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ABSTRACT
We developed a classification approach to multiple quantitative trait loci (QTL) mapping built upon

a Bayesian framework that incorporates the important prior information that most genotypic markers are
not cotransmitted with a QTL or their QTL effects are negligible. The genetic effect of each marker is
modeled using a three-component mixture prior with a class for markers having negligible effects and
separate classes for markers having positive or negative effects on the trait. The posterior probability of
a marker’s classification provides a natural statistic for evaluating credibility of identified QTL. This
approach performs well, especially with a large number of markers but a relatively small sample size. A
heat map to visualize the results is proposed so as to allow investigators to be more or less conservative
when identifying QTL. We validated the method using a well-characterized data set for barley heading
values from the North American Barley Genome Mapping Project. Application of the method to a new
data set revealed sex-specific QTL underlying differences in glucose-6-phosphate dehydrogenase enzyme
activity between two Drosophila species. A simulation study demonstrated the power of this approach
across levels of trait heritability and when marker data were sparse.

THE fact that we can map variation in complex phe- tion (Doebley and Stec 1991). As such, QTL mapping
is not simply a gene-finding tool. QTL mapping providesnotypes to chromosomal regions by exploiting the

linkage between random genetic markers and causal critical information regarding quantitative evolutionary
genetic processes.genetic variants in related individuals has long been

understood. Since the formalization of statistical ap- Traditional approaches to QTL mapping primarily
involve multiple regression models and maximum-likeli-proaches to this type of inference by Lander and

Botstein (1989) and the advent of high-throughput hood estimation and are powerful for detecting QTL
of moderate to large effect. However, detecting multiplemethodologies for constructing genetic maps with high

marker density, quantitative trait locus (QTL) mapping smaller genetic effects that may modify or interact with
larger effects is necessary and remains a challenge.in organisms from crops to mice has provided a rich
These smaller effects are important, as they can poten-knowledge of genes underlying important socioeco-
tially enhance crop breeding and further our under-nomic traits. It also has provided a better understanding
standing of genetic background effects on complex dis-of the genetic architecture of complex traits both within
ease. Quantifying the abundance of these types of effectsand between species. QTL mapping promises the im-
for any given trait also fills a gap in our knowledgeprovement of crops of international importance, such
regarding the distribution of genetic effects.as drought-resistant rice (for review see Price and

The most popular approach for QTL mapping is in-Courtois 1999; Price et al. 2002), and the advancement
terval mapping (IM). Proposed by Lander and Bot-of treatments for complex physiological diseases like
stein (1989), IM conducts likelihood-ratio tests for eachhigh blood pressure (Sugiyama et al. 2001). QTL map-
possible QTL by densely gridding chromosomes usingping has also been used to map traits that may be the
linkage information in the available marker data. It tac-target of intense selection both in natural populations,
itly assumes that the trait of interest is regulated by asuch as sexually dimorphic pigmentation patterns in
single gene. Under this single-QTL model, IM may failDrosophila (Kopp et al. 2003), and in crop domestica-
to separate closely linked QTL and instead report ghost
QTL that have no true effect on the trait (Knott and
Haley 1992; Martinez and Curnow 1992; Wright1Present address: Department of Ecology and Evolutionary Biology,

Brown University, Providence, RI 02912. and Kong 1997). Furthermore, epistatic interactions
2Corresponding author: Department of Biostatistics and Computa- between QTL are not identified by IM. Many ap-

tional Biology, University of Rochester Medical Center, 601 Elmwood
proaches have therefore been developed on the basisAve., Box 630, Rochester, NY 14642.

E-mail: dabao_zhang@urmc.rochester.edu of multiple-QTL models that generalize the single-QTL

Genetics 169: 2305–2318 (April 2005)



2306 M. Zhang et al.

model. Conditioning on selected markers outside a re- that have detectable positive effects on the phenotypic
values), a negative-effect class (including all QTL thatgion of interest to account for background effects, com-

posite-interval mapping (CIM) and multiple-QTL map- have detectable negative effects on the phenotypic val-
ues), and a negligible-effect class (including all non-ping (MQM) search for QTL across a series of intervals

covering chromosomes (Jansen 1993; Zeng 1993, 1994; QTL markers and all nondetectable QTL). In modeling
the population distribution for each class, we constructJansen and Stam 1994). Multiple-interval mapping

(MIM) directly regresses the trait on a set of markers, a three-component mixture prior distribution for the
effect of each investigated marker. The proposed proce-which densely grid the chromosomes (Kao et al. 1999).

Identification of multiple QTL is subject to the statistical dure is able to incorporate the a priori information that
most of the markers under investigation have negligibleissue of variable selection (Piepho and Gauch 2001;

Broman and Speed 2002; Sillanpää and Corander effect on the trait and that the positive-effect class and
negative-effect class may have different sizes. Two trun-2002), and Bayesian methodology using Markov chain

Monte Carlo algorithms has been developed for this cated Gaussian distributions are used to model the
population distributions for the positive-effect class andproblem (Satagopan et al. 1996; Sillanpää and Arjas

1998; Stephens and Fisch 1998; Ball 2001; Sen and negative-effect class. Using an a priori inverse gamma
distribution for their variance parameters, the corre-Churchill 2001; Xu 2003; Yi et al. 2003).

The Bayesian approach provides a natural framework sponding prior distributions are essentially truncated
t -type distributions so as to be sufficiently flexible heavy-for modeling multiple QTL, as it can accommodate

multiple imputation of missing values in phenotypes as tailed prior distributions. This incorporates the empiri-
cal observation that the distribution of genetic effectswell as genotypes and include all markers as random

variables in a single model. The ability to incorporate is heavy tailed (Lopez and Lopez-Fanjul 1993; Keight-
ley 1994; Keightley and Ohnishi 1998). These par-available information into QTL mapping and update

with newly observed data is an advantage provided tially informative prior distributions not only shrink the
estimates of the QTL effects toward zero to avoid theuniquely by Bayesian analysis. Access to powerful com-

putational resources and efficient algorithms makes it “curse of dimensionality,” but also allow for the estima-
tion of the a posteriori probabilities that a marker belongsrealistic to implement Bayesian analysis, and the direct

interpretation of the results from a Bayesian analysis to the positive-effect class, the negative-effect class, or
the negligible-effect class. Although point estimates ofalso makes it particularly applicable for the scientific

community (Shoemaker et al. 1999; Beaumont and these a posteriori probabilities provide information to
discover the corresponding effects’ classes (as in Yi et al.Rannala 2004).

Many Bayesian QTL-mapping methods capitalize on 2003), the distributional departure from probability 0.5
delivers additional information to help investigatorsthe complex reversible-jump Markov chain Monte Carlo

algorithm (Green 1995) to estimate the number of QTL make informed decisions when determining QTL sig-
nificance. As a graphical display, we propose a “heatand their effects on the trait (Satagopan et al. 1996;

Sillanpää and Arjas 1998; Stephens and Fisch 1998). map” to visually display the posterior probabilities of
membership in the positive-, negative-, or negligible-To avoid the problematic issue of Markov chain mixing

introduced by uncertain dimensionality of parameter effect class.
To validate our proposed approach we analyzed pub-space, Yi et al. (2003) developed an alternative Bayesian

method for identifying multiple QTL in experimental licly available data from a study of agronomic traits in
a doubled-haploid (DH) population of barley (Northdesigns based on stochastic search variable selection

(George and McCulloch 1993). For those markers American Barley Genome Project). Data sets simulated
across three trait heritabilities suggest that the proposedthat have negligible effects on the trait, they assume

the effects follow mean-zero Gaussian distributions with approach is powerful for detecting a broad range of
QTL effects, even when genotype data are missing. Asarbitrarily specified small standard deviations. In this

way the dimension of the parameter space is fixed and a further application, we used the method to detect sex-
specific QTL underlying glucose-6-phosphate dehydro-a more tractable Gibbs sampler can be constructed. The

posterior probability that a marker has a large effect is genase activity in a set of recombinant inbred introgres-
sion lines between Drosophila simulans and D. sechellia.estimated and used to indicate significance of QTL.

However, by using Gaussian distributions with small
standard deviations to model negligible effects, Yi et al.

THE MODEL AND BAYESIAN CLASSIFICATION
(2003) reduce the efficiency in the mapping procedure,
resulting in small posterior probabilities for the effects Multiple-linear-regression model: We focus on map-

ping multiple QTL in a set of homozygous lines, suchof QTL on the trait even if the corresponding effects
are large. as doubled-haploid lines or recombinant inbred lines,

generated from an initial cross between two isogenicWe propose a new Bayesian framework to identify
multiple QTL. We categorize all genetic markers into parental lines. In practice this model could be extended

to include inferences from crosses with resulting hetero-three classes, a positive-effect class (including all QTL
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zygous individuals, such as backcrosses or intercrosses. tion for modeling and incorporating prior information
as shown below.Assume genotypic data for m markers and phenotypic

data for one complex trait of interest are collected from Assume the population distribution for the positive-
effect class and the negative-effect class to be F�� andn individuals. Further assume the m markers are densely

located on the chromosomes of interest such that puta- F��, respectively. Let p�� be the probability for any
marker to be included in �(�) and p�� be the probabil-tive QTL will be cotransmitted with some of these m mark-

ers. Subject to additive main effects from putative QTL, ity for any marker to be included in �(�). Then, each
�j with j � �(�) [or j � �(�)] can be considered asthe phenotypic value of individual i (yi) is modeled as
independently sampled from an unknown distribution

y i � � � �
m

j�1

�j xj i � εi , (1) F�� (or F��). Hence, we have a three-component mix-
ture prior distribution for the effect of each marker;
that is,where � is the overall mean, xj i is the genotypic value

of the j th marker of individual i, and εi is the disturbance
error from environmental factors, which is assumed to �j �

iid
(1 � p�� � p��)�{0} � p��F�� � p��F�� , (2)

be distributed as N(0, � 2
ε). Therefore, �j describes the

where �{0} is a Dirac function with value one at zero and
main effect of the j th putative QTL.

value zero otherwise. This three-component mixture
When the markers are widely spaced across the ge-

prior distribution is able to incorporate the a priori infor-
nome, we can tightly grid the genome by imputing geno-

mation that most of the markers under investigation
types between markers (Lander and Botstein 1989;

have negligible effects on the trait and that the sizes of
Ball 2001; Sen and Churchill 2001; Kilpikari and

the positive-effect class and negative-effect class may be
Sillanpää 2003; Xu 2003). This is equivalent to assum-

different. Note that this prior does not use indicators
ing that the genotypic values of some markers are miss-

to specify each marker’s classification and avoids the
ing for all individuals. In practice, some marker geno-

unnecessary sampling of the indicator variables in the
types are also partially missing. All of these missing

Gibbs sampler.
genotypic values can be inferred using the known link-

In practice, we can simply take F�� � N�(0, � 2
��),

age information and the available marker genotype data
F�� � N�(0, � 2

��). The probability density functions of
(see Jiang and Zeng 1997). This model can incorporate

the two truncated Gaussian distributions N�(�, � 2) and
both observed and imputed marker information.

N�(�, � 2) are, respectively,
Identifying QTL from the markers under investiga-

tion using the above multiple-linear-regression model is �(�/�)�1

√2	� 2
exp��(x � �)2

2� 2 �I[x 
 0],equivalent to selecting variables xj i , which have nonzero
coefficients �j . Although previous approaches for QTL
mapping have considered classical model selection ap- �(��/�)�1

√2	� 2
exp��(x � �)2

2� 2 �I[x � 0]. (3)
proaches in statistics (e.g., Kao et al. 1999; Zeng et al.
1999; Ball 2001; Broman and Speed 2002), effects of The generality of the above priors can be guaranteed
imputed missing values on model selection have been by putting a further hierarchy of prior distributions on
largely ignored due to the potential difficulty. Classical the hyperparameters � 2

�� and � 2
��; that is, assuming the

model selection approaches are severely challenged prior distributions
when there are numerous highly correlated markers

��2
�� � �(
��, φ��), ��2

�� � �(
��, φ��). (4)and a small sample size. We therefore propose a Bayes-
ian classification method that incorporates the impor-

These priors (e.g., setting 
�� � 
�� � 0.5 and φ�� �
tant prior information that the QTL effects of most φ�� � 2 for � 2

1-distributions) lead to truncated t -type
genotypic markers are negligible and naturally exploits

distributions that are heavy tailed for the positive �j and
the linkage information in the genetic linkage map to

negative �j , respectively. They will shrink the estimated
impute missing values.

effects toward zero but at the same time provide the
Bayesian framework: We first classify all markers un-

flexibility to model the population distributions for
der investigation into three classes, the positive-effect

�(�) and �(�). Furthermore, t -type prior distributions
class �(�) � { j : �j 
 0}, the negative-effect class �(�) �

confer desirable decision-theoretic properties for the
{ j : �j � 0}, and the negligible-effect class �(�) � { j :

Bayes estimators (Fourdrinier et al. 1998).
�j � 0}. Therefore, for each j in �(�) or �(�), the

Results from previous QTL mapping may provide in-
corresponding marker has a negative or positive effect

formation about the probability of a marker having a
on the trait, respectively, and for each j in �(�) the

positive, negative, or negligible effect on the trait. This
corresponding marker has no detectable effect on the a priori information may be incorporated into the follow-
trait. Often, many markers may belong to the negligible-

ing conjugate prior distribution for p�� and p��,
effect class �(�), and the sizes of the positive-effect class
and the negative-effect class may be small and varied. (p�� , p�� , 1 � p�� � p��) � Dirichlet(
� , φ� , ��).

(5)Classifying effects into three classes provides the founda-
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In the case that no prior information is available for p�� p̃j � � P(�j 
 0|yn , xn , �, ��j , p�� , p�� , � 2
ε , � 2

�� , � 2
��),

and p��, we can assume each is uniformly distributed
p̃j � � P(�j � 0|yn , xn , �, ��j , p�� , p�� , � 2

ε , � 2
�� , � 2

��).
on the interval [0, 1] [i.e., the joint Dirichlet(1, 1, 1)
distribution, which describes the characteristics of no The chain {p̃ (t )

j � , t � 1, 2, . . . , T} or {p̃ (t )
j � , t � 1, 2, . . . ,

prior information]. Typically the number of markers m T } can be used to evaluate whether the j th marker has
is large relative to the sample size n, and it is unrealistic a positive or negative effect on the trait, respectively.
to assume both p�� and p�� are uniformly distributed Furthermore, the posterior probabilities pj � � P(�j 

on the interval [0, 1]. Instead, we can restrict both p�� 0|yn , x n) and pj � � P(�j � 0|yn , x n) can be estimated
and p�� to be smaller than min(�n/m, 1). This restric- from these two chains, and it is these posterior probabili-
tion also accounts for the sample size. Accordingly, the ties that provide information on the classification of
prior distribution for p�� and p�� should follow a trun- markers into the positive- and negative-effect classes. In
cated Dirichlet distribution. The intercept � has a uni- other words, these posterior probabilities can be used
form prior while � 2

ε has a prior proportional to 1/� 2
ε, as statistics for evaluation of whether or not a marker

both of which are noninformative. These priors, to- is linked to a QTL for the trait of interest. A value of
gether with priors defined by (2)–(5), provide a proper the posterior probability pj � 
 0.5 indicates that the j th
joint posterior distribution for the model (1), which is marker has a positive effect on the trait, while a value
shown in the appendix. of pj � 
 0.5 indicates a negative effect of the j th marker

Single-site Gibbs sampler: A single-site Gibbs sampler on the trait. Otherwise, we infer that the j th marker has
can be developed following the above formulation of a nondetectable effect on the trait.
the Bayesian model. Let yn collect all phenotypic values A heat map (Figure 1) can be used to graphically
of the trait and xn collect all genotypic values of the m view the values of pj � and pj � at different percentiles of
putative QTL. Let � � (�1, . . . , �m), ��j be � excluding their posterior distributions, allowing the investigator to
�j , and x�j,i � (x1i , . . . , xj �1,i , xj �1,i , . . . , xmi). Each visualize the posterior probabilities of a marker having a
iteration of the Gibbs sampler proceeds by recursively positive or negative effect with different levels of strin-
drawing each missing genotypic value and each parame- gency. In this way, the heat map provides a visual device
ter value from its full conditional posterior distribution. for determining the significance of QTL. The values of
Details for the implementation of the Gibbs sampler pj � and pj � at different percentiles of their distributions
with the imputation of missing genotypic values are are shown using a color scheme that maps a value of
presented in the appendix. zero to white, 0.5 to orange, and 1 to red. A spot at the

This Gibbs sampler starts from initial values for miss- � � 100 percentile in the top (or bottom) half of the
ing genotypic values and all other parameters. Initial heat map with color ranging from orange to red implies
values for missing genotypes can be sampled on the that the probability of the corresponding marker be-
basis of the nearest neighboring observed genotypic longing to the positive-effect (or negative-effect) class
values and available genetic linkage information. Initial is 
0.5 with a credibility of (1 � �) � 100%. For exam-
values for � and � 2

ε can simply take the sample mean ple, the first marker in Figure 1 can be inferred as a
and variance of y n . Regressing the phenotypic value of QTL with negative effect at the 90% credibility level but
the trait only on the j th genotypic value provides suit- not at the 99% credibility level, as its tenth percentile
able initial values for the �j . Then, the initial values for spot in the bottom half is red (pj � 
 0.5), but its first-
� 2

�� and � 2
�� can be calculated by using min(2�n, m) percentile spot in the bottom half is less than that of

components of the initial values of �, which have the yellow (pj � � 0.5). The heat map provides flexibility to
largest absolute values. investigators, allowing them to be more or less conserva-

Starting from these initial values and running the tive when identifying QTL.
Gibbs sampler for a sufficient burn-in period (5000 steps For each �j , we may use the chain {�(t )

j , t � 1, 2, . . . ,
in our analysis), the Gibbs sampler reaches stationarity T } to estimate its value. However, we are more interested
that can be confirmed by diagnostic tools (Cowles and in estimating the size of �j given the class it belongs to.
Carlin 1996). Each subsequent iteration of the Gibbs The corresponding chain may provide an unreliable
sampler provides a random draw of the missing values estimate because of the limited number of �(t )

j in some
and all other parameters from their posterior distribu- of the three classes. We propose to calculate the median
tions. All the draws after the burn-in period form a values at each iteration of the Gibbs sampler,
multivariate Markov chain on which inferences can be

�̃j � � median([�j |�j 
 0, yn , xn , �, ��j , p�� , p�� , � 2
ε , � 2

�� , � 2
�� ]);based.

Marker classification and effect estimation: After the �̃j � � median([�j |�j � 0, yn , xn , �, ��j , p�� , p�� , � 2
ε , � 2

�� , � 2
�� ]).

sufficient burn-in period, we run the above Gibbs sam-
pler for T additional iterations. Then, for each �j , we Then, if �j � �(�) [or �j � �(�)], the chain {�̃ (t )

j � ,
have two assumably stationary chains, i.e., {p̃ (t )

j � , t � 1, t � 1, 2, . . . , T } [or {�̃ (t )
j � , t � 1, 2, . . . , T }] will provide

an estimate of �j . With �̃j � , �̃j � , �̃j � , and �̃j � defined2, . . . , T } and {p̃ (t )
j � , t � 1, 2, . . . , T }, from
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Figure 1.—Heat map for posterior
probabilities pj � � P(�j 
 0|yn , x n) and
pj � � P(�j � 0|yn , x n ). These are the proba-
bilities of being in either the positive or
the negative genetic-effect class. The val-
ues of pj � and pj � at different percentiles
of the posterior distribution are shown
using different colors according to the
color scheme on the right. If the color of
pj � (or pj �) at the � � 100 percentile
ranges from orange to red, it implies that
the probability of the j th marker belong-
ing to the positive-effect (or negative-
effect) class is 
0.5 with a credibility of
(1 � �) � 100%.

in the appendix, the two median values can be calcu- cofactors is not our primary interest. We can simply
partition all nonmarker factors into different groupslated as
such that the coefficients for all factors within the same

�̃j � � �̃j � � ��1(0.5�(�̃j �/�̃j �))�̃j � ,
group can be assigned independently and identically
distributed prior distributions. The Bayesian framework�̃j � � �̃j � � ��1(0.5�(��̃j�/�̃j �))�̃j � ,
and Gibbs sampler can therefore be developed adap-

where �(·) is the cumulative distribution function of a tively.
standard normal distribution, and ��1(·) is its inverse Instead of collecting one observation, we may collect
function. replicate observations for each inbred line. For this type

Extensions: Our Bayesian framework can be easily of clustered data, efficiency consideration and non-
adapted to include imputation of genotypes between marker cofactors may prevent summarizing the observa-
markers, as well as epistatic interactions. The extensions tions from each line into one phenotypic value. The
of the genetic model to non-Gaussian phenotypic data above genetic model and Bayesian framework are quite
may complicate the development of the corresponding amenable to this type of data. Since individuals from
Gibbs sampler. However, this type of data could be han- the same line share marker genotypes, a common value
dled conceptually. In particular, drawing random sam- should be imputed to each missing marker genotype
ples of �j from its full conditional distribution may lose for all individuals within the same line.
its easy computability. In this case, while p̃j � and p̃j �

may be calculated numerically, computation of �̃j � and
�̃j � may need to be approximated using a Metropolis- VALIDATION AND SIMULATION
type algorithm.

Days to heading QTL in barley: To validate the model,The model (1) and its Bayesian framework can be
we analyzed line means for days from planting untilfurther extended. Continuous and discrete nonmarker
emergence of 50% of heads on main tillers for 145cofactors, can be incorporated into the multiple-linear-
barley doubled-haploid lines that were genotyped forregression model. For example, let zi include, for indi-
127 markers across seven linkage groups (Tinker etvidual i, all nonmarker cofactors that affect the corre-
al. 1996). Yi et al. (2003) analyzed this data set usingsponding phenotypic value. Then, subject to additive
stochastic search variable selection. Using a criticalmain effects from putative QTL and nonmarker factors,
threshold value of 0.5 for the posterior probability of athe phenotypic value of individual i (yi) can be modeled
marker being in the nonnegligible class, Yi et al. (2003)as
mapped QTL at markers I.12, III.5, IV.9, V.10, and VI.5

yi � � � �
m

j�1

�j x j i � zT
i � � εi , (the Roman number refers to the linkage group and

the Arabic number refers to the marker index within
the group). However, simply using the point estimateswhere � describes the effects of the nonmarker factors.
of these posterior probabilities to indicate significanceUsually, we incorporate nonmarker factors into the
of the corresponding markers ignores the variability ofabove model to control for their potential effects on

the trait. In QTL mapping the selection of nonmarker these statistics. Using the distributional departure of
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Figure 2.—Results of Bayesian classifica-
tion for heading trait in the North Ameri-
can Barley Genome Mapping Project.
Shown are the heat map for posterior prob-
abilities pj � and pj � (top) and the estimated
additive effects (bottom). In the top and
bottom, the central lines represent differ-
ent chromosomes by using colors alternat-
ing between orange and white and between
yellow and blue, respectively. The marker
identifications (IDs) along the x-axis are the
IDs within the corresponding chromo-
somes.

these posterior probabilities from probability 0.5 pro- score obtained from 1000 permutations of the pheno-
typic data. In concordance with results obtained fromvides a more informative approach for QTL detection.

With our three-component prior approach, QTL are our method and by Yi et al. (2003), IM identified signifi-
cant QTL around markers I.12, III.5, IV.9, and V.10mapped by using the distributional departure of the

posterior probabilities pj � and pj � from probability 0.5. plus several additional QTL around markers IV.5, VI.3,
and VII.18. Background markers for CIM were chosenFigure 2 shows the result of mapping QTL by our pro-

posed approach. Markers III.5 and IV.9 are significant by forward selection with background elimination re-
gression using inclusion and exclusion probabilities ofwith credibility level at 90%, but the evidence for sig-

nificance of markers I.12, VI.5, and V.10 is weak. In 0.1. CIM identifies QTL around markers I.6, I.12, III.5,
III.9, III.12, IV.9, V.10, and VII.18 and better localizesthis example, if we simply threshold the medians of

posteriors pj � and pj � at 0.5, 8 markers, including those the QTL to a more narrow region around marker IV.9.
Implementation of MIM using the forward/backwardabove, appear to have significant nonnegligible effects,

demonstrating the drawback to using a point estimate selection method with a significance level of 0.01 identi-
fied 15 QTL. Using the standard Bayes information cri-as a critical threshold for QTL detection.

We further analyzed the data set using IM, CIM, and terion model selection, we were able to detect three
additional QTL.MIM implemented in QTL Cartographer 2.0 (Wang et

al. 2004). We identified significant QTL using a 5% While all methods detect QTL neighboring markers
I.12, III.5, IV.9, and V.10, some methods detect uniqueexperimentwise critical threshold value for the LOD
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QTL, with the results from CIM and MIM depending
upon the model selection criterion employed. In partic-
ular, MIM detects many more significant QTL than the
other methods. A comprehensive simulation study is
necessary to fully assess the relative strengths and weak-
nesses of these different approaches. However, one ad-
vantage of the method we propose is better evaluation
of the significance of a QTL.

Simulation study: The ability to detect QTL is strongly
influenced by the trait heritability, with most statistical
methods being able to detect QTL for highly heritable
traits. However, for many phenotypes of interest, the
genetic component of the variance may be small relative
to the environmental variance, making QTL detection
challenging. In these cases, even QTL of relatively large
effect may be difficult to detect when the random envi-
ronmental effects on the trait are also large. To assess

Figure 3.—ROC curves plotting the true- vs. the false-posi-the performance of our approach we analyzed 10 ran-
tive rates from the simulation study. The asterisks corresponddomly generated QTL models with phenotypes simu-
to mapping QTL by reading the median values from the distri-

lated under three levels of heritability and with either butions of pj � and pj �. The flat part of the ROC curve corre-
no or 10% missing data. The data sets simulated were sponds to mapping QTL using more liberal decision rules to

allow a higher false-positive rate to improve the true-positivefor 225 recombinant inbred lines with three linkage
rate. On the other hand, more conservative QTL mappinggroups containing a total of 27 markers. The number of
may prefer some decision rules at the steep part of the ROCrecombination events per chromosome per generation
curve, where the false-positive rate is decreased at a cost to

was drawn from a Poisson distribution with mean equal the detection of true positives.
to the length of the chromosome in morgans (Haldane
1919).

The 10 QTL models each contained four QTL with set group. The receiver operating characteristic (ROC)
curves (Metz 1978) are drawn by using the Bayesianeffects drawn from a �(2, 1) distribution. At the j th

QTL of the i th line, the effect is defined as 2�j for classification approach on each 10-data set group (Fig-
ure 3). ROC curves assess the trade-off between the true-marker genotype AA (i.e., �i j � �j) and 0 for marker

genotype aa (i.e., �i j � 0). The genotypic value of a line and false-positive rates. Our ability to detect the 40 QTL
effects drawn from a �(2, 1) distribution improved sig-is the sum of these effects across the four true QTL,

and the genetic variance (� 2
g) is the sample variance of nificantly with increasing heritability and was only

slightly affected by missing values. Using the medianthe genotypic values across the lines. The phenotypic
value for each line (Yi) is calculated as Yi � 2�4

j �1�i j � values from the distributions of pj � and pj � as critical
threshold values for mapping QTL is equivalent to mak-εi , where the random environmental effect (εi) is drawn

from N(0, � 2
ε). The environmental variance (� 2

ε) is de- ing decisions at the turning part of the ROC curve (i.e.,
Figure 3, asterisks). More liberal QTL mapping mayfined as ((1 � h2)/h2)� 2

g , where h2 is the heritability
(0 � h2 � 1). We simulated phenotypic values for the favor some decision rules at the flat part of the ROC

curve to improve the true-positive rate by allowing an10 QTL models using h2 � 0.2, 0.4, and 0.6, which
correspond to the environmental variance being 4 increased false-positive rate. This liberal approach to

QTL mapping may be particularly useful when the goaltimes, 1.5 times, and two-thirds of the genetic variance.
Simulations were performed using QTL Cartographer is to identify large numbers of QTL candidates, such as

in marker-assisted selection programs (Spelman andversion 1.13 (Basten et al. 1994, 1999), and simulated
data sets with and without missing data were analyzed Bovenhuis 1998; Beuzen et al. 2000; Dekkers and Hos-

pital 2002). However, as is often the case, more conser-by our Bayesian classification method to infer the true-
and false-positive rates. vative QTL mapping will require decision rules at the

steep part of the ROC curve, decreasing the false-posi-In total there were 10 mapping data sets with 40 true
QTL simulated across the range of heritabilities, both tive rate but potentially missing some true QTL. The

heat map for posterior probabilities pj � and pj � is de-with and without missing data. With sufficient recombi-
nation between markers, each QTL should be detected signed to allow investigators to make these types of deci-

sions when scanning genomes for QTL.only by its neighboring markers. We therefore consid-
ered any significant markers not directly neighboring Given a trait’s heritability, QTL detection will also

depend upon the magnitude of the single-QTL effect.simulated QTL as false positives. This will inflate our
false-positive rate when markers are tightly linked. Fol- Figure 4 demonstrates the true-positive rates vs. effect

sizes at different heritabilities when using the Bayesianlowing this definition, 198 negatives are in each 10-data
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classification approach. The true-positive rates here are
calculated by counting only those QTL with effects
higher than each given effect size. With heritability 0.2,
conservative QTL mapping makes it difficult to identify
QTL even if these QTL have large effects. Mapping QTL
by reading the median values from the distributions of
pj � and pj � identified large-effect QTL, but this ap-
proach may lead to more false positives (Figure 3). With
increasing heritability, more conservative decision rules
could be adopted to lower false-positive rates without
loss of power to detect large-effect QTL (Figure 4). Note
that many markers that are one marker away from the
markers neighboring QTL were significant and classi-
fied as false positives according to our stringent defini-
tion of true positives. A looser definition of true positives
will significantly improve the results reported in Figures
3 and 4.

DATA ANALYSIS

Glucose-6-phosphate dehydrogenase (EC1.1.1.49, G6PD)
catalyzes the conversion of glucose-6-phosphate (G6P)
to 6-phospho-d-glucono-1,5-lactone, shunting G6P from
the main backbone of glycolysis through the pentose-
phosphate pathway and creating reducing power for
the cell in the form of NADPH. In Drosophila, patterns
of nucleotide variation at G6PD (Eanes et al. 1993,
1996), as well as covariance in enzyme activities of G6PD
and its neighboring enzyme, 6-phosphogluconate dehy-
drogenase, across Drosophila species (Clark and Wang
1994), suggest that G6PD activity may come under selec-
tion in natural populations. Enzyme activities may evolve
via mutations at the enzyme-encoding loci or rather
through mutations at trans-acting loci that alter the
quantity or function of the enzyme. QTL mapping pro-
vides a way to determine whether variation in enzyme
activity (Mitchell-Olds and Pedersen 1998; Mon-
tooth et al. 2003) or protein quantity (Damerval et al.
1994) is the result of genetic variation cis or trans to the
enzyme-encoding locus.

Introgression lines between closely related species
allow us to map QTL underlying interspecific differ-
ences in quantitative traits. We quantified male and
female G6PD activity in 221 inbred introgression lines
between the sibling species D. simulans and D. sechellia
that were genotyped at 28 markers across the X, second,
and third chromosomes. Details for the construction
and genotyping of these lines can be found in Dermit-
zakis et al. (2000) and Civetta et al. (2002). We mea-
sured G6PD activity as in vitro maximal activity from

Figure 4.—True-positive rate vs. effect size (�) at different whole-fly homogenates using a standard spectrophoto-
heritabilities: h 2 � 0.2 (top), h 2 � 0.4 (middle), and h2 � 0.6 metric assay to monitor the NADPH that accumulates
(bottom). The true-positive rates are calculated by counting

when G6P is converted to 6-phospho-d-glucono-1,5-lac-only those QTL with effects higher than the given effect size
tone (Clark and Keith 1989). The data set for male(x -axis). The different lines refer to the different decision

rules with and without missing data; 50%, 10%, and 1% refer G6PD activity (G6PDM) contained 864 trait measures
to the percentiles of the posterior probabilities pj � and pj � across 210 lines, while that for females (G6PDF) con-
that were used as threshold values. tained 832 measures across 206 lines.
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Figure 5.—Results of Bayesian classification for male G6PD (left) and female G6PD (right) enzyme activities. Shown are the
heat map for posterior probabilities pj � and pj � (top) and the estimated additive effects (bottom). In the top and bottom, the
central lines represent different chromosomes by using colors alternating between orange and white and between yellow and
blue, respectively. The marker IDs along the x -axis are the IDs within corresponding chromosomes.

We applied our Bayesian classification approach to 5). The residual variances for G6PDM and G6PDF were
estimated to be 0.5697 and 0.7089, respectively. Becausedetect interspecific QTL for G6PD activity and to deter-

mine whether the same loci underlie G6PD activity in the phenotypic values are standardized in our analysis,
the markers and covariates in this model explained �43males and females. This is a particularly challenging

data set for QTL detection, as the percentage of missing and 29% of the phenotypic variation in G6PD activity
for males and females, respectively.genotype data is high (18%) and, due to the nature of

the introgression (see Dermitzakis et al. 2000), the To assess the performance of our method with this
data set, we simulated five data sets using the observedfrequency of the D. sechellia genotype at certain markers

can range from 2 to 66%. There were also a number marker genotypes and the parameter estimates from
the above analysis for both G6PDM and G6PDF. Analyz-of covariates that we needed to incorporate into the

model to control for both biological (fly weight and ing data simulated in this fashion can reveal the effects
of imputing missing genotype data, as the missing datatotal protein content) and experimental effects.

We identified a QTL on the tip of the right arm of are imputed independently for each simulated dataset.
Among the two most outstanding effects on G6PDM inchromosome 3 (marker III.11) that has strong effects

on G6PD activity in both males and females (Figure 5). Figure 5, marker I.4 was strongly significant in four of
five simulated data sets and was mildly significant in theIt is interesting to observe that while this QTL had the

same magnitude of effect in both sexes, there was an fifth data set, while marker III.11 was highly significant
in all simulated data sets. The remaining three weakadditional X-linked QTL (marker I.4), distinct from the

X-linked structural locus of G6PD, that had a rather effects on G6PDM were occasionally detected in the
simulated data sets. Although marker I.4 had a largeroutstanding effect on male G6PD activity only (Figure
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effect than marker III.11, more missing genotype data where the normalized lp-norm is bounded by � (John-
stone and Silverman 2004). We conjecture that thefor marker I.4 than for marker III.11 slightly compro-

mised its significance in mapping QTL. estimation methods proposed here achieve an optimal
estimation rule as the sample size increases and as �The estimated effects on G6PDF were much smaller

(Figure 5). The most outstanding effect on G6PDF at goes to zero, in which sense it adapts automatically to
the parameter space’s sparseness. Johnstone and Sil-marker III.11 was strongly significant in three out of

five simulated data sets and mildly significant in the verman (2004) study a general class of estimation prob-
lems in sparse parameter spaces and show that a two-other two data sets. Because of unbalanced genotypes

at marker I.2 (�1:50), marker I.2 is seldom significant component mixture prior is adaptive and has some
optimal estimation properties. The modeling strategyin the five simulated data sets, although it is only slightly

smaller in effect size than marker III.11. Nonnegligible using a two-component mixture prior has been quite
successful in attacking similar issues of false positiveseffects in the initial data analysis were detected as weakly

significant effects in one of the five simulated G6PDM and false negatives in gene expression identification
(Zhang et al. 2004) where one needs to identify a smalldata sets and in two of the five G6PDF data sets.

As illustrated in this simulation study, equal segrega- number of differentially expressed genes from a large
number of candidates.tion of marker genotypes can improve the ability to

accurately map QTL. The extent of missing genotype The specification of the prior distribution for the
genetic effects is critical and can influence the perfor-data may also affect QTL detection, particularly when

the marker genotypes are unbalanced. False nonnegligi- mance of the Bayesian approach to QTL mapping. Moti-
vated by the above observations and the need to incorpo-ble effects seldom appear in the results from our ap-

proach and, when observed, their significance as QTL rate biologically relevant information into the prior
specification of the genetic effects, we developed awas marginal.
three-component mixture prior on the basis of a natural
classification of the marker effects (i.e., positive-, nega-

DISCUSSION
tive-, and negligible-effect classes) in a new Bayesian
inference framework. The posterior probability of aThe three-component mixture prior as a natural speci-

fication of genetic effects: Model selection based on marker belonging to one of the three categories is a
natural statistic for assessing the significance of anymultiple-regression models of phenotypic data on multi-

ple genetic markers is increasingly accepted as a general marker being linked to a QTL for the trait of interest.
This posterior probability of a marker’s classificationframework for mapping multiple QTL, with a large

number of proposed methodologies being developed can be sharply inferred, and the marker effect on the
phenotype can also be efficiently estimated using the(e.g., see Hoeschele 2001; Piepho and Gauch 2001;

Broman and Speed 2002; Sillanpää and Corander proposed Gibbs sampler. Furthermore, the uncertainty
associated with these estimates is naturally available2002; Yi 2004). QTL mapping is an inherently challeng-

ing problem. Large amounts of missing marker data, from the corresponding posterior distributions, provid-
ing an advantage over classical approaches. Simulationdue to failure in genotyping or selective genotyping,

are quite common in practice. When markers are sparse, experiments revealed that the approach is powerful for
QTL detection and has relatively low false-positive rates,the missing genotype information between markers

must also be inferred (Kao et al. 1999; Zeng et al. 1999). even when there are large amounts of missing data.
The three-component prior approach that we advo-In addition, the number of markers to test can be very

large relative to the number of observed individuals cate for here has four significant advantages over exist-
ing methods for QTL inference. First, three-component(Meuwissen et al. 2001; Xu 2003), a problem that has

been notoriously difficult in statistics. priors incorporate the known information that most
markers are not cotransmitted with QTL or their QTLThe majority of genetic markers across a genome will

not be linked to QTL for the trait of interest. From a effects are not detectable, which is important in control-
ling false-positive inference. In particular, if the numberstatistical theory perspective, the parameter space in a

QTL identification problem is quite sparse. Most classi- of available markers is on the same scale as the number
of lines (or even if there are more markers than lines),cal methods for QTL mapping work well for a small

number of QTL candidates. The challenge is then to it is necessary to incorporate this prior expectation of
rarity of QTL to guarantee the model identifiability indevelop an easy-to-implement framework for QTL map-

ping that efficiently detects sparse effects with a suffi- multiple-linear regression. Second, the three-compo-
nent prior approach is flexible and allows an imbalanceciently low false-positive rate, precisely estimates their

effects, and does so in the face of missing data and small between sizes/distribution of positive- and negative-
effect classes. Third, unlike the two-component priorsnumbers of observations. Two typical parameter spaces

used to model sparseness are “nearly black” spaces, used by Yi et al. (2003), we classify all effects into three
classes and describe the population distribution of eachwhere the proportion of the nonzero parameter compo-

nents is no more than a positive �, and Besov spaces, class. This avoids the disadvantage of stochastic search
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variable selection, which has difficulty in specifying 2003). A recent analysis of differential allelic expression
in D. melanogaster and D. simulans hybrids found that cis-many prior parameters and relies on assorting of each
acting effects could largely explain interspecific expres-marker into either the small-effect or the large-effect
sion differences between the two closely related Dro-class. Note that Xu (2003) models each putative QTL
sophila species (Wittkopp et al. 2004). The interspecificeffect with a Gaussian distribution having its own vari-
G6PD QTL identified in our analysis have trans-actingance parameter and further specifies noninformative
effects in both males and females, suggesting that differ-priors for each variance parameter to avoid the above
ences in G6PD activity have evolved between D. simulansdifficulty. However, the efficiency in extracting informa-
and D. sechellia via genetic variants located away fromtion from the data may be lowered by ignoring that
the enzyme-encoding locus. QTL mapping is an impor-most markers have negligible effects on the trait. Tuning
tant tool in our continued attempts to understand theparameters is a general problem with reversible-jump
role of cis- and trans-acting genetic effects in the evolu-Markov chain Monte Carlo that we can avoid in our
tion of gene expression, protein quantity, and enzymaticmethod. The fourth advantage of our approach is that
activity regulation.the Gibbs sampler exports parameters �̃j � , �̃j � , p̃j � ,

Implementation and extension of the Bayesian classi-and p̃j � , which can be used to make inference more
fication approach: The proposed Gibbs sampling algo-efficiently than the �-chain only.
rithm for our Bayesian classification approach is imple-Identification of sex-specific QTL in D. simulans and
mented in MATLAB as software called QTLBayes (freeD. sechellia : Application of our Bayesian classification
for academic usage), which, due to its flexibility, canapproach to a data set of metabolic enzyme activities
be readily applied to most QTL data. The frameworkfrom inbred introgression lines revealed QTL underly-
is currently for the analysis of inbred lines derived froming G6PD activity differences between the closely related
two inbred parental lines, and it can accommodate mul-Drosophila species, D. simulans and D. sechellia. We iden-
tiple covariates, as well as replicate measures for individ-tified a QTL on the tip of the right arm of chromosome
uals from the same line. The heat map provides an3 at cytological position 99E2 where the D. sechellia allele
informative visual tool for identifying significant QTLincreased G6PD activity in both males and females. We
at varying levels of stringency.also identified a male-specific QTL on the X chromo-

One disadvantage of Bayesian analysis is the intensivesome at cytological position 7C1, which is distinct from
computation involved (Nakamichi et al. 2001). If therethe X-linked G6PD enzyme-encoding locus at cytologi-
are only a small number of missing values, the computa-cal position 18D13. These results suggest that genetic
tion will not be an issue. Although imputation of missingdifferences in G6PD activity between D. simulans and D.
data can be easily handled statistically within our frame-

sechellia are caused by trans-acting and sex-specific genetic
work, imputation of large amounts of missing genotype

effects. data may be computationally slow. An alternative strat-
In D. melanogaster sex-specific genetic architecture is egy is to assume that there is at most one QTL between

common. Sex-specific QTL underlie neuro-sensory phe- each pair of neighboring markers and adopt the com-
notypes (Long et al. 1995; Mackay and Fry 1996; posite space representation by Yi (2004). Prior specifi-
Fanara et al. 2002), as well as life-history traits, such as cation can also impact algorithm performance in Bayes-
longevity (Nuzhdin et al. 1997) and starvation resistance ian analysis. The only informative priors in our analysis
(Harbison et al. 2004). Sex-specific genetic effects also are the specification of inverse gamma distributions for
shape global expression variation within D. melanogaster � 2

�� and � 2
�� to provide heavy-tailed priors for the distri-

(Anholt et al. 2003) and between Drosophila species bution of genetic effects. When available, additional
(Ranz et al. 2003). Our results demonstrate that in Dro- information can be readily incorporated into the prior
sophila these sex-specific genetic effects also contribute specification, increasing the efficiency of estimation.
to interspecific differences between species in metabolic While the software currently analyzes data from iso-
processes. genic lines, the model can be readily modified to accom-

Genome-wide analyses of gene expression, protein modate a variety of experimental designs. The approach
abundance, and function are shedding light on the rela- could also be extended to more complicated cases in
tive contribution of cis- and trans-acting genetic variants QTL mapping, such as clustered data, multiple pheno-
to both inter- and intraspecific variation. QTL mapping types, and pairwise epistasis. Detecting epistatic interac-
results indicate that trans-acting effects predominate in- tions between pairs of QTL is an important challenge,
traspecific variation in yeast (Schadt et al. 2003) and driven by the biological interest in detecting genetic
mouse (Brem et al. 2002) expression profiles, protein interactions, but hampered by the extreme multiplicity
quantity in maize (Damerval et al. 1994), and enzyme of tests in performing an exhaustive search. The ability
activity in both D. melanogaster (Montooth et al. 2003) of our approach to select variables in the case of many
and Arabidopsis (Mitchell-Olds and Pedersen 1998). tests with a small number of observations makes it possi-
However, cis-acting effects are also detected, and in yeast ble to directly extend the approach to identify pairwise

epistasis underlying complex traits.these effects are of larger magnitude (Schadt et al.
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APPENDIX: IMPLEMENTATION OF THE SINGLE-SITE GIBBS SAMPLER

Let the vector yn collect all phenotypic values of the trait and xn collect all genotypic values of the m putative QTL,
and let � � (�1, . . . , �m) and ��j be � excluding �j , x�j,i � (x1i , . . . , xj �1,i , xj�1,i , . . . , xmi). Denote the conditional
distribution of A given B as [A|B] and the marginal distribution of A as [A]. Each of the conditional distributions
below are based on the fact that [A|B] � [B |A][A].

Each iteration of the Gibbs sampler can proceed as follows:

0. Specify initial values as described in the Bayesian framework section.
1. Sample each missing genotypic value xj i from its full conditional posterior distribution,

[xj i |yi , x�j ,i , �, �, � 2
ε] � [yi |x�j ,i , xj i , �, �, � 2

ε] � [xj i |xj �1,i , xj �1,i].

2. Sample � from its full conditional distribution,

�|yn , xn , �, � 2
ε � N�1

n�
n

i �1
�yi � �

m

j �1

�j x j i� ,
� 2

ε

n � .

3. For each j � 1, . . . , m, sample �j from its full conditional distribution,

�j |yn , xn , �, �� j , p�� , p�� , � 2
ε , � 2

�� , � 2
�� � (1 � p̃j � � p̃j �)�{0} � p̃j �N�(�̃j � , �̃ 2

j �) � p̃j �N�(�̃j � , �̃ 2
j �),

where

�̃j � �
� 2

���n
i�1xj i(yi � � � �l�j �l xl i)

� 2
ε � � 2

���n
i�1x 2

j i

,

�̃ 2
j � �

� 2
��� 2

ε

� 2
ε � � 2

���n
i �1x 2

j i

,
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�̃j � �
� 2

���n
i �1xj i(yi � � � � l �j �l xl i)

� 2
ε � � 2

���n
i�1x 2

j i

,

�̃ 2
j � �

� 2
��� 2

ε

� 2
ε � � 2

���n
i �1x 2

j i

,

p̃j � �
2p�� (�̃j � /��� )�(�̃j� /�̃j� )exp{�̃ 2

j� /2�̃ 2
j� }

1 � p �� � p �� � 2p ��(�̃j � /��� )�(�̃j � /�̃j � )exp{�̃ 2
j � /2�̃ 2

j � } � 2p � � (�̃j � /��� )�(�(�̃j � /�̃j � ))exp{�̃ 2
j� /2�̃ 2

j � }
,

p̃j � �
2p� � (�̃j � /��� )�(�(�̃j � /�̃j � ))exp{�̃2

j � /2�̃ 2
j � }

1 � p �� � p �� � 2p ��(�̃j � /���)�(�̃j � /�̃j � )exp{�̃ 2
j � /2�̃ 2

j � } � 2p ��(�̃j � /��� )�(�(�̃j � /�̃j � ))exp{�̃ 2
j � /2�̃ 2

j � }
.

4. Sample � 2
ε from its full conditional distribution,

��2
ε |yn , xn , �, � � ��n2 , 2/�

n

i �1
�yi � � � �

m

j �1

�j xj i�
2

� .

5. Sample p�� and p�� from the full conditional distribution,

(p�� , p�� , 1 � p�� � p��)|� � Dirichlet(
� � ñ�� , φ� � ñ�� , �� � m � ñ�� � ñ��),

where ñ�� � #{�j : � j 
 0, 1 � j � m} and ñ�� � #{�j : �j � 0, 1 � j � m}. If the prior distribution of p�� and
p�� is restricted to be less than min(�n/m, 1), the full conditional distribution should be a truncated Dirichlet
distribution.

6. Sample � 2
�� and � 2

�� from the full conditional distributions,

��2
�� |� � ��
�� �

ñ��

2
, �1/φ�� �

1
2 �

m

j �1

�2
j I[�j 
 0]�

�1

� ,

��2
�� |� � ��
�� �

ñ� �

2
, �1/φ� � �

1
2 �

m

j �1

� 2
j I[�j � 0]�

�1

� .

7. Repeat steps 1–7 until stationarity and the desired number of samples has been obtained.


