years of
The IBD (additive relationship) matrix for the poly- pedigree breeding. The experiments were carried out

gene Pv is obtained similarly except that the simulation at Pioneer Hybrid International breeding stations lo-
does not depend on markers. In other words, we simu- cated in the United States corn belt and south-central
late the W matrix in the same way as we simulate the Canada (Woodstock, Ontario) during 1985–1997 with
Z matrix except that the indicator variables, zj , for a a minimum of three locations and a maximum of eight
polygene is simulated from a Bernoulli distribution with environments per year. The days to flowering for all
parameter 1⁄2. The IBD matrix calculated this way (using inbred lines from early to late maturities were between
N replicated simulations) is identical to that calculated June 30 and August 15 and the range of maturities
from the average of N independent loci. In fact Pv was from 980 growing degree day heat units to pollen
calculated this way is also the same as that obtained shedding (GDUSHD) to 2090 GDUSHD. Note that there
from the tabular method. The reason for using the was an overlap between �20–25% of the inbreds grown
Monte Carlo method to calculate Pv is that a new sub- at locations from Union City, Tennessee, in the south-
routine is not required for Pv calculation. Note that ern U.S. corn belt to Woodstock, Ontario in Canada.
when we search for QTL of the entire genome, Pv is The average number of environments in which the in-
calculated once but Pu is calculated as many times as bred lines were evaluated was 9.5 with a range from 5
the number of putative positions evaluated. to 50 environments. The trait we analyzed is the male

BLUP estimation of QTL effects of individual lines: flowering trait named GDUSHD. This trait is related to
To facilitate marker-assisted selection, we need to know corn adaptation to latitude change and has been one
the allelic values of each line at the detected QTL. BLUP of the target traits for corn improvement. The trait
is the appropriate tool for evaluating the inbred lines values used in this analysis were the best linear unbiased
(Henderson 1975). Theoretically, we need only to pre- estimates of GDUSHD of all lines calculated from un-
dict the QTL values for the founders because the prog- balanced data. None of the founders have phenotypic
eny carry the combination of all founder alleles. How- records. Of the 301 nonfounders, only 282 have pheno-
ever, the incidence matrix Z is not observable and has typic records. Therefore, only the 282 lines with pheno-
been integrated into the IBD matrix. As a result, we are typic records were subjected to mixed-model analysis.
unable to predict the values of founder lines alone. A brief description about the measurement of the
Instead, we can predict the allelic values of QTL for all trait is given here. Growing degree day heat units (GDU),
the inbred lines, including both the founders and the which are the same as growing degree day (GDD), were
progeny. To do this, the mixed model must be rewritten measured as accumulated heat units and calculated as
as

GDU �
Tmax � Tmin

2
� 50, (14)y � Xb � Zu � Wv � ε � Xb � u* � v* � ε , (12)

where u* � Zu and v* � Wv are n � 1 vectors for the where Tmax and Tmin are maximum and minimum tem-
QTL values and polygenic values of all the inbred lines perature per day, respectively, a value of Tmax � 86	F
(including both the founders and the progeny). The being entered as 86	F and a value Tmin 
 50	F being
mixed-model equation for this kind of “animal model” entered as 50	F in the formula. GDUSHD is an accumu-
is lated GDU from seedling emergence until pollen shed

rounded to the nearest 10 GDUSHD and recorded as
GDUSHD/10. The calculation method most commonly

⎡
⎢
⎢
⎢
⎣

X T X X T X T

X I � P�1
u �̂ 2/�̂ 2

u I
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. used in the United States for determining heat unit
accumulation relative to corn phenology was first sug-
gested by the National Oceanic and Atmospheric Ad-(13)
ministration in 1969 and labeled as the “modified GDD”
formula in 1971.If the IBD matrix for QTL is singular, the PROC MIXED

of SAS uses the Cholesky decomposition to handle this A total of 189 microsatellite markers were included
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Figure 1.—The LOD score profile of the maize genome scan. The genome is divided into 10 linkage groups (separated by
the reference lines on the horizontal axis). The LOD scores of the 37 markers that have not been assigned to any of the linkage
groups are plotted in the last block with 10 cM between consecutive markers.

in the analysis. These markers covered 22.587 M of the and then used a mixed model that included all the eight
detected QTL simultaneously to reevaluate the variancecorn genome with an average marker interval of 15.80

cM. Of the 189 markers, 152 have been assigned to the components. The reestimated variances are given in
Table 1. Note that the “large” QTL identified in the10 linkage groups and the remaining 37 markers that

have not been assigned to any of the linkage groups one-dimensional scan were not necessarily large when
reevaluated in a multiple-effect model. This may bewere analyzed independently. The IBD matrices were

obtained by taking the averages of N � 3000 indepen- partly explained by random associations between the
locus-specific IBD matrices and the polygenic IBD ma-dent simulations.

Figure 1 shows the LOD score profile of the genome trix caused by the limited sample size (small pedigree).
After the reevaluation, the largest QTL explained 54%scan with a 2-cM increment. The threshold value used

to declare statistical significance at the genome level of the variance whereas the smallest QTL explained
only 1% of the total variance. The overall proportionwas 3.77, which was calculated using the approximate

method of Piepho (2001). We detected eight QTL, six of the QTL variance was then 83% (Table 1).
QTL values of the inbred lines were evaluated usingof which were mapped to five linkage groups (1, 4, 5,

8, and 9), and two were located to independent markers BLUP for all the eight detected loci. The mixed-model
equation was simply an extension of Equation 13 forM097 and M028. Of the eight detected QTL, the small-

est one contributes 43% of the total phenotypic variance multiple QTL effects. The summary statistics of the esti-
mated QTL values are given in Table 2. The QTL areand the largest one contributes 80% of the variance

(Table 1). The large QTL variances relative to the total ranked in a descending order according to the size of
their variance: qtl 2 , qtl 6 , qtl 4 , qtl 3 , qtl 5 , qtl 1 , qtl 8 , and qtl 7 .phenotypic variance are due to (1) the small error vari-

ance (Table 1) and (2) small sample size. Recall that the Therefore, marker-assisted selection may focus on the
large QTL first. The extreme lines for each of the eightphenotypic value of a line actually reflects the genotypic

value of the line and thus the environmental variance QTL are determined. For example, if we want to in-
crease the trait value, we should design a strategy ofis virtually zero. This has clearly demonstrated the ad-

vantage of QTL mapping using multiple inbred lines marker-assisted selection that combines the allele of line
90 for qtl 2 , the allele of line 37 for qtl 6 , alleles from lineover line-crossing experiments.

The results from Table 1 showed that on average, 100 for qtl 4 and qtl 3 , and so on into a single line. Such
a line is considered to be a super line that carries alleach of the eight detected QTL explains �62% of the

total phenotypic variance, and the overall proportion the good alleles. If decreasing the trait value is our
selection objective, we need to combine the allele ofof the variance contributed by all the QTL is thus

�100%. This phenomenon may be ascribed to both line 22 for qtl 2 , the allele of line 24 for qtl 6 , alleles from
line 23 for qtl 4 and qtl 3 , and so on.the small sample size (pedigree) and the small residual

variance. The results cannot be combined in a simple Simulation studies: We took the maize pedigree with
404 inbred lines. We used the existing marker maps forway due to the fact that each QTL was detected using

a different model. We treated the result of the genome the five chromosomes (chromosome 1, 4, 5, 8, and 9)
and the two unlinked markers (M097 and M028) thatscan as the first step to identify the chromosomal regions
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TABLE 1

Estimated parameters of QTL identified in the genome scan for the corn pedigree data

Single QTL model Multi-QTL model

Linkage Position Flanking Confidence
QTL group (cM) markers interval � 2

u � 2
v � 2 ĥ 2

u (%) LOD Variance Heritability (%)

qtl 1 1 55.8 M098–M188 54.8–60.8 95.51 47.13 2.29 65.90 4.66 4.72 2.62
qtl 2 4 142.0 M153–M178 140.0–144.0 124.74 64.18 2.30 65.23 5.05 97.18 53.85
qtl 3 5 140.9 M156–M157 138.9–146.9 93.01 58.12 3.23 60.26 3.81 7.73 4.28
qtl 4 5 175.9 M076–M007 172.9–191.9 81.79 50.56 2.08 60.84 5.80 13.48 7.47
qtl 5 8 86.8 M035–M174 86.3–88.2 237.09 56.52 1.49 80.34 4.84 6.14 3.40
qtl 6 9 122.9 M133–M015 120.9–126.9 99.38 52.05 1.94 64.80 5.78 16.16 8.95
qtl 7 — M097 M097 — 57.66 77.29 0.00 72.73 3.94 1.69 0.94
qtl 8 — M028 M028 — 79.29 63.41 0.90 55.22 5.44 2.81 1.56
Polygene 27.86 15.44
Residual 2.69 1.49

� 2
u is the estimated genetic variance for QTL, � 2

v is the polygenic variance, � 2 is the residual variance, and ĥ 2
u is the proportion

of the total variance contributed by the QTL and is expressed as h 2
u � � 2

u/(� 2
u � � 2

v � � 2).

have shown evidence of QTL in the real data analysis. The estimated positions of QTL and residual variance
were quite close to the true values. The estimated poly-The marker maps and marker genotypes remained the

same as that reported in the real data analysis. We then genic variance was well over the true value of zero.
This was expected because the polygenic variance insimulated eight QTL at positions exactly the same as

reported in the real data analysis. In the simulation the single-QTL model actually absorbed the variances
of all other QTL not included in the single-QTL model.experiment, we simply simulated the genotypes of the

eight QTL and genotypic values of the QTL according For the power evaluation, the result did show the ex-
pected trend, power increasing as the size of QTL in-to the true parameter values under our control. We then

simulated a small residual variance of 2.5 to generate creased.
As done in the real data analysis, we included all thethe phenotypic values of all the inbred lines. The true

parameter values used in the simulation are given in eight QTL in a single mixed model and reevaluated the
variances. The result is shown in Table 4. Clearly, theTable 3 along with the estimated values using the single-

QTL model. The simulation was replicated 50 times biases for all variance component estimates have been
reduced. The polygenic variance and residual varianceto obtain a rough estimate of the statistical power for

detection of each QTL. estimates, however, were still biased slightly. This may
be acceptable given the small sample size and the smallTable 3 shows that the estimated QTL variances were

larger than the corresponding true values, so were the number of replicates.
estimated proportions of phenotypic variance explained
by the QTL. This is consistent with what was observed

DISCUSSIONin the real data analysis under the single-QTL model.

Inbred lines are the most common forms of crop
cultivars for self-pollinated crops. Therefore, the methodTABLE 2
presented in this study is more suitable for rice (Oryza

Summary statistics of the BLUPs of QTL effects
sativa L.), soybean [Glycine max (L.) Merrill], wheatamong the 404 inbred lines
(Triticum aestivum L.), and other self-pollinated crops
than for open-pollinated crops such as corn. The maizeStandard
pedigree happened to be available to us and we tookQTLa Mean deviation Minimum Maximum Range
advantage of the data to demonstrate the application

qtl 2 0.49 4.53 �16.22 16.37 32.59 of the method. A very small percentage of the markers
qtl 6 �0.60 1.68 �5.34 7.34 12.68

(
0.01) in a few lines of the maize pedigree were stillqtl 4 �0.02 1.62 �6.44 3.20 9.64
heterozygous. These markers were simply treated asqtl 3 �0.02 0.93 �3.69 1.83 5.29
missing values in the study. If the heterozygosity in theqtl 5 �0.88 1.24 �4.86 2.03 6.89

qtl 1 �0.38 0.96 �3.52 3.26 6.78 pedigree were sufficiently high, we would have to take
qtl 8 0.09 0.58 �2.01 1.30 3.31 them into account so that dominance variance compo-
qtl 7 �0.10 0.46 �2.13 0.77 2.90 nents would have to be included in the model. The

model also ignored the epistatic variance componentsa QTL are sorted by variance in a descending order. For
example, qtl2 is the largest QTL and qtl 7 is the smallest QTL. for simplicity. Therefore, the key assumption of the
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TABLE 3

Results of the simulation experiment under the single-QTL model (50 replications)

Variance Heritability
Power Position

QTL (%) (cM) QTL(� 2
u ) Polygene(� 2

v ) Residual (� 2 ) QTL(h 2
u ) Polygene(h 2

v )

1
True value — 56.00 50.0000 — 2.5000 0.3000 —
Estimate 94 56.28 67.1193 92.8245 3.3223 0.4042 0.5766

(2.68) (29.8300) (28.7283) (4.5495) (0.1201) (0.1272)
2

True value — 142.00 33.3333 — 2.5000 0.2000 —
Estimate 86 141.92 59.0012 101.2365 4.8061 0.3509 0.6204

(5.08) (30.1816) (28.0739) (4.5128) (0.1336) (0.1321)
3

True value — 141.00 33.3333 — 2.5000 0.2000 —
Estimate 84 142.58 53.4422 108.9404 3.9165 0.3215 0.6558

(4.39) (27.2483) (35.5669) (4.1938) (0.1349) (0.1394)
4

True value — 176.00 16.6667 — 2.5000 0.1000 —
Estimate 82 178.67 50.7666 101.6241 4.4681 0.3249 0.6486

(9.87) (26.4947) (34.4699) (4.6572) (0.1442) (0.1509)
5

True value — 87.00 16.6667 — 2.5000 0.1000 —
Estimate 44 83.15 38.6235 122.2050 4.8012 0.2473 0.7250

(14.02) (23.8458) (44.2634) (5.1568) (0.1573) (0.1618)
6

True value — 123.00 8.3333 — 2.5000 0.0500 —
Estimate 18 118.97 28.1781 129.0334 4.2142 0.1783 0.7967

(6.31) (21.9769) (41.1543) (4.9946) (0.1354) (0.1401)
7

True value — 0.00 3.3333 — 2.5000 0.0200 —
Estimate 6 0.00 5.4262 144.1987 4.3689 0.0379 0.9352

(0.00) (7.5327) (38.1987) (5.1116) (0.0563) (0.0643)
8

True value — 0.00 2.5000 — 2.5000 0.0150 —
Estimate 2 0.00 7.6491 142.9929 4.2194 0.0524 0.9217

(0.00) (9.8328) (38.4481) (4.9936) (0.0717) (0.0761)

The estimated parameters were obtained from the average of 50 replicated simulations with the standard
deviations among the replicates given in parentheses.

variance component analysis of QTL presented in this rattus L.), and other laboratory animals. There are �400
inbred strains of mice with well-documented pedigreesstudy is the additivity of QTL effects. Additional work

is needed if dominance and epistatic effects are deemed (Beck et al. 2000). Almost all of them have multiple
phenotypic records and 10% of the strains have satu-to be important and should be included in the model.

As demonstrated in the corn pedigree analysis, natu- rated marker data (Beck et al. 2000). Genetic mapping
in laboratory animals is mainly for the purpose of seek-rally occurring genetic variance among commercial in-

bred lines is large and it has not been fully explored due ing candidate loci that may be responsible for complex
diseases in humans. Results from intercross mappingto lack of appropriate statistical methods. Conventional

QTL mapping that uses intercrosses of a chosen pair using a pair of strains certainly have limited value in
comparative genomic analysis. The pedigree analysisof lines is able to detect only a minute fraction of the

existing genetic variance. We have successfully applied that includes many strains should have a much broader
inference space and thus be more relevant to humanthe IBD method implemented via the mixed model

methodology to a maize data set and detected QTL genetic studies.
Statistical estimation of the IBD matrices is pivotalexplaining a large proportion of the phenotypic vari-

ance. The method provides a general machinery to ex- to the success of QTL mapping with multiple lines.
Currently, three methods are used to estimate the IBDplore naturally occurring genetic variation among in-

bred lines for other plant species with well-documented matrices: the Elston-Stewart algorithm (Elston and
Stewart 1971), the Lander-Green algorithm (Landerpedigrees, e.g., rice, soybean, wheat, etc. It also can be

used for genetic mapping in inbred mice, rats (Rattus and Green 1987), and Markov chain Monte Carlo meth-
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TABLE 4

Reevaluation of the eight QTL simulated under the multiple-QTL model (50 replications)

QTL

Parameters 1 2 3 4 5 6 7 8 Polygene Residual

Variance
True value 50.0000 33.3333 33.3333 16.6667 16.6667 8.3333 3.3333 2.5000 0.0000 2.5000
Mean 46.8222 36.3070 29.3333 19.1388 14.9889 8.2659 3.3545 4.1599 2.3156 1.6648
SD 25.5695 20.2418 24.8239 13.2557 11.8921 6.1652 4.9980 4.2488 5.8230 1.5677

Heritability
True value 0.3000 0.2000 0.2000 0.1000 0.1000 0.0500 0.0200 0.0150 0.0000 0.0150
Mean 0.2738 0.2194 0.1710 0.1194 0.0940 0.0523 0.0212 0.0256 0.0132 0.0101
SD 0.1226 0.1052 0.1118 0.0843 0.0725 0.0397 0.0310 0.0257 0.0320 0.0088

SD, standard deviation. The estimates were obtained from the average of 50 replicated simulations. Heritability of QTL is the
proportion of the total variance contributed by the QTL and is expressed as h 2

ui
� � 2

ui
/(�� 2

ui
� � 2

v � � 2 ).

ods (Sobel and Lange 1996; Heath 1997; Yi and Xu Zeng 1997; Goldgar 1990) in which all markers in
the linkage group are used simultaneously to infer the2000). Unfortunately, none of them can be used here

for inbred lines, which forced us to develop a new Monte genotype of the putative QTL. The other approach is
to impute the missing marker genotypes via Monte CarloCarlo algorithm particularly suitable for inbred lines.

The basic assumptions of the method are that every simulations. Once the missing marker genotypes are
simulated, the standard interval mapping approach willinbred line was derived from the hybrid of two parental

lines and the genetic variance among the inbred lines apply. We took the second approach. For each missing
genotype, we evaluated all the possible genotypes com-is not generated by mutation but preserved from the

original variance among the founders. These assump- patible with the pedigree information. We then ran-
domly selected one compatible genotype. The expectedtions are valid for most inbred lines in plants because

the breeding history of the pedigree is typically 
100 IBD matrix was calculated on the basis of a large number
of independent simulations. As the number of repli-years. Some of the inbred strains in laboratory mice,

however, were not generated from crosses; rather, they cated simulations increases, all possible genotypes have
a probability of being sampled. Fortunately, our methodwere derived from independent founders by new muta-

tions. Therefore, the model requires some modification does not require evaluation of all possible genotypes.
Most compatible genotypes may lead to the same IBDto take into account mutation to be applied to some of

the current mouse (M. musculus L.) pedigrees. This is values. The number of replicated simulations was cho-
sen as N � 3000 in our study. We actually tried severalan on going project of our laboratory.

Genetic mapping of maize flowering traits, including different N and found that when N 
 3000, the results
were not stable, but when N � 3000, the gain was notmale anthesis, female silking, and the anthesis-silking

interval, has been extensively studied (Ribaut et al. dramatic. In practice, N may depend on the size of
the pedigree and the marker information content. If1996; Jiang et al. 1999; Vladutu et al. 1999; Austin et

al. 2001). In most cases, six to eight QTL were identified computing time is not a major concern, one can always
try a large N. The mixed-model analysis itself is ex-for the above flowering traits (Ribaut et al. 1996; Jiang

et al. 1999; Austin et al. 2001). These mapped QTL tremely fast. The majority of the computing time of the
pedigree analysis is actually spent on computing theaccount for �40% of the phenotypic variation. We also

searched the maize genetic database (http://www.maize IBD matrix. Because we adopted the independent
Monte Carlo imputation approach, we can stop at anygdb.org/) to see if we could find genes similar to what

we found. The two QTL mapped to linkage groups 5 number of simulations and store the data. Later on if
more simulations are used, we can simply add the newand 9 in this article have also mapped to the same

positions in Berke and Rocheford (1995) and Koes- simulations to the old data set to increase N.
We have taken an interval mapping approach to scanter et al. (1993), respectively. The QTL located to link-

age group 4 in this article may be different from the the entire genome. The model is a single-QTL model.
Multiple QTL are implied if multiple peaks are presentQTL mapped to the other side of linkage group 4 by

Beavis et al. (1994). in the test-statistic profile. Given the positions of the
detected QTL, we reevaluated the QTL variances usingMissing marker information is one of the major prob-

lems in pedigree analysis. In the maize pedigree ana- a multiple-QTL model. This two-step approach has been
used previously (Lander and Botstein 1989; Yano etlyzed here, �5% of the markers were missing. Two ap-

proaches may be used for handling missing markers. al. 1997; Hunt et al. 1999; Bunyamin et al. 2002). The
single-QTL model in line-crossing experiments is beingOne approach is the multipoint method (Jiang and
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Heath, S., 1997 Markov chain Monte Carlo segregation and linkagereplaced by the multi-QTL model via either the maxi-
analysis for oligogenic models. Am. J. Hum. Genet. 61: 748–760.

mum-likelihood method (Kao et al. 1999) or the Bayes- Henderson, C. R., 1975 Best linear unbiased estimation and predic-
tion under a selection model. Biometrics 31: 423–447.ian method (Sillanpaa and Arjas 1998, 1999; Bink

Henderson, C. R., 1984 Application of Linear Models in Animal Breed-et al. 2002; Kilpikari and Sillanpaa 2003; Xu 2003).
ing. University of Guelph, Guelph, Ontario, Canada.

Theoretically, similar extensions can be made here for Hunt, G. J., A. M. Collins, R. Rivera, R. E. Page, Jr. and E. Guzman-
Novoa, 1999 Quantitative trait loci influencing honeybee alarmpedigree analysis. Unfortunately, a multiple-QTL model
pheromone levels. J. Hered. 90: 585–589.under the variance component framework is difficult Kao, C. H., Z-B. Zeng and R. D. Teasdale, 1999 Multiple interval

to implement. Therefore, the single-QTL model is still mapping for quantitative trait loci. Genetics 152: 1203–1216.
Kilpikari, R., and M. J. Sillanpaa, 2003 Bayesian analysis of multilo-the best available model in pedigree analysis of this

cus association in quantitative trait and qualitative traits. Genet.kind. We plan to develop a multiple-QTL model under Epidemiol. 25: 122–135.
Koester, R. P., P. H. Sisco and C. W. Stuber, 1993 Identificationthe Bayesian framework. However, such a multiple-QTL

of quantitative trait loci controlling days to flowering and plantmodel will provide only a practically convenient tool and
height in two near isogenic lines of maize. Crop Sci. 33: 1209–

not necessarily devalue the conceptual and theoretical 1216.
Jiang, C., and Z-B. Zeng, 1997 Mapping quantitative trait loci withcontribution of this study.

dominant and missing markers in various crosses from two inbred
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