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ABSTRACT
Mutation is the ultimate source of genetic variation, and mutation rate is thus an important parameter

governing the extent of genetic variation. Microsatellites are highly informative genetic markers that have
been widely used in genetic studies. While previous studies showed that the mutation rate differs in di-, tri-,
and tetranucleotide repeats, how mutation rate distributes within each class of repeat is poorly understood.
This study first revealed the pattern of the mutation rate variation within the dinucleotide repeats. Two
data sets were used. The first is the allele frequency data from 115 microsatellites with dinucleotide repeats
distributed along the human genome in 10 worldwide populations. The second data set is much larger,
consisting of the allele frequency of 5252 dinucleotide repeats from the Genome Database. Mutation rate
for each locus is estimated through a new homozygosity-based estimator, which has been shown to be
unbiased and highly efficient and is reasonably robust against deviations from the single-step model. The
mutation rates among loci can be approximated well by a gamma distribution and its shape parameter
can be accurately estimated with this approach. This result provides the basic guidelines for analyzing the
large-scale genomic data from microsatellite loci.

WITH the progress of genomic research, large ge- mutational events. The observation can come either
from the genotype data of a large number of pedigreesnetic variation data at microsatellite loci have been
or from typing a large number of sperms (Weber andgenerated. Because of their high polymorphism, there is
Wong 1993; Holtkemper et al. 2001). This approacha growing interest in utilizing microsatellites to make
is quite costly in practice because mutation rates at mostinferences in human genetic studies, ranging from pop-
microsatellite loci are not sufficiently large to be accu-ulation genetic study, to forensic analysis, to genetic
rately measured with reasonable sample size and it ismarkers for gene hunting. One common feature of the
practically impossible to carry out such estimations forgenetic studies using microsatellites is that multiple loci
every locus, even though their mutation rates are severalare generally employed because a single locus does not
orders of magnitude higher than those at the DNAprovide sufficient resolution. Mutation rate (�) per lo-
nucleotide sites. Furthermore, the estimates of mutationcus per generation is an important parameter for such
rates with direct methods can often be obscured bystudies, and its value varies considerably from locus to
incorrect assumptions regarding the biological relation-locus (Di Rienzo et al. 1998; Zhivotovsky 2001). It is
ships of the observed pedigree. Nonetheless, the averagewithout doubt that ignoring rate variation among loci
of the observed number of mutations over several loci,is inappropriate and can lead to misleading inferences.
scored with a large enough number of meiosis events,Therefore the knowledge on the pattern of rate varia-
can provide reasonable estimates of the average muta-tion of microsatellite loci in the human genome is not
tion rate of a group of microsatellite loci (e.g., Weberonly of interest in understanding our genome but also
and Wong 1993). Recently large quantities of micro-highly relevant to better inferences utilizing microsatel-
satellite genotype data on human pedigrees have beenlite loci. To date, rate variation among microsatellites
collected during the studies of human disease. Severalis poorly understood.
studies have utilized the data to estimate the mutationThe prerequisite of characterizing the variation of
rate at microsatellite loci (Xu et al. 2000; Huang et al.mutation rate among loci is the proper estimation of
2002). For the purpose of understanding rate variation,the rate at each locus. The mutation rate of a microsatel-
there can be potential bias in directly counting mutationlite locus can be estimated from direct observation of
events because the loci in such studies are selected first
to be highly polymorphic and second to be easy to
genotype. Therefore, these loci may not be representa-
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TABLE 1the mutation rate variation at the genome level using
the direct approach. The distribution of ALFRED markers

Alternatively, the mutation rate can be estimated us- on each chromosome
ing population genetic methods that utilize allelic fre-
quency in population samples since more and more Chromosome No. loci
genetic variation data at microsatellite loci are available.

2 1In such analyses, it is commonly assumed that the popu- 3 12
lation has reached a mutation-drift equilibrium so that 5 21
the allele frequency distribution can be expressed in 6 18
terms of the composite population parameter � � 4N� , 7 9

8 5where N is the effective population size and � is the
9 13mutation rate per locus per generation. For most human

10 18populations, this is a reasonable assumption. Using this
11 18approach, Chakraborty et al. (1997) showed that the

mutation rates of di-, tri-, and tetranucleotide loci are
inversely proportional to their motif sizes. They arrived

development, we carried out an analysis of mutationat this conclusion on the basis of the average mutation
rate variation at dinucleotide microsatellite loci usingrate in each category of microsatellite loci. It is also
data from two sources. One is the genetic variation datashown in their analysis that a considerable amount of
from the ALFRED database. Another is a much morevariation of mutation rate exists within each group of
comprehensive data set of dinucleotide microsatellitesmicrosatellite loci with the same motif. With the avail-
from the Genome Database. This article presents theability of more and more genetic variation data at micro-
analysis results and discusses their implications.satellite loci distributed across the human genome, it is

now increasingly feasible to study mutation rate and its
variation at human microsatellite loci.

MATERIALS AND METHODS
For the DNA nucleotide sequence data, variation in

substitution rates has been observed for a long time. Data set I: Allele frequency data at 115 dinucleotide micro-
satellites are obtained from the database ALFRED at YaleSeveral substitution models have been proposed to fit
University maintained by Dr. K. K. Kidd. The markers coverthe distribution of the substitution rates (e.g., Jukes and
chromosomes 2–11. All data are downloaded from ALFRED at

Cantor 1969; Felsenstein 1981). Among them, gamma- http://alfred.med.yale.edu/alfred/index.asp. Part of the loci
distributed rates (Nei et al. 1976; Gu et al. 1995; Yang are from the ABI linkage panels 8–11 and 13–16. The distribu-

tion of the loci on each chromosome is shown in Table 1.and Kumar 1996; Tourasse and Gouy 1997) and the
The markers selected are all dinucleotide (CA) repeats.site-specific rates (Swofford et al. 1996) are the most

These markers are intentionally selected to be distant frompopular ones. It is of interest to see whether the muta-
any known locus under selection. More information about

tion models will fit the mutation rate distribution for the these markers can be found at the web site previously men-
microsatellite loci in human. Interestingly, Goldstein et tioned.

Microsatellite data from 10 different worldwide populationsal. (1996) found that ln(V ), where V is the population
were analyzed. African populations were represented by Biakavariance in repeat numbers, follows approximately a
Pygmies from the Central African Republic and the Mbutinormal distribution, for a single locus, but their result
Pygmies from northwestern Zaire. Non-African populations

has no bearing for the distribution of mutation rate included a sample of unrelated Danish blood donors, a Muslim
over loci. community from northern Israel, Han Chinese living in the

United States, native Japanese from the Osaka area or visitorsSince our approach is based on the estimate of �, we
to Stanford or Yale, the Yakut from Siberia, the Nasioi fromneed to start with an efficient estimator of � to get as
Melanesia, the Mayan from Mexico, and the Rondonian Suruiaccurate as possible an inference of the variation pattern
from Brazil. The last four populations are representations

of the underlying mutation rate at dinucleotide micro- of small isolated populations. More information about these
satellite loci. Otherwise, the random error in the esti- populations is available at http://info.med.yale.edu/genetics/

kkidd/pops.html.mates could easily dominate the variation of the esti-
Data set II: Allele frequency data were collected from themates and blur the true variation pattern. Recently, we

most recent version of the online Genome Database (http://developed an estimator of � based on genetic variation
www.gdb.org). The data consist of 5254 dinucleotide repeats

data at microsatellite loci (Xu and Fu 2004). The estima- that cover 22 autosomal chromosomes and the X chromo-
tor is unbiased under the single-step stepwise mutation some. The distribution of the number of loci on each chromo-

some is shown in Figure 1. The allele frequencies availablemodel and is robust against other forms of stepwise
for these loci are mainly for the CEPH-Caucasian population.mutation models. It also has the advantage of being
The sample size is at least 40 for the majority of the loci.simple to compute and performs better than several

� estimation: The parameter � � 4N�, where N is the ef-
existing estimators, including the maximum-likelihood- fective population size and � is the mutation rate per locus per
based estimator. Therefore it is ideal for the analysis generation, is critical in analyzing genetic variations because

many statistical properties of measures of genetic variationof large genomic data. Taking advantage of this new
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Figure 1.—Distribution of the number of dinucleotide re-
peat loci from the GDB on each chromosome.

are dependent on the parameter. Since it is the product of
population size and mutation rate, it is also known as the
population mutation rate. Recently we developed a new esti-
mator of � for microsatellite loci based on sample homozygos-
ity. It is approximately unbiased assuming the single-step step-
wise mutation model and has a much smaller variance than
the size-variance-based estimator. The sample homozygosity
is computed as

F̂ � �n�
k

i�1

p2
i � 1�/(n � 1) , (1)

where n is the sample size, k is the number of alleles in the
sample, and p i is the allele frequency for the i th allele in the
sample. A biased estimator �̃F is given by

�̃F �
1
2�

1
F 2

� 1� . (2) Figure 2.—An example showing the effects of two parame-
ters in a gamma distribution on the probability density func-
tion (pdf) of X. Top: the effect of the shape parameter � withThen an unbiased estimate of � is obtained through solving
a constant scale parameter � � 1.0; Bottom: the effects of thethe corresponding equation for � depending on the biased
scale parameter � with a constant � � 2.0.�-estimator �̃F . For �̃F � 15.0 ,

�̃F � �1.1313 �
3.4882

n
�

28.2878
n 2 �� � 0.3998√� . (3)

locus, respectively, and � i j is defined as the relative mutation
rate of locus j over locus i . Thus the mutation rate can beFor �̃F 	 15.0,
estimated on a relative term through this approach. Taking
a particular locus as a base locus, the relative mutation rates

�̃F � �1.1675 �
3.3232

n
�

63.698
n 2 �� � 0.2569√� . (4) of all other loci were computed through this approach. For

data set I, since allele frequency data across several worldwide
populations were available, the relative mutation rate � i j wasAt the point of 15.0, the two equations converge. Therefore,
estimated in each population and a simple arithmetic averageestimates given by the two equations converge when the �̃F is
was taken as a final estimate.about 15.0. The composite parameter � was estimated for each

The gamma distribution has long been used to model thelocus in every possible population where allele frequency data
variation in mutation rate at the protein-enzyme loci and sin-are available in both data sets.
gle-nucleotide sites (Nei et al. 1976; Gu et al. 1995; Yang andRelative mutation rate: The ratio of �j , the estimate of � for
Kumar 1996; Tourasse and Gouy 1997). A random variablethe j th locus, and �i , the estimate for the i th locus in the same
X following a standard gamma distribution has probabilitypopulation, was taken. Assuming the effective population size
density functionN is the same for different loci from the same population,

we have
f(x) �

1

(�)��

x ��1e�x/� , 0 � x � ∞ , � 	 0, � 	 0,�j

�i

�
4N� j

4N� i

�
� j

�i

� � i j , (5)

which has two parameters, � and �. The parameter � is known
as the shape parameter, since it primarily influences the peak-where � i and � j are the mutation rates at the i th and j th
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Figure 3.—Histogram of the distribution of the relative
Figure 4.—Fitting the histogram of the relative mutationmutation rate over base locus D11S1358 in the ALFRED data.

rate with a gamma distribution in the ALFRED data set. TheThe total number of loci is 115.
density function is overlaid with the histogram. Base locus:
D11S1358. —, overlaid density. � � 2.8384, � � 1.0361.

edness of the distribution, while the parameter � is called the
scale parameter, since most of its influence is on the spread microsatellite loci. The robust module in the S-Plus
of the distribution. Figure 2 gives an example showing the

package was used to fit the histogram as in Figure 3effects of the two parameters on the probability density func-
with a gamma distribution and to give an estimate oftion. An important feature of the gamma distribution is that

a scaled gamma variable also follows a gamma distribution. the two parameters, shape parameter � and scale param-
More specifically, let Y � aX, where a is a nonzero constant, eter �, which are overlaid on the histogram representing
then Y also follows a gamma distribution with parameter (�, observations based on the computations of �i j . As an
a�). That is, the scale transformation changes only the scale

example, the case where the base locus is D11S1358 isparameter �. Through the method presented in this article,
shown in Figure 4 with the fitted gamma density func-the mutation rate at the dinucleotide microsatellite loci can

be estimated in a relative term. It is shown that the distribution tion overlaid with the histogram.
of the mutation rates can be approximated with a gamma For each of the 115 loci, if the locus has allele fre-
distribution. Consequently, the shape parameter � can be quency data in all 10 worldwide populations, it was used
reliably estimated through this method.

as the base locus to compute the relative mutation rate
and further to be fitted with a gamma distribution. The
estimated parameters for the gamma density functionRESULTS
are shown in Table 3.

Data set I: The � estimates were obtained through As expected, estimates of the relative mutation rate
our homozygosity-based estimator �̂F using the ALFRED and the � parameter are different, depending on the
data. To further characterize the variation of mutation base locus used in defining the ratio. The mean, vari-
rates among loci, the relative mutation rate was com- ance, and coefficient of variation of the point estimates
puted using the ALFRED data. As an example, Figure of the gamma parameters are also given in Table 3. As
3 shows the distribution of the relative mutation rate shown by the coefficient of variation, the scale parame-
over D11S1358 for the 115 loci. ter � has a very large variance among the estimates

It is clear that the relative mutation rates can vary up relative to the mean value. In comparison, the coeffi-
to 10-fold within the dinucleotide repeats. To explore cient of variation for the estimates of the shape parame-
how to model the mutation rate distribution at the ge- ter � is small, reflecting that � is invariant to scaling
nome level, several statistical distributions have been transformation. Therefore, the mean of the estimates
used to fit the histogram. From the shape of the histo- of � is a reliable estimate.
gram, a gamma distribution is an obvious choice. The Data set II: The relative mutation rate over locus
gamma distribution has long been used to model the D1S2701 was computed using the allele frequency data
variation in mutation rate at the protein-enzyme loci of all the loci from the Genome Database data set. In
and single-nucleotide sites (Nei et al. 1976; Gu et al. 1995; total there are 5254 dinucleotide repeats. The distribu-
Yang and Kumar 1996; Tourasse and Gouy 1997). It tion of the relative mutation rate is shown in Figure 5.
turns out that a gamma distribution can also approxi- The mutation rate can vary up to 10-fold for the majority

of the loci.mate the variation of the relative mutation rates at the
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TABLE 2

The estimates of parameters in a gamma distribution that fits
the relative mutation rate on each chromosome

No. loci Base locus � �

All data 5254 D1S2701 1.3327 4.1037
Chr1 467 D1S2701 1.3742 3.9994
Chr2 460 D2S2287 1.2735 4.6070
Chr3 354 D3S1615 1.4764 3.5346
Chr4 278 D4S1619 1.1656 4.4785
Chr5 312 D5S490 1.3125 4.0881
Chr6 313 D6S202 1.3502 4.3370
Chr7 281 D7S2547 1.5612 4.4785
Chr8 251 D8S1845 1.5288 3.1752
Chr9 195 D9S1839 1.1236 5.1474
Chr10 286 D10S588 1.4956 3.4500
Chr11 249 D11S4193 1.3850 3.9566
Chr12 275 D12S104 1.3107 4.3089

Figure 5.—Histogram of the relative mutation rate over Chr13 168 D13S1286 1.4436 3.8512
base locus D1S2701 in the GDB data. The total number of Chr14 164 D14S1019 1.9221 2.8008
loci is 5254. Chr15 158 D15S989 1.2966 3.8688

Chr16 180 D16S3085 1.2706 4.6897
Chr17 198 D17S935 1.0990 5.0212

Again a gamma distribution was found to fit the histo- Chr18 138 D18S1105 1.2972 4.3864
gram quite well. The estimated shape parameter is Chr19 126 D19S874 1.6937 3.9896

Chr20 145 D20S864 1.0231 5.94131.3327 and the scale parameter is 4.1037. The density
Chr21 72 D21S261 1.1654 4.8122function is overlaid with the histogram in Figure 6.
Chr22 80 D22S1149 1.4322 3.8956When the locus other than D1S2701 was used as the
ChrX 104 DXS8009 1.3482 2.5931base locus to compute the relative mutation rate and

the resulting histogram was fitted with a gamma distribu- Chr, chromosome.
tion, the shape parameter � remains the same and the
scale parameter � changes with the different base locus.

explore whether there was any chromosome-specific ef-This is what should be expected, since from the proper-
fect on the distribution of the mutation rate of dinucleo-ties of the gamma distribution the approach taken here
tide repeats, the allele frequency data were further putchanges only the scale parameter �.
into 23 groups according to the chromosome location.The above analysis is for all the loci that cover 22
One group corresponded to one chromosome. It wasautosomal chromosomes and the X chromosome. To
found that the relative mutation rate for dinucleotide
repeats on each chromosome also follows a gamma dis-
tribution. The estimates of � and � of the gamma distri-
bution and the respective base locus for loci on each
chromosome are shown in Table 2. The � estimate from
chromosome 14 is the highest while that from chromo-
some 20 is the lowest. However, the estimates for the
shape parameter do not differ significantly from each
other, suggesting the chromosome-specific effect on the
mutation rate is not pronounced.

DISCUSSION

Through estimating the population mutation rate �
for different loci and taking ratios of the estimates in
the same population, the relative mutation rates of dinu-
cleotide repeats were obtained. It was found that the
distribution of the relative mutation rate �i j at the geno-
mic level can be approximated well by a gamma distribu-

Figure 6.—Fitting the histogram of the relative mutation
tion through the analysis of two data sets. A well-knownrate with a gamma distribution in the GDB data set. The
property of the gamma distribution was utilized; that is,density function is overlaid with the histogram. Base locus:

D1S2701. —, overlaid density. � � 1.3327, � � 4.1037. if a random variable X follows a gamma distribution
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TABLE 3

Estimates of gamma parameters � and � for the ALFRED data

Base locus �, � Base locus �, � Base locus �, �

D5S393 3.02, 0.37 D6S462 2.45, 1.90 D10S212 2.18, 3.79
D5S400 3.26, 0.17 D6S470 2.62, 0.63 D10S217 2.73, 0.31
D5S406 3.08, 0.58 D7S484 2.62, 0.80 D10S220 2.86, 0.39
D5S407 3.26, 0.27 D7S510 2.84, 0.93 D10S249 2.89, 0.99
D5S408 2.78, 0.63 D7S513 3.15, 0.23 D10S537 2.78, 0.35
D5S416 2.20, 1.27 D7S516 3.21, 0.79 D10S547 1.75, 10.9
D5S418 3.36, 0.36 D7S517 3.29, 0.48 D10S583 2.70, 0.39
D5S419 3.34, 0.33 D7S530 2.66, 1.11 D10S587 2.90, 0.45
D5S421 2.24, 1.56 D7S640 3.46, 0.19 D10S591 2.39, 1.64
D5S422 2.88, 0.30 D7S657 2.82, 0.57 D10S597 2.73, 2.00
D5S424 2.73, 1.20 D7S669 2.66, 0.38 D11S898 1.11, 12.6
D5S426 3.06, 0.46 D8S258 2.86, 0.79 D11S902 3.19, 0.29
D5S429 3.28, 0.32 D8S260 2.91, 0.31 D11S904 2.93, 0.93
D5S433 2.66, 0.32 D8S272 2.91, 0.45 D11S905 2.73, 0.43
D5S436 3.14, 0.37 D8S504 2.67, 1.45 D11S908 1.67, 19.9
D5S471 3.12, 1.06 D8S514 2.76, 1.10 D11S922 2.72, 0.20
D5S644 3.06, 0.25 D9S157 3.19, 0.43 D11S934 2.19, 1.18
D5S647 2.96, 0.42 D9S161 2.86, 1.41 D11S935 3.35, 0.84
D5S673 2.66, 0.28 D9S164 2.70, 0.32 D11S937 2.39, 0.27
D6S257 3.09, 0.16 D9S171 1.32, 9.26 D11S968 2.41, 0.92
D6S262 2.96, 0.41 D9S175 2.33, 0.63 D11S987 2.36, 0.48
D6S264 2.36, 2.13 D9S273 2.18, 0.76 D11S1313 2.64, 0.94
D6S271 2.23, 1.23 D9S279 2.06, 1.91 D11S1314 3.02, 0.65
D6S276 3.06, 0.62 D9S286 1.65, 2.33 D11S1320 2.31, 2.90
D6S281 3.05, 0.66 D9S287 2.95, 1.26 D11S1338 2.66, 1.04
D6S289 3.17, 0.30 D9S288 2.66, 0.41 D11S1345 2.66, 0.75
D6S292 3.22, 0.34 D9S290 1.89, 2.70 D11S1358 2.84, 1.04
D6S305 2.86, 0.32 D10S189 2.98, 2.47
D6S308 2.86, 1.00 D10S191 3.15, 0.32
D6S422 2.86, 0.82 D10S192 2.91, 0.43 2.73, 1.38Mean:
D6S426 1.82, 2.24 D10S197 2.78, 0.61 0.21, 7.67Variance:
D6S441 3.09, 0.24 D10S208 2.86, 0.53 0.17, 2.01CV: a

a Coefficient of variation.

with parameter (�, �), and if another random variable known genes. Statistical tests of neutrality did not detect
any signature of natural selection using the genetic vari-Y � aX, where a is a nonzero constant number, then Y

also follows a gamma distribution with parameter (�, ation data (Xu 2003). Therefore they are putatively free
of selective constraints and can be a good representationa�). From Equation 5, the relative mutation rate in

relation to a particular base locus i is equivalent to the of dinucleotide repeat microsatellites free of selection
at the genomic level. Data set II is taken from the latestreal mutation rate divided by �i , the mutation rate of

locus i, which is a constant value across the relative edition of the Genome Database (GDB) and is com-
posed of 5254 dinucleotide repeats that cover 22 autoso-values for all other loci. The real mutation rate is the

relative mutation rate times the constant �i . Since the mal chromosomes and the X chromosome. Consequently,
this data set is a good representation of dinucleotide re-relative mutation rate follows a gamma distribution, it

is clear that the real mutation rate also follows a gamma peat microsatellites at the genomic level. While there are
many studies on the mutation rate of DNA nucleotidedistribution with the same shape parameter �. The only

difference between the two distributions is the scale sequence data at the genomic level, little is known about
the distribution of the mutation rate at the microsatelliteparameter �, which depends on the mutation rate of

the base locus. Consequently, when the base locus was loci, which represent an important fraction of the ge-
netic variation at the genomic level. Chakraborty etchanged and the two parameters were reestimated, a

rather accurate estimate of � is obtained, while the esti- al. (1997) showed that the mutation rates of di-, tri-,
and tetranucleotide loci are inversely related to theirmate of � varies greatly, as Table 3 indicates. Data set

I has 115 loci distributed in 9 chromosomes. These loci motif sizes. This study further shows that within the
dinucleotide group there is great variation in mutationare part of the ABI linkage set and are not close to any
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rate and the distribution can be modeled as a gamma were analyzed by Renwick et al. (2001). Their results
suggested conformation with mutation-drift equilibriumdistribution.
and no statistically significant deviation from a populationThe shape parameter � of the gamma distribution
with constant size. Further, in the population expansionis estimated from the two data sets, respectively. The
scenario, sample homozygosity approaches its equilibriumestimate from data set I is 2.4531 and from data set
value faster than allele size variance. Therefore, it is ex-II it is 1.3327. Barring variation of the estimates, the
pected that �̂F reaches the equilibrium value faster indifference is primarily due to the fact that data set I has
this scenario.only 115 loci from 9 chromosomes, while data set II

In summary, through the analysis of an extensive sur-covers all 22 autosomal chromosomes and the X chro-
vey of genetic variation data at human dinucleotidemosome, which represents the largest data sets of dinu-
repeats, the mutation rate at such loci can be approxi-cleotide repeat microsatellite allele frequency analyzed
mated with a gamma distribution and the shape parame-to date. Consequently, the estimate from data set II is
ter of the distribution was obtained. The results providemore appropriate. In other words, the loci in data set
guidelines for modeling the genetic variation at dinucle-I likely represent a biased set of dinucleotide repeats in
otide repeat loci at the genomic level. For example,the human genome. To see if indeed this is the case,
estimates of the human genomic mutation rate at micro-two subsamples were taken from data set II. First, the
satellite loci are in the range of 10�4–10�2 (Ellegrenallele frequency data from data set II with correspond-
2000). If one takes the mean mutation rate as 10�3 ating loci from data set I were examined. Out of the 115
dinucleotide repeat loci, since the � value is knownloci from data set I, 113 loci were found from data set
from our results, the other parameter � in the gammaII. With this data set, the same procedure of fitting with
distribution can be estimated as � � mean/� � 7.5 �a gamma distribution was applied. The estimate of �
10�4. Once the two parameters are known, the gammaturns out to be 2.3556, which is sufficiently close to
distribution is specified and the mutation rate at dinu-the estimate of 2.4531 from data set I. Note that the
cleotide repeat loci can be sampled from the distribu-population samples in the two data sets are quite differ-
tion. This is very useful, for example, for further applica-ent; the samples in data set II are Caucasian and those
tions such as detecting the signature of natural selectionin data set I are from various populations. Second, since
and microsatellite instability in cancer research.the loci in data set I are all (CA) repeats, we randomly

This work is supported, in part, by National Institutes of Healthsampled 115 (CA) repeats from data set II with loci that
grants GM50428 and GM60777 to Y.-X. Fu.are not in data set I. This is done because there is direct
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