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ABSTRACT
We examine the efficiency of different genotyping and phenotyping strategies in inbred line crosses

from an information perspective. This provides a mathematical framework for the statistical aspects of
QTL experimental design, while guiding our intuition. Our central result is a simple formula that quantifies
the fraction of missing information of any genotyping strategy in a backcross. It includes the special case
of selectively genotyping only the phenotypic extreme individuals. The formula is a function of the square
of the phenotype and the uncertainty in our knowledge of the genotypes at a locus. This result is used
to answer a variety of questions. First, we examine the cost-information trade-off varying the density of
markers and the proportion of extreme phenotypic individuals genotyped. Then we evaluate the informa-
tion content of selective phenotyping designs and the impact of measurement error in phenotyping. A
simple formula quantifies the information content of any combined phenotyping and genotyping design.
We extend our results to cover multigenotype crosses, such as the F2 intercross, and multiple QTL models.
We find that when the QTL effect is small, any contrast in a multigenotype cross benefits from selective
genotyping in the same manner as in a backcross. The benefit remains in the presence of a second
unlinked QTL with small effect (explaining �20% of the variance), but diminishes if the second QTL
has a large effect. Software for performing power calculations for backcross and F2 intercross incorporating
selective genotyping and marker spacing is available from http://www.biostat.ucsf.edu/sen.

THE goal of a genetic mapping experiment is to detect by genotyping approximately one-quarter of the individ-
uals in each extreme (half of the total individuals) oneand localize the genetic elements responsible for

the variation in a phenotype of interest. The design of retains most of the power as compared to genotyping
the entire cross. Darvasi and Soller (1994) considereda mapping experiment involves choosing the type of the
genotyping strategies from a cost perspective and showedcross, the parental strains involved, a method for measur-
that for lowering total experimental cost it may be opti-ing the phenotype, and a genotyping strategy. Tradition-
mal to genotype individuals at very wide spacings if theally, genotyping and phenotyping strategies have been
cost of rearing and trait evaluation is low. A selectiveevaluated in terms of their power to detect a genetic
phenotyping design with a main trait and a correlatedeffect. This depends on the size of the genetic effect and
trait was considered by Medugorac and Soller (2001)the information in the experiment. The experimenter
who also analyzed it from a cost-power perspective. Jinhas no control over the former, but phenotyping and
et al. (2004) have proposed a selective phenotyping strat-genotyping strategies can be designed to extract the
egy for crosses where phenotyping is more expensivemost information subject to cost or other constraints.
than genotyping, using a criterion that maximizes theIn this article, we consider inbred line crosses from an
genetic diversity of the phenotyped animals. Belknapinformation perspective.
(1998) considered the problem of the number of repli-Selective genotyping (Lebowitz et al. 1987; Lander
cations of a recombinant inbred (RI) line to achieveand Botstein 1989; Darvasi and Soller 1992) is an
power comparable to a backcross or F2 cross subject toeffective strategy for reducing genotyping costs when
heritability constraints. All of these design strategies canthere is a single trait of interest. Lander and Botstein
be considered and unified by considering the informa-(1989) showed that the contribution of an individual to
tion content of the resulting data.the expected LOD score is approximately proportional

We were motivated to investigate selective genotypingto the squared difference of the individual from the
from an information perspective by considering the geno-overall mean. Darvasi and Soller (1992) showed that
typing strategy employed in Sugiyama et al. (2001). Fig-
ure 1 shows the genotype pattern in this cross. First, we
note that half of the marker genotypes are missing.
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Figure 1.—Genotype pattern in the
hypertension mouse cross of Sugiyama
et al. (2001). Genotypes are colored red
if they were from the hypertensive strain
(A/J), blue if from the nonhypertensive
strain (BL/6), and yellow if missing.
Each row represents genotypes from a
particular mouse; the mice have been
sorted by their blood pressure, so the
mouse with the lowest blood pressure
appears at the top while the one with the
highest blood pressure is at the bottom.
The markers are sorted by their position
on the genome starting with chromo-
some 1 through chromosome 20. This
figure was generated using Pseudo-
marker (Sen and Churchill 2001).

mosomes were more heavily genotyped than others be- ation studies by Satagopan et al. (2002) and Satagopan
and Elston (2003). More generally, selective genotyp-cause an initial genome scan showed indications of QTL

on these chromosomes. Finally, some markers were typed ing can be considered to be a special case of outcome-
dependent sampling.only if the flanking markers recombined (see Figure 2).

This was done because if two reasonably close markers Our goal in this article is to formally investigate the
information trade-offs inherent in different genotypingdo not recombine, the genotypes of all loci in that inter-

val are effectively known, but when flanking markers and phenotyping strategies. Although missing-data meth-
ods have long been employed to analyze QTL experimentsdiffer, additional genotyping can help to narrow the

location of the recombination. Ronin et al. (2003) inves- (Lander and Botstein 1989; Xu and Vogl 2000), they
have not been employed in their design. We show thattigated the properties of a similar genotyping strategy

using simulations. Two-stage genotyping strategies have the concept of missing information can be used to evalu-
ate genotyping and phenotyping strategies. This ap-been considered in the context of linkage analysis in

human studies by Elston (1994) and for genetic associ- proach also provides insight into the bias of the Haley-
Knott approximation to LOD scores (Kao 2000). The
missing-information perspective provides a unified view
of genotyping, noting that information is inversely pro-
portional to the variance of the estimates of genetic
model parameters. This suggests answers to the question:
“Which individuals and loci are to be genotyped?”

In the next section, we develop the concept of infor-
mation in a mapping design using the backcross as the
example. Next we present our results on the informa-
tion content of genotyping and phenotyping designs.
Mathematical results are detailed in the appendix.

THEORY

Information perspective on QTL mapping: Let y, g,
Figure 2.—Close-up of genotype pattern of 50 individuals

and m denote the trait, QTL genotype, and observedon chromosome 4 from Sugiyama et al. (2001). Genotypes
marker genotypes of a single individual. In a cross withare denoted by open circles if from the A/J strain and by solid

circles if from the BL/6 strain. Each row represents genotypes n individuals, we denote them by y � (y 1, . . . , yn), g �
from a particular mouse. We selected every fifth mouse from (g 1 , . . . , gn), and m � (m 1, . . . , mn), respectively.
the 250 in the cross sorted by blood pressure. The mouse with We develop our ideas in the context of a backcross
the lowest blood pressure appears at the bottom while the

segregating one QTL. Assume, without loss of general-one with the highest blood pressure is at the top. The marker
ity, that the QTL genotypes can take two values, 0 or 1,order and position is shown by centimorgan position. This

figure was produced using R/qtl (Broman et al. 2003). and the distribution of the phenotype given the QTL
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genotypes is Gaussian with unit variance. The condi- in the previous section, assume that the lab plans to con-
duct an experiment with n individuals. After the experi-tional mean of the phenotype given the QTL is �� if
ment is performed, we will have data from n* individuals,g i � 1 and �� if g i � 0. If we know the QTL genotypes,
where n* follows a binomial distribution with parametersthe LOD score for testing � � 0 against the alternative
n and 3⁄4. Thus, the observed information from the ex-that � � 0 is
periment would be n*, which is the number of individu-
als for whom we actually have data, and this will vary.LOD � log10�n2�̂2� ,
On the average, data from 3n/4 individuals are collected,
and so the expected Fisher information is 3n/4. For n �

where �̂ � (1/n)�n
i�1(2gi � 1)yi is the maximum-likeli- 100, the expected information and realized sample size,

hood estimate of �. Under the null hypothesis, n*, will vary from �60 to �90 with a mean of 75.
2 loge(10)LOD has a � 2-distribution with 1 d.f. Under the In a realistic QTL setting, note that at any locus in a
alternative hypothesis, it has a noncentral � 2-distribution short nonrecombinant marker interval, we have com-
with 1 d.f. and noncentrality parameter n� 2. Thus, the plete knowledge of the genotype, whereas in the middle
power of the test to detect linkage depends on the sam- of a recombinant marker interval, we have virtually no
ple size n and the square of QTL effect size � 2. More information about the genotype. Since the distribution
generally, when the QTL genotypes are not known be- of marker genotypes is random, the information con-
cause of incomplete genotyping, the power is a function tent of a specific marker interval can be known only
of I �2, where I is the expected Fisher information of after conducting the experiment. Therefore, we make
the experiment. This follows from the general theory a distinction between observed and expected informa-
of statistical likelihoods (Cox and Hinkley 1974) as tion.
described below. The expected Fisher information de- By comparing the observed information to the ex-
pends not only on the sample size, n , but also on the pected information if all individuals were genotyped,
design of the experiment—how we genotype the cross we can quantify the amount of missing information in a
and how accurately we measure the phenotype. Differ- realized cross. This can help us decide which individuals
ent phenotyping and genotyping strategies will lead to should be genotyped or phenotyped more intensely
different values of I . Thus, we can compare different after collecting preliminary data on the cross.
strategies by comparing their expected information. In Missing data and information: A key element in the
the context of the QTL-mapping problem we may think statistical analysis of QTL data is to adjust for the fact
of information content of an experiment as the “effec- that the genotypes of the individuals in the cross are
tive sample size.” known only at typed markers. The genotypes at interme-

Power, LOD score, standard errors, and information: diate locations must be inferred from the observed data.
Much of the QTL literature has focused on LOD scores, In other words, the individual QTL genotypes are “miss-
which are equivalent to a log-likelihood ratio. The Fisher ing data.” Some marker genotypes may also be missing.
information is the expected curvature of the log-likeli- This may be intentional if we have used a selective geno-
hood function. Suppose � is the parameter of interest, typing strategy.
�(�) is the log-likelihood, and we want to test � � �0 Missing-data methods used in QTL analysis include
against the alternative that � � �0 . As outlined in the the EM algorithm (Lander and Botstein 1989), Markov
appendix, the log-likelihood ratio for testing this hy- chain Monte Carlo (Satagopan et al. 1996), and multi-
pothesis is proportional to a noncentral � 2 variable with ple imputation (Sen and Churchill 2001). In this arti-
s d.f. and noncentrality parameter (� � �0)TI(�)(� � �0), cle, we focus on design (as opposed to the analysis) of
where I(�) is the expected Fisher information matrix. QTL experiments. We calculate the observed informa-
Furthermore, the variance of the maximum-likelihood tion content of genotyping strategy relative to a perfect
estimate, �̂, is given by I(�)�1. Thus, Fisher information complete-data case using the “missing information prin-
is a fundamental quantity that affects both the power ciple” (Orchard and Woodbury 1972; McLachlan
of our test and the standard errors of the estimates of and Krishnan 1996). This states that the complete-data
QTL effect size. It is therefore the focus of this article. information (Ic) is the sum of the observed information

Before conducting an experiment, we use the expected (Io) and the missing information (Im),
information from the QTL study design. After conduct-

Ic � Io � Im.ing the experiment, we can compute the observed infor-
mation from a design. The observed information is de- This allows us to calculate the amount of missing infor-
fined as the observed curvature of the log-likelihood mation due to incomplete genotyping relative to the
function that may vary from sample to sample (Efron expected information under complete genotyping. This
and Hinkley 1978). To see this, consider a cartoon gives us the expected information from a genotyping
example of a very disorganized laboratory that tends to strategy. We use this to evaluate competing approaches
lose a quarter of its data at random (both phenotypes with different cost profiles.

Likelihood function: To calculate the observed, miss-and genotypes). In the backcross scenario considered
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ing, and expected information, we need to write down phenotyping design combined with a genotyping de-
sign. This is followed by a section where we calculatethe joint-likelihood function of the observed as well as

the missing-data structures. We consider the general the expected information under selective genotyping
for crosses with more than two genotype classes, suchcase here. Let � denote the genetic model parameters

and � the QTL locations. When the phenotypes are as the F2 intercross. We conclude the section by consider-
ing information content in the presence of a secondobserved, the likelihood function
unlinked additive QTL.

L(�, �) � p(y, m |�, �) 	 �p(y |g , �)p(g |m , �)dg Observed fraction of missing information: As before,
assume the conditional distribution of the phenotype
given the QTL genotype is Gaussian with unit variance.has the form of a mixture distribution (see the appen-

dix). This leads us to consider the complete-data likeli- Conditional on the observed phenotype and marker
hood, data, it can be shown (details in the appendix) that the

observed fraction of missing information isL c(�, �) � p(y, m , g |�, �) 	 p(y |g , �)p(g |m , �),

which is the likelihood that would apply if the QTL H(y , q , �) �
1
n �

n

i�1

H(yi , qi , �) �
4
n �

n

i�1

y2
i q*i (1 � q*i ), (1)

genotypes, g , were actually observed. Using this likeli-
hood function, we can calculate the maximum possible where H(yi , qi , �) � 4y 2

i q*i (1 � q*i ) is the fraction of
information attainable with complete genotype infor- missing information from the i th individual, q i is the
mation. prior probability of the QTL genotype given the marker

Note, from the form of the likelihood function, that we data alone, and q*i � P(g i � 1|y i , mi , �) is the posterior
assume that the distribution of the phenotypes is indepen- probability of the QTL genotype of the i th individual
dent of the marker genotypes conditional on the QTL given the observed data. This formula has two uses.
genotypes. It is important that the missing-data pattern Equation 1 can be used to decide which loci will yield
be “ignorable” (that is, all data that were used to decide

the most information from additional genotyping. The
that other data would not be collected must be included

missing information is greatest for individuals with ex-
in the likelihood computation), which would ensure

treme phenotypes (the y 2 term) and for those with am-
that likelihood-based inference gives asymptotically un-

biguous genotypes. Thus, it is advantageous to genotypebiased estimates of the parameters. This is not guaran-
the individuals with extreme phenotypes. On the otherteed if the missing-data pattern is “nonignorable” or if
hand, if two flanking markers have been typed and arenonlikelihood methods are used (Little and Rubin
not recombinant, the genotype at the location of inter-1987; Schafer 1997). An example of nonignorable miss-
est is effectively known since q i(1 � q i) � 0, and it willing data would be when selective genotyping of individu-
not be worthwhile to genotype intermediate positions. Ifals with extreme phenotypes is performed, and the phe-
the flanking markers are recombinant and the putativenotypes of the intermediate individuals are discarded.
location is in the middle of the marker interval, qi(1 �It is well known that in this case QTL effect estimates
qi) � 1⁄4 , it will be worthwhile genotyping an intermediateare biased. Fortunately, the most common forms of in-
locus.tentional missing data, such as selective genotyping, are

Missing information and bias of Haley-Knott method:ignorable, and hence appropriate likelihood methods
The Haley-Knott (HK) method (Haley and Knott 1992)will give asymptotically unbiased results.
is a popular method for approximating LOD scores.
Kao (2000) showed that the bias of the HK method is

RESULTS a function of how close the prior genotype probabilities
q i were to the posterior genotype probabilities q*i . Fur-In this section we first consider genotyping strategies
ther insight into the bias may be obtained by notingand present a formula for calculating the observed frac-
that the HK method is equivalent to a single step of thetion of missing information. This serves as the building
EM algorithm when the starting values of the genotypeblock for subsequent sections. We note that the ob-
means correspond to the null hypothesis. Dempster etserved fraction of missing information is connected to
al. (1977) showed that the EM algorithm is a linearthe bias of the Haley-Knott method for approximating
iteration, and its rate of convergence is given byLOD scores. We then calculate the expected informa-

tion from genotyping strategies when a fraction of the D � I �1
c (�̂)Im(�̂),

extreme phenotypic individuals are genotyped. Using
where �̂ is the maximum-likelihood estimate of the pa-these results, we analyze the trade-offs between the cost
rameter of interest, �, and I c and Im are the complete andof genotyping and information content. We then ana-
missing information matrices. Therefore the extent of thelyze the information content of phenotyping designs
bias of the HK method depends on the rate of conver-and consider the situation when a phenotype measure-
gence of the EM algorithm. Note the rate of convergencement is replicated for greater accuracy. Next we present

a formula for calculating the missing information for a D is just the observed fraction of missing information.
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Thus, Equation 1 helps us decide when using the HK case it can be shown (see appendix) that the expected
information from a cross with n individuals using theapproximation will have a large bias.

Missing information under selective genotyping: What selective genotyping strategy described above is
is the expected information from a selective genotyping

I n(
, d) � nQ d J
 ,strategy? In this section we consider genotyping strate-
gies where we type an 
-fraction of the extreme pheno- where
typic individuals at markers that are spaced d cM apart.

J
 � 2w
/2φ(w
/2) � 
The expected information is a function of the effect size,
�, the selection fraction, 
, as well as marker spacing, d . is the expected information content per observation
To be conservative, we calculate the fraction of missing under dense typing of 
-fraction of the extremes,
information in the middle of a marker interval where

Q d � (1 � 4q(1 � q))(1 � r) (3)it is greatest. Let w(
, �) be the upper 
-point of the
(marginal) distribution of the phenotype; that is, is a deflation factor that depends on the density of markers

(and the informativeness of the markers), w
/2 is the up-P(y � w(
, �)|�) � 
 .
per 
/2 point of the standard normal distribution, φ(·)

We assume that every individual with a phenotype is the density function of the standard normal distribu-
� �w(
/2, �) or � �w(
/2, �) is genotyped at markers tion, and q � r �2/(r �2 � (1 � r �)2) is the probability
spaced d cM apart. Now consider a locus in the middle that the genotype of an individual in the middle of a
of this marker interval and thus it is a distance d/2 cM nonrecombinant marker interval is different from the
away from each of the flanking markers. Let r be the flanking markers.
recombination fraction corresponding to d cM and r � Information-cost trade-offs: Now we evaluate the in-
be that corresponding to d/2 cM. Then, if the pheno- formation content of an experiment by explicitly consid-
type |y |  w(
/2, �), no genotype information is avail- ering the role of genotyping cost. Let c be the cost of
able, and hence q , the prior probability of the QTL genotyping an individual densely (d � 0) relative to the
genotype is 1⁄2 . If the phenotype |y | � w(
/2, �), the cost of rearing an individual. Then the ratio of the
flanking markers are typed. In this case, with probability information and cost of the experiment is
r the flanking markers will recombine and q � 1⁄2 . Com-
plementarily, with probability 1 � r , the markers do not I n(
, 0)

n � n
c
�

J


1 � 
c
.

recombine, and the prior probability q � r �2/(r �2 �
(1 � r �)2) or (1 � r �)2/(r �2 � (1 � r �)2) with equal

The best selective genotyping strategy for a given cost,probability depending on the genotype of the flanking
c , is one that minimizes this ratio as a function of themarkers. Using these facts, we can use numerical inte-
selection fraction 
. Figure 4 shows the optimal selec-gration to calculate the expected fraction of missing
tion fraction calculated by numerically maximizing theinformation,
information-cost ratio as a function of the cost of geno-
typing an individual, c . Predictably, when the cost ofH*(
, d , �) � �H(y , q , �)p(q|y , 
, �)p(y , �)dy , (2)
genotyping is low, it pays to genotype a larger fraction
of the cross. As costs increase, one should genotype awhere q is a function of y , 
, and �, since the prior
progressively smaller fraction. Interestingly, when theprobabilities depend on them. Figure 3 plots the frac-
cost of genotyping is comparable to the cost of rearingtion of missing information as a function of the selection
(c � 1), then the optimal selection fraction is 43% orfraction (
), the size of the QTL effect (�) under four
just under half the cross. This is roughly consistent withscenarios, corresponding to four different marker densi-
the finding of Darvasi and Soller (1992) who used aties. We note that the fraction of missing information
different analytic strategy. In practice, we never denselydecreases with increasing selection fraction (
) and in-
genotype an individual, we just genotype at a set ofcreasing QTL effect size (�). More interestingly, irre-
markers spaced roughly regularly along the genome.spective of the QTL effect, less than one-eighth of the
We consider the information in the middle of a d -cMinformation is missing if the selection fraction is �50%.
marker interval. Then we consider the information-costThis is consistent with the finding of Darvasi and
ratio, where the total cost of genotyping is a functionSoller (1992) that little power is lost if a quarter of
of the per-marker cost, c , and the genome size, G , ineach extreme is genotyped. However, if the extremes
centimorgans. This leads us to the ratioare not densely genotyped, and the distance between

markers is 10–20 cM, we may lose between 17 and 25% of I n(
, d)

n � n
cG/d
�

Q d J


1 � 
cG/d
. (4)the information that would be available if all individuals

were genotyped.
Expected information for small QTL effect: Missing In Figure 5 we plot this ratio for a genome size of

1450 cM (corresponding to the laboratory mouse) as ainformation is greatest when the QTL effect is small, so
we consider the worst-case scenario when � � 0. In this function of the selection fraction, 
 , and marker spac-
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Figure 3.—Fraction of missing information in a backcross as a function of the fraction of the extremes typed (
), the strength
of the QTL (�), and recombination distance flanking markers (�1 , �2). The proportion of variance explained by the QTL is
�2/(1 � �2). When there is very little genotype information at a marker (top left, �1 � �2 � 0.2), there is very little to be gained
by selectively genotyping the faraway markers as it does not add much information. When we have very densely spaced markers
(bottom right, �1 � �2 � 0.01), the fraction of missing information decreases with increased extreme genotyping. The intermediate
cases (top right, �1 � �2 � 0.1; bottom left, �1 � �2 � 0.05) represent more realistic scenarios. We find that by genotyping 60%
of the extremes we lose �10% of the information with markers approximately every 10 cM.

ing, d , for four different marker genotyping costs, c , sandth of the cost of rearing, one should genotype
�71% of the cross at �9 cM (recombination fractionexpressed in units of the cost of rearing a single individ-

ual. When the cost of genotyping a single marker is com- 8%). These conclusions are broadly consistent with the
findings of Darvasi and Soller (1994), who consid-parable to rearing an individual, the optimal strategy is

to genotype a small fraction (�6%) of the extremes at a ered marker spacing strategies (without selective geno-
typing). For well-characterized model organisms suchwide spacing (�46 cM or a recombination fraction of

30%). As the cost of genotyping decreases, the optimal as the mouse, the cost of genotyping is a tiny fraction
of the cost of rearing and phenotyping. For those organ-strategy is to type more individuals more densely. When

the genotyping cost is one-tenth of the cost of rearing, isms, genotyping the whole cross every 10 cM is reason-
able. For organisms such as some plants without well-one should genotype �23% of the cross at �36 cM

(recombination fraction 26%). When the genotyping developed markers, the cost of genotyping a marker is
comparable to raising an individual and in those casescost is one-hundredth of the cost of rearing, one should

genotype �49% of the cross at �21 cM (recombination it suffices to genotype a small fraction of the cross at a
few, sparse sets of markers. The exact trade-offs dependfraction 17%). When the genotyping cost is one-thou-
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ingly. We assume that the surrogate phenotype depends
on the true phenotype through the parameter �, which
gives the likelihood function

L(�, �, �) � p(z , m |�, �) 	 �p(z | y, �)p(y |g , �)p(g |m , �)dydg .

In this case, the complete-data likelihood would treat
the phenotype as well as the QTL genotypes as missing
data and will be

L c(�, �, �) � p(z , y , m , g |�, �, �) 	 p(z | y , �)p(y |g , �)p(g |m , �) .

We also assume that the surrogate phenotype is inde-
pendent of the marker data (and the QTL genotypes)
given the phenotypes.

The rationale behind selective phenotyping is the
same as that of selective genotyping: we want to max-
imize information while controlling cost. Suppose our
true phenotype, y , is not completely observed and in-

Figure 4.—Optimal selection fraction (
) as a function of stead we observe a noisy version, z . Assume that z i �
the cost of genotyping an individual completely, c, when the y i � �i , where �i is the independent random measure-
QTL effect, �, is very small. The unit of cost is relative to the

ment error with mean zero and variance � 2
i . When thecost of rearing an individual.

phenotype is noiselessly observed �i � 0. The correlation
between zi and y i is (1 � � 2

i )�1 .
Consider the case when the QTL genotype is com-on the particulars of the mapping problem, and we

pletely observed. Then the information from each indi-provide software (see below) to make the calculations
vidual is proportional to the inverse of the variance offor different scenarios. To obtain the optimal selection
the i th observation, 1 � � 2

i . Thus, the information fromfraction subject to a given marker spacing, we can mini-
the whole experiment ismize the information-cost ratio above as a function of


 given d and this is the solution of the equation
�
n

i�1

1
1 � � 2

i

.J �


J


�
cG

d � 
cG
(5)

It is worthwhile considering the special case, when an
investigator has the choice of either replicating the mea-(see appendix for proof), where J �
 � w 2


/2 is the deriva-
tive of J
 with respect to 
 . In Figure 6 we show the surement or measuring multiple individuals. Let the mea-

surement error variance be �2 , so that if a measurementoptimum selection fraction as a function of marker spac-
ing and cost of genotyping a single marker for the labo- is replicated t times, the measurement error variance

�2
i � �2/t . Thus the information content of an experimentratory mouse.

Selective phenotyping strategies: If a phenotype is with n individuals, when the phenotype measurement is
replicated t times, isobserved noisily, then although the noisy version is ob-

served, the “true” phenotype remains unobserved or
missing. For example, we may have to measure blood I n , t �

n
1 � �2/t

�
nt

t � �2
.

pressure several times, to achieve an accurate phenotyp-
ing of an individual mouse, or we may have to phenotype Now suppose, without loss of generality, that the cost
multiple individuals from a recombinant inbred line. of raising an individual is unity and the cost of phenotyp-
Another example of selective phenotyping would be ing is c . Then the cost of the experiment is
when a suite of related phenotypes are of interest (such
as measuring body weight weekly), but we phenotype Cn , t � n � cnt
selectively (weigh the heaviest and lightest animals at

and the information-cost ratio of this strategy isbirth, every week, but everyone else every 4 weeks).
Yet another class of selective phenotyping strategies was In , t

Cn , t

�
nt

t � �2
�

1
(n � cnt)

� �(1 � ct)(1 �
�2

t
)�

�1

.considered by Jin et al. (2004). In their approach, which
is based on an individual’s genotype, some individuals (6)
are phenotyped accurately or not at all.

When the phenotypes are not directly observed, but The maximum of the information-cost ratio as a func-
tion of t depends on the ratio �2/c. In Figure 7 we showare observed with error through z , the surrogate pheno-

type, the likelihood function has to be modified accord- the optimal replication number t as a function of the
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Figure 5.—The information per unit cost ratio plotted as a function of the selection fraction, 
, and average spacing between
markers, d. We calculate the information in the middle of the marker interval. The information per unit cost numbers are
normalized to the maximum possible information per unit cost. This way we can see what ranges of the selection fraction and
spacings give near-optimum returns. Each number corresponds to a the cost, c, of genotyping a single marker relative to that
of rearing an individual. The genome size is assumed to be 14.5 morgans (similar to that of the mouse). The top left corner
corresponds to c � 1, the top right corner to c � 0.1, the bottom left corner to c � 0.01, and the bottom right corner to c �
0.001.

phenotyping variance-cost (�2/c) ratio. It can be shown phenotyping strategy. The main message is that it is
most profitable to phenotype and genotype the extreme(see appendix) that the optimal replication number is
phenotypic individuals carefully, because they contrib-
ute the most information.sup�t :t � 1; t(t � 1) �

� 2

c 	 . (7)
Multigenotype crosses: A backcross population can

be parameterized using a single parameter; this simpli-
Selective phenotyping and genotyping: Consider se- fies the analysis of information. In this section we pres-

lective genotyping and phenotyping together. The frac- ent the generalizations to multigenotype crosses such as
tion of missing information is the F2. In this case, information is a matrix, and therefore

to compare different scenarios we have to obtain one-
�
n

i�1
� � 2

i

1 � � 2
i

�
4z 2

i

1 � � 2
i

q*i (1 � q*i )� , (8) dimensional summaries. The two most common summa-
ries correspond to D -optimality and c -optimality criteria
(Cox and Reid 2000). If I is the expected informationwhere q*i � P(g i � 1|z i , mi , �) is the posterior prob-
matrix from an experiment, for D -optimality, one com-ability of the QTL genotype given the observed data.

This formula allows us to evaluate any genotyping and pares the determinant, det(I ), from different experi-



455QTL Study Design and Information

Figure 7.—Optimal replication number (m) as a function
of the variance-cost ratio (� 2/c). Here � 2 is the ratio of the
variance of the measurement instrument to the environmental
variance in the phenotype, and c is the ratio of the cost of
phenotyping to the cost of raising an individual. We can see
that when the variance of the phenotyping instrument is low
relative to the cost of phenotyping, there is no point in replicat-Figure 6.—The optimal selection fraction (
) plotted as a
ing (m � 1). It makes more sense to replicate the measurementfunction of marker spacing d for four cost scenarios. The lines
if the cost of phenotyping relative to raising an individual isare for when the cost of genotyping a single marker (c) is
low or if the phenotyping variance is high relative to theexpressed in the units of the cost of rearing.
environmental variance.

ments. This corresponds to comparing the volume of
Therefore the variance of the contrast of interest, u �

the confidence ellipsoid of the parameter estimates. For
(�1, �1), is 4/(nJ
). Since this is inversely proportional

c -optimality with the contrast vector u , one compares
to J
 , we get the same conclusions with c -optimality

(inverse of) the asymptotic variance of the contrast,
criteria as with the the D -optimality criterion. For the

uTI�1u . This is equivalent to comparing the width of
F2 , the expected information matrix is

the confidence intervals for the contrast.
Assume that there are K genotypes possible at a given

locus and let q be the probability distribution of the
I(
) �

n
16

⎛
⎜
⎜
⎝

1 � 3 J
 2(1 � J
) (1 � J
)

2(1 � J
) 4(1 � J
) 2(1 � J
)

(1 � J
) 2(1 � J
) 1 � 3 J


⎞
⎟
⎟
⎠

genotypes at an unlinked locus. For the backcross, K �
2, and q � (1⁄2 , 1⁄2). For the intercross, K � 3 and q �
(1⁄4 , 1⁄2 , 1⁄4). In general, the QTL genotypes, g , can take

(see appendix). The determinant of this matrix isK values 1, . . . , K . We assume that the distribution of
the phenotype given the QTL genotype g � k is Gaussian n3J 2




16
.with mean �k and unit variance. We calculate the infor-

mation under the worst-case scenario when all the QTL
The inverse of the variance of any contrast u � (u 1, u 2 ,genotype means are equal and when we genotype
u 3) isdensely an 
-fraction of the extreme phenotypic individ-

uals. It is shown in the appendix that for the backcross
the expected value of the information matrix is

nJ


4u 2
1 � 2u 2

2 � 4u 2
3

and hence proportional to J
 . Thus, judged by c -opti-I(
) �
n
4

⎛
⎜
⎝

1 � J
 1 � J


1 � J
 1 � J


⎞
⎟
⎠

.
mality criteria, the information content of an F2 cross
changes with the selection fraction in a similar manner

Since the determinant of this matrix is equal to n2J
/4, as a backcross. For a multigenotype cross (such as a
using the D -optimality criterion, we get the same conclu- four-way cross), the expected information matrix is
sions as we did with the scalar parameterization of the
problem in previous sections. The inverse of the infor- I(
) � n( J
diag(q) � (1 � J
)qqT) ,
mation matrix is

with determinant

I(
)�1 �
4

nJ


⎛
⎜
⎝

1 � J
 J
 � 1

J
 � 1 1 � J


⎞
⎟
⎠

. nK J K�1

 


K

j�1

q j (9)
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and inverse

I(
)�1 �
1
n

⎛
⎜
⎝

1
J


diag(q)�1 �
J
 � 1

J


1 1T
⎞
⎟
⎠
,

which implies that the inverse of the variance of any
contrast u is

nJ


uTdiag(q)�1u
, (10)

which is proportional to J
 . Thus our results for the
backcross can be interpreted very generally in the con-
text of c -optimality.

Multiple-QTL models: Thus far, we have developed
our ideas in the context of single-QTL models. For com-
plex traits, it is generally understood that many QTL
contribute to the trait. In this section, we investigate Figure 8.—Fraction of missing information for a QTL with
the usefulness of selective genotyping in the context of small effect under selective genotyping, as a function of the
multiple-QTL models. If the effect of each QTL is small, selection fraction (
), and for the effect size of a second

unlinked additive QTL (�). The difference between the geno-then we can use the results of the previous section on
type means is 2�, and the proportion of variance explainedmultigenotype crosses to conclude that any contrast be-
by the second QTL is �2/(1 � �2). The solid lines correspondtween QTL genotype combinations benefits from selec- to the limiting cases of (i) when the second QTL also has a

tive genotyping, in the same way as in a backcross. In negligible effect (� � 0) and (ii) when the second QTL has
a really large, obvious effect (� � ∞). The dashed lines corre-particular, linked and epistatic QTL also benefit from
spond to intermediate cases of � � 0.5 (variance explainedselective genotyping.
20%), � � 1 (variance explained 50%), and � � 1.5 (varianceWhen one or more QTL have strong effects, it is not
explained 69%).

obvious that selective genotyping is still beneficial for
detection of the smaller QTL. Consider two additive
unlinked QTL in a backcross following the model for genotyped and the other not at all). From Figure 8 we
the phenotype of the i th individual, can judge the impact of the selection fraction in the

presence of a linked additive QTL of varying effect size.y i � � 1(2g 1i � 1) � � 2(2g 2i � 1) � ε i ,
When the other QTL has small effect, the fraction of

where ε i is the Gaussian residual error with zero mean missing information with a selection fraction of 50% is
and unit variance, and g ji is the QTL genotype of the �10% as in Figure 3, bottom right. The loss of information
i th individual for the j th QTL taking value either 0 or due to selective genotyping with a fixed selection fraction
1 with equal probability, j � 1, 2. The least favorable increases with the strength of the other QTL. However,
condition for detecting a QTL is when its effect is small, the loss of information is modest if the portion of variance
so we consider the case when � 1 � 0, while varying the explained by the second QTL is �20% (� � 1⁄2).
effect of the second QTL, � 2 � �, for various values of �. In the limiting case, when the strength of the second
For an ungenotyped individual the missing information QTL is really big (� � ∞), the information from the
matrix for (�1, �2) � (0, �) is shown in the appendix experiment is �(n/2)J 2
 (see appendix). It is easier to
to be equal to understand the result by considering the case when 
 �

1⁄2 . In this situation, by genotyping half of the extreme
phenotypic individuals, we get only half of the informa-⎛

⎜
⎝

(y 2 � �2) � 2�y tanh (�y) 0

0 y 2sech2(�y)

⎞
⎟
⎠

. tion relative to complete genotyping. This result may ap-
pear surprising at first. Since the second QTL has a
huge effect, we essentially know its QTL genotypes, andNote that the missing information content for �2 is the

same as that in Equation 1 for an ungenotyped individ- we can get the residuals adjusting for its effect. Half of
the individuals with negative residuals are those whoseual (when the prior probabilities of the QTL genotypes

are equal to one-half). This is consistent with intuition overall phenotype was in the lower quartile. Similarly,
half of the individuals with positive residuals are thosethat the information for the second QTL should be the

same as that in a single-QTL model since the first QTL whose overall phenotype was in the upper quartile. In
other words, the distribution of the residuals of the geno-has a negligible effect. Using this result we can calculate

the expected information under selective genotyping typed population is the same as that of the ungenotyped
population, and in terms of the residual phenotype the(where an extreme phenotypic individual is completely
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genotyped population was unselected. Since half the for map expansion on RI lines and in the cost functions.
In a recombinant inbred line, one may be limited by theindividuals were genotyped, the loss of information is

50%, and selective genotyping on the overall phenotype number of lines one can raise, whereas in a backcross one
is limited to a single replication of a phenotype measure-is the same as random selection.
ment, which entails killing the animal. Also, typically,
in a set of RI lines there is essentially no cost of genotyp-

DISCUSSION
ing; the only cost is in phenotyping. Jin et al. (2004)
considered the selective phenotyping problem by choos-The information perspective provides useful insight

into phenotyping and genotyping designs. Most infor- ing individuals to phenotype who were as “dissimilar”
as possible. This may be interpreted as them trying tomation is provided by extreme phenotypic individuals.

It is most important to phenotype and genotype them choose a design matrix as “large” as possible and hence
increasing the information content of the experiment.well. Indeed, this is the rationale behind case-control

designs. In specific scenarios, we can use simple formu- For example, note that the determinant of the informa-
tion matrix in a multigenotype cross, as given by (9),las to explicitly calculate the trade-offs between cost

and information. Our conclusions are consistent with depends not only on the selection fraction through J
,
but also on the product of the allele frequencies. Thus,previous work on selective genotyping. In particular, we

show that genotyping 25% of either extreme phenotypic in an F2, if we can undersample the heterozygotes so
that all three genotypes at a locus are equally frequent,individual gives most of the information in the data

when we are genotyping densely. When individuals are we will get more information for the same number of
individuals phenotyped and genotyped at that locus.not densely typed, the amount of information lost de-

pends additionally on the marker density. It is prefera- The results of this article have been developed in the
context of phenotypes that have a Gaussian distributionble to type markers �20 cM apart (or closer) unless the

cost of genotyping approaches the cost of rearing. conditional on the QTL genotype. If this assumption is
grossly violated, we may need to modify our selectiveIn this article we have focused on the backcross for

simplicity. However, as shown in Multigenotype crosses, the genotyping criteria. For example, for a phenotype with
a long tail, it may be more efficient to oversample indi-results for the backcross generalize to c -optimality. Spe-

cifically, when the QTL effect is small, the dependence of viduals in the long tail. An example of this setting would
be when we have survival phenotypes. When there arethe variance of any contrast in any cross on the densely

genotyped selection fraction is the same. When a cross many traits to be analyzed, knowledge of the correlation
structure between the phenotypes may be necessary tois not densely genotyped, the information will have to

be discounted by a deflation factor that depends on the employ selective phenotyping and genotyping.
If a cross were selectively genotyped and the pheno-informativeness of neighboring markers. In the back-

cross, it is given by (3), but in general it will depend types of the ungenotyped individuals are discarded, the
statistical analysis has to proceed with care. If we proceednot only on the cross, but also on the nature of the

markers (for example, in an F2, whether the markers with an analysis as if the discarded phenotypes were never
collected, the effect estimates are biased. The LOD scoresare dominant or codominant).

Our results for multigenotype crosses indicate that are biased (inflated or deflated) relative to a fully geno-
typed population. However, if we proceed with a likeli-the information trade-offs in inbred line crosses are also

relevant for other settings such as human association hood that accounts for the ascertainment, the effect
estimates are unbiased, and the LOD scores are deflatedstudies. In an association study, the different haplotypes

segregating in the population may be considered as relative to a fully genotyped population. If two or more
linked QTL are present, then recombination fractiondifferent alleles. Therefore, if we are interested only in

linear contrasts between the haplotypes, we get the same estimates from the selectively genotyped individuals may
be biased. For example, if the two QTL are linked ininformation trade-offs with the selection fraction as in

a backcross. These results were derived assuming that coupling, the recombination fractions are biased down-
ward; if the QTL are linked in repulsion, recombinationthe genetic effect is very small, which is realistic for

studies of most complex traits. When the genetic effect fractions are biased upward (Lin and Ritland 1996).
Unlinked loci may appear linked in the selected popula-is substantial, the information will depend on the selec-

tion fraction in a more complex manner, but the infor- tion. For example, if two unlinked, additive loci both
have similar effects on the phenotype, then individualsmation expressions for the small genetic effect may be

considered as lower bounds. More generally, our tech- with the most extreme phenotypes will have similar ge-
notypes for both loci. In other words, the selection ofnique of calculating the expected information of an

experiment may be relevant to outcome-dependent individuals based on their phenotype will introduce link-
age disequilibrium between the unlinked loci. In gen-sampling where the correlation structure between pre-

dictors is known. eral, if the data used to make the selective genotyping
decisions are not observed (violating the missing at ran-Our results for the backcross are also applicable to

recombinant inbred lines. Modifications are necessary dom condition), parameter estimates may be biased.
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If the QTL effects are small, the benefit derived from and Maxima are freely available under the GNU General
Public License.selective genotyping if multiple QTL are segregating is

the same as that if a single QTL is segregating. However, We thank B. Paigen and F. Sugiyama for permission to use the
the benefit is diminished if some QTL have large effect. hypertension data. We are grateful for the comments of two anony-

mous referees and the associate editor; they prompted the work onIn the context of human association and linkage studies,
multiple-QTL models. We thank Chuck McCulloch, Mark Segal, andAllison et al. (1998) came to a similar conclusion by
Brian Yandell for helpful discussions. Inspiration for symbolic compu-examining power using simulations and analytic calcula-
tation came from Jamie Stafford and Karl Broman. Support for this

tions. Although our results quantify the information con- work was provided by National Institutes of Health grants GM60457
tent when two unlinked additive QTL are segregating, our (J.M.S.), CA098438 ( J.M.S.), and GM070683 (G.A.C.).
approach can be extended to cover linked and epistatic
QTL. If the QTL effects are small, selective genotyping
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APPENDIX

Likelihood: The likelihood function is

L(�, �) � p(y , m |�, �) � �p(y , m , g |�, �)dg (A1)

� �p(y |m , g , �, �)p(m , g |�, �)dg (A2)

� �p(y |g , �)p(m , g |�)dg (A3)

� �p(y |g , �)p(g |m , �)p(m |�)dg (A4)

� �p(y |g , �)p(g |m , �)p(m)dg (A5)

	 �p(y |g , �)p(g |m , �)dg . (A6)

In Equation A1 we introduce and integrate over the unobserved QTL genotypes, g . Next we condition over m and
g to get (A2). Since the phenotype depends on the markers only through the QTL genotypes, p(y |m , g , �, �) �
p(y |g , �). Furthermore, the joint distribution of the marker and QTL genotypes does not depend on the genetic
model parameters �, which gives us (A3). Conditioning on the markers gives us (A4). If we assume no segregation
distortion or marker-assisted selection, then the marginal distribution of the markers does not depend on the QTL
location, and so p(m |�) � p(m), which gives us (A5). In other words, the likelihood function has the form of a mixture
distribution with the probability of the QTL genotypes given the marker information as the mixing probabilities. Sen
and Churchill (2001) consider the Bayesian analog of this likelihood function.

Formula for fraction of missing information: Since the phenotype given the QTL genotypes is normally distributed
with variance 1, and means � � for g i � 1 and � � for g i � 0,

p(y |g � 0) � φ(y � �) and p(y |g � 1) � φ(y � �),

where φ(·) is the standard normal density function.
In our context, the missing data are the unobserved QTL genotypes and the observed data consist of the marker

genotypes and the phenotypes. The parameter of interest is �. Thus the distribution of the missing data conditional
on the observed data is

p(ymis |yobs , �) � 

n

i�1

(q*i )g i (1 � q*i )1�g i ,

where q*i � P(g i � |y , m , �), y � (y 1 , y 2 , . . . , yn) (the observed phenotypes), and m � (m 1 , m 2 , . . . , mn) (the
observed marker genotype data).

Let q i � P(g i � 1|m), that is, the probability of the QTL genotype given the marker data only (not including the
phenotype information). Then by the Bayes theorem and using the functional form of the standard normal density
function it is easy to see that
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q *i �
q i φ(y i � �)

q i φ(y i � �) � (1 � q i)φ(y i � �)
�

q i exp(y i �)
q i exp(y i �) � (1 � q i) exp(�y i �)

. (A7)

Let

�* � log(p(ymis |y obs , �) � �
n

i�1

(g i log(q*i ) � (1 � g i)log(1 � q*i )).

Then,
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Using (A7) and differentiating,

�q*i
��

�
⎛
⎜
⎝

y iq i exp(�y i)
q i exp(�y i) � (1 � q i)exp(��y i)

⎞
⎟
⎠

(A9)

�
⎛
⎜
⎝
q i exp(�y i)(y iq i exp(�y i) � y i(1 � q i)exp(��y i))

(q i exp(�y i) � (1 � q i)exp(��y i))2

⎞
⎟
⎠

(A10)

� y iq *i � q *i (y iq*i � y i(1 � q *i )) � 2y i q*i (1 � q*i ). (A11)

(A9) follows from the rules of differentiation. Using the definition of q*i as in (A7), we get (A10). And algebraic
simplification results in (A11).

Thus, using (A8),

Im � �E
⎛
⎜
⎝

� 2 �*
� 2 �*

|y , m�
⎞
⎟
⎠

� �
n

i�1

(2y i q*i (1 � q *i ))2 � 1
q*i (1 � q*i )� � �

n

i�1

4y 2
i (q*i (1 � q*i )),

which establishes (1).
Optimal selection fraction and marker spacing: In this section we consider selecting the optimal selection fraction

and marker spacing when the QTL effect is small. We consider the most conservative limiting scenario when � �
0 for which we can derive formulas. The expected information when the selection fraction is 
 is

J
 � 1 � �
�w 
/ 2

�w 
/ 2

H(y , 1/2, 0)φ(y)dy � 2�
∞

w 
/ 2

y 2 φ(y)dy � 2�
∞

w 
/ 2

((y 2 � 1) � 1)φ(y)dy

� 2(w
/ 2 φ(w
/ 2) � 
/2) � 2w
/ 2 φ(w
/2) � 
 .

The first line follows from Equation 2, noting that there is no information loss for the extreme individuals who are
genotyped. Individuals with phenotype between �w
/2 and �w
/2 are not genotyped, and hence the prior probabil-
ity of their genotype is 1⁄2 . The second line follows from the definition of the function H and algebraic simplification.
The final line follows from integration, noting that �(y 2 � 1)φ(y) � �yφ(y). When the location of the QTL is in
the middle of a marker interval that is of length d cM, the expected information is

In(
, d) � nJ
Q d ,

where Q d � (1 � 4q(1 � q))(1 � r), r is the recombination fraction corresponding to the genetic distance d, and
q is the conditional probability that the QTL has the same genotype as its flanking marker genotypes given that the
flanking markers are not recombinant. Assuming the Haldane map function, we would have

q �
(1 � r �)2

r �2 � (1 � r �)2
,

where r � is the recombination fraction corresponding to a genetic distance of d/2. To see this, note that only
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nonrecombinant individuals contribute information. The contribution from the nonrecombinant intervals is 1 �
4q(1 � q) times the contribution of a completely genotyped location.

The information-cost ratio given a marker spacing d is given by Equation 4. Note that it has the form

AJ


1 � B

,

for constants A � Q d and B � cG/d when d is fixed. Differentiating with respect to 
 we get that the maximum
must satisfy

J �


1 � 
B
�

J
B

(1 � 
B)2
,

where J �
 is the derivative of J
 with respect to 
 . Since the denominators are nonzero, we get

J �
 �
J
B

1 � 
B
.

Finally, note that

J
 � 2�
∞

w 
/2

y 2 φ(y)dy

and therefore using Leibniz’s theorem for differentiation of an integral

J �

 � (�2w 2


/2 φ(w
/2))
d

d

w
/2 � w 2


/2 ,

since

d
d


w
/2 � �
1

2φ(w
/2)
.

Optimal replication number: From Equation 6 we get the information-cost ratio as a function of t . It is sufficient
to minimize its reciprocal as a function of t , At � (1 � ct)(1 � (� 2/t)):

�At � At�1 � At � �c(t � 1) �
� 2

t � 1� � �ct �
� 2

t � � c �
� 2

t(t � 1)
.

Hence, At is minimum for the largest t such that the difference above is positive. This establishes the optimal
replication number (7).

Information in multigenotype crosses: In this section we calculate the information content of multigenotype
crosses under selective genotyping. We calculate the observed information matrix using the missing information
principle. The complete-information matrix is calculated as the conditional expectation given the observed data of
the curvature of the complete-data log-likelihood; the missing information matrix is calculated as the conditional
dispersion given the observed data of the score function of the missing-data log-likelihood (Louis 1982; McLachlan
and Krishnan 1996). The complete-data log-likelihood is a Gaussian log-likelihood

�(y, g , �) � �
n

i�1
�
K

j�1

[g ij log φ(y � � j)],

where g ij is the indicator if g i � j . Hence the complete-information matrix is

I c � �
n

i�1

diag(q*i ),

where q*i denotes the posterior probabilities of the K genotypes for the i th individual given the marker and phenotype
data. For the F2 this reduces to

⎛
⎜
⎜
⎝

�q*i 1 0 0

0 �q*i 2 0

0 0 �q*i 1

⎞
⎟
⎟
⎠

.

The diagonal entries in this matrix are the number of individuals from each genotype category given the observed
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data. The distribution of the missing data (the QTL genotypes) given the observed data is multinomial and therefore
the missing-data log-likelihood is

�(g |y , �) � �
n

i�1
�
K

j�1

gij log q*i j .

This leads to the conditional score function,

�
n

i�1

(g i � q*i )diag(y i � �).

It follows that the variance of the conditional score function is

Im � �
n

i�1

diag(yi � �)(diag(q*i ) � q*i q*T
i )diag(yi � �),

which is

�
n

i�1

⎛
⎜
⎜
⎝

(yi � � 1)2q *i1(1 � q *i1) �(yi � � 1)(yi � � 2)q *i1q *i2 �(yi � � 1)(yi � � 3)q *i1q *i3
�(yi � �1)(yi � � 2)q *i1q *i2 (yi � � 2)2q *i 2(1 � q *i 2) �(yi � � 2)(yi � �3)q*i 2q *i3
�(yi � � 1)(yi � � 3)q *i1q *i3 �(yi � � 2)(yi � � 3)q *i2q *i3 (yi � � 3)2q *i3(1 � q*i3)

⎞
⎟
⎟
⎠

for F2’s. As with the backcross, we consider selective genotyping an 
-fraction of the extreme phenotypic individuals,
when the phenotype means in all QTL genotype classes are approximately equal. Additionally, assume that when we
genotype, we genotype densely. In this special case, the posterior distribution of the QTL genotypes for ungenotyped
individuals is the same as their prior distribution. Also, since the QTL effect is negligible, all genotypes will be
equally represented in each phenotype class. Therefore, the complete-information matrix, in expectation over all
realizations of the data, is

Ic � n diag(q)

and for the F2 case is

n

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1
4

0 0

0
1
2

0

0 0
1
4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

For the missing-information matrix, note that the only contributions come from individuals who are not genotyped.
For those individuals, the contribution is proportional to y 2 multiplied by the variance matrix of the QTL genotypes
in the cross. For the F2’s this is

y2

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3
16

�
1
8

�
1
16

�
1
8

1
4

�
1
8

�
1
16

�
1
8

1
4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

Therefore, when we are genotyping individuals only a fraction 
 of the extreme phenotypic individuals, i.e., those
exceeding w
/2 in absolute value, the expected value over all realizations of the data of the missing-information
matrix becomes

n(1 � J
)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

3
16

�
1
8

�
1
16

�
1
8

1
4

�
1
8

�
1
16

�
1
8

1
4

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,
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where J
 is the expectation of a squared normal variable, truncated above w
/2 in absolute value. For more general
crosses, the information matrix is

n(1 � J
)(diag(q) � qqT) .

Hence the expected value (under all realizations of the data) of the observed information matrix is

I(
) � n( J
 diag(q) � (1 � J
)qqT) ,

which is, for F2’s,

I(
) �
n
16

⎛
⎜
⎜
⎝

1 � 3 J
 2(1 � J
) (1 � J
)

2(1 � J
) 4(1 � J
) 2(1 � J
)

(1 � J
) 2(1 � J
) 1 � 3 J


⎞
⎟
⎟
⎠

.

Algebraic computation reveals that

det(I
) �
n3J 2




32
.

The variance of a contrast, u � (u 1, u 2, u 3), is then

4u 2
1 � 2u 2

2 � 4u 2
3

nJ


.

The inverse of the information matrix is

I(
)�1 �
1

nJ


⎛
⎜
⎜
⎝

3 � J
 J
 � 1 J
 � 1

J
 � 1 1 � J
 J
 � 1

J
 � 1 J
 � 1 3 � J


⎞
⎟
⎟
⎠
.

For the more general multigenotype case, the determinant of the information matrix is

det(I
) � nK det( J
 diag(q) � (1 � J
)qqT) � det( J
 diag(q)) det �1 �
(1 � J
)

J


qT diag(q)�1q�
� nK J K�1


 

K

j�1

q j .

The second line follows from noting that

det( J
 diag(q) � (1 � J
)qqT) � det
⎛
⎜
⎝

1 ( J
 � 1)qT

q J
 diag(q)

⎞
⎟
⎠

.

The inverse of the information matrix is

I(
)�1 �
1
n

⎛
⎜
⎝

1
J


diag(q)�1 �
J
 � 1

J


11T
⎞
⎟
⎠
.

Verify by multiplication.
Information in the presence of an unlinked QTL: Let g jki be the indicator that g 1 i � j and g 2 i � k , j , k � 0, 1.

The complete-data log-likelihood is

�(y, g , �) � �
n

i�1

[g 00i log(φ(yi � �1 � �2)) � g 01i log(φ(yi � �1 � �2))

� g 10i log(φ(y i � �1 � �2)) � g 11i log(φ(yi � �1 � �2))].

This gives the complete-information matrix,

Ic � �
n

i�1

⎛
⎜
⎝

1 q*00i � q*11i � q*01i � q*10i

q*00i � q*11i � q01i � q*10i 1

⎞
⎟
⎠

,

where q*jki is the posterior expectation of g jki given the phenotype data. When �1 � 0 it reduces to the sum of identity
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matrices. The missing-information matrix is the second derivative of the missing-data (QTL genotypes) likelihood.
Since the two loci are unlinked, the prior distributions of the QTL genotypes of the two loci are independent. The
posterior distributions given the phenotype are found by the Bayes theorem, and the missing information matrix
can be calculated using symbolic computation (see code at http://www.biostat.ucsf.edu/sen/). When (�1, �2) � (0,
�) it reduces to

Im � �
n

i�1

⎛
⎜
⎝

(y 2
i � �2) � 2�yi tanh(�yi) 0

0 y 2
i sech2(�yi)

⎞
⎟
⎠
.

We can calculate the expected value of the information matrix by numerical integration. The special cases of � �
0 and � � ∞ deserve special mention. Note that the missing information for �2 is y 2

i sech2(�yi), which is the same
as H(yi , 1⁄2 , �). For � � 0 the observed information matrix reduces to

Io � �
n

i�1

⎛
⎜
⎜
⎝

1 �
1
4

y 2
i 0

0 1 �
1
4

y 2
i

⎞
⎟
⎟
⎠
,

whose expected value, using the definition of J
 , is

n
⎛
⎜
⎝

J
 0

0 J


⎞
⎟
⎠
.

For large � it is easy to see that the expected information for �2 is approximately equal to n. Using the definition
of tanh(x) � (exp(�x) � exp(x))/(exp(�x) � exp(x)), we can see that for large �, the missing information for
�1 for the i th observation is equal to

(y 2
i � �2) � 2�yi tanh(�yi) � (y 2

i � �2) � 2�yi � (yi � sgn(�yi)�)2 .

Therefore the expected information per observation for �1 with a selection fraction of 
 is approximately

1 � �
��w


���w


(y � sgn(�y)�)21
2
(φ(y � �) � φ(y � �))dy � 1 �

1
2�

w


�∞
y 2φ(y)dy �

1
2�

∞

�w


y 2φ(y)dy

�
1
2�

∞

w


y 2φ(y)dy �
1
2�

�w


�∞
y 2φ(y)dy

�
1
2�1 � �

w


�w


y 2φ(y)�dy �
1
2

J 2
 .

The first step follows, noting that the upper 
/2 point of the marginal distribution of the phenotype for large � is
w
. The second step breaks the integral into sums and then uses the fact that � is large. The final step follows from
the definition of J
.


