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ABSTRACT
Horizontal gene transfer (HGT) plays a critical role in evolution across all domains of life with important

biological and medical implications. I propose a simple class of stochastic models to examine HGT using
multiple orthologous gene alignments. The models function in a hierarchical phylogenetic framework.
The top level of the hierarchy is based on a random walk process in “tree space” that allows for the
development of a joint probabilistic distribution over multiple gene trees and an unknown, but estimable
species tree. I consider two general forms of random walks. The first form is derived from the subtree
prune and regraft (SPR) operator that mirrors the observed effects that HGT has on inferred trees. The
second form is based on walks over complete graphs and offers numerically tractable solutions for an
increasing number of taxa. The bottom level of the hierarchy utilizes standard phylogenetic models to
reconstruct gene trees given multiple gene alignments conditional on the random walk process. I develop
a well-mixing Markov chain Monte Carlo algorithm to fit the models in a Bayesian framework. I demonstrate
the flexibility of these stochastic models to test competing ideas about HGT by examining the complexity
hypothesis. Using 144 orthologous gene alignments from six prokaryotes previously collected and analyzed,
Bayesian model selection finds support for (1) the SPR model over the alternative form, (2) the 16S rRNA
reconstruction as the most likely species tree, and (3) increased HGT of operational genes compared to
informational genes.

TRADITIONAL views of molecular evolution hold tween two different prokaryotic species, and (3) trans-
that genetic material mutates slowly over time as it duction of genetic material through viruses. Finally,

is passed in a vertical fashion from parent to progeny. HGT also has medical importance (Brown 2003). In
Molecular phylogenetics then aims to reconstruct this the field of infectious diseases, HGT among bacterial
history of inheritance of genetic sequence data from pathogens of antibiotic resistance genes has greatly con-
contemporary organisms into a tree-like structure. How- tributed to the emergence of multidrug-resistant bacte-
ever, belief in a single tree, mandated by vertical trans- ria in clinical settings (Leverstein-van Hall et al. 2002).
mission, for all genetic material is changing. Evolution- In the field of oncology, HGT may also affect tumor
ary biologists increasingly recognize the horizontal progression; Bergsmedh et al. (2001) show that eukary-
transmission of genetic material between distantly re- otic cells can transfer active oncogenes.
lated organisms as an important mechanism of evolu- Three general methods have been employed to exam-
tion (Syvanen 1994; Lawrence 1999; Jain et al. 2002). ine HGT. The first focuses on single genomes and iden-

The process of horizontal (or lateral) gene transfer tifies genes suspected to have been imported through
(HGT) plays a critical role across all domains of life HGT by examining variation in nucleotide base compo-
and in particular among prokaryotes (Jain et al. 1999; sition and codon usage patterns (Lawrence and Och-
Koonin et al. 2001). For example, many prokaryotes are man, 1997). The latter two methods are comparative
agile at quickly adapting to new environments. Often, studies across species. One uses similarity approaches
this ability stems from the acquisition of new genes based on gene content to identify HGT (Ragan 2001)
through HGT rather than through random mutation and to propose average genome or species-level trees
(Lawrence 1999). At least three mechanisms promote (Snel et al. 1999), while the alternative method endorses
HGT in prokaryotes (Jain et al. 2002). These include: phylogenetic reconstruction using orthologous genes
(1) transformation in which free DNA sequences are (Jain et al. 1999). Base composition and codon bias
absorbed from the environment, (2) conjugation be- studies may perform poorly when compared to phyloge-

netic methods (Koski et al. 2001). Further, phylogenetic
methods offer at least one advantage over similarity-based
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ing evolutionary histories of the different genes (Doo- genes. This hypothesis and others can be tested by inte-
grating over all possible species trees and gene treeslittle 1999). If a reconstructed gene tree differs from

the assumed phylogeny of the species being studied, weighed by their posterior probabilities. This Bayesian
model-averaging approach reduces the possible bias in-then HGT is offered as a possible explanation (Syvanen

1994). One intrinsic difficulty is that the true species herent in selecting a specific species tree, minimizes
underestimation of the uncertainty associated with thetree is often itself unknown. Therefore, it is necessary

to either fix the species tree to equal the inferred gene hypotheses (Taylor et al. 1996), and eliminates the
need for ad hoc analyses. Formal comparison of differenttree for a specially chosen gene, e.g., the 16S rRNA tree

(Woese 2000), or simultaneously estimate the species models for HGT will help gather further insight into
the underlying biological processes.tree and gene trees given a biologically plausible model

relating them. As a first step, several research groups
have attacked the inverse problem of reconstructing a

MODEL
species tree given gene trees subject to HGT. Most nota-
ble are the parsimony-based reconciled tree work by Within-gene reconstruction model: I begin with a hier-

archical framework for phylogenetic reconstruction us-Page and colleagues (e.g., Page 2000) and the algorith-
mic work of Mirkin et al. (2003). ing molecular sequence data Y (Suchard et al. 2003a).

Data Y � (Y1, . . . , YK) consist of K naturally disjointI propose a simple class of stochastic models for HGT
that enable the simultaneous estimation of the underly- partitions. Partition data Yk for k � 1, . . . , K represent

the aligned DNA sequences of length Lk from one spe-ing species tree relating a group of organisms and the
gene trees subject to HGT for a set of orthologous gene cific gene per partition, sequenced from the same N

taxa across all partitions. A hierarchical phylogeneticalignments. These HGT models function in a hierarchi-
cal manner (Suchard et al. 2003a) in which standard model enables the pooling of information across gene

partitions to improve estimate precision in individualBayesian phylogenetic approaches (e.g., Sinsheimer et
al. 1996; Yang and Rannala 1997; Mau et al. 1999; partitions, while permitting estimation and testing of

tendencies in across-partition quantities. For HGT, suchLi et al. 2000; Huelsenbeck et al. 2001) are used to
reconstruct each gene tree from its corresponding gene across-partition quantities include: (1) an overall species

tree, (2) appropriate stochastic models from which toalignment. Simultaneous to the reconstructions, the
HGT models impose a second probabilistic distribution construct a probability distribution over individual gene

trees given the species tree, and (3) the stochastic modelover the gene trees (Maddison 1997). This hierarchical
distribution describes the gene trees likelihoods given parameters that may vary between different classes of

genes.an unknown species tree and an unknown number of
HGT events leading from that species tree to each gene To utilize standard Bayesian models for phylogenetic

reconstruction (e.g., Sinsheimer et al. 1996; Yang andtree. The model is fit in a Bayesian framework that
naturally handles uncertainty in discrete parameters Rannala 1997; Mau et al. 1999; Li et al. 2000) within

a gene partition, data Yk further divide into orderedsuch as all the trees and the number of HGT events and
compares various models using Bayes factors (Suchard homologous sites Yk l for l � 1, . . . , Lk . Site data Yk l �

(Yk l 1, . . . , Yk l N)t contain one nucleotide from eachet al. 2001). Stochastic models fit in statistical frameworks
offer several advantages over parsimony approaches. First, taxon, such that Yk l n � (A, G, C, T) or their ambiguous

wildcards for n � 1, . . . , N. I assume that sites withinparsimony may underestimate the number of HGT
events linking the species tree to the gene trees. This a partition are independent and identically distributed,

and the likelihood of observing Yk l is given by aconsequence is similarly seen in parsimonious recon-
structions of the tree themselves, in which the number multinomial distribution over the 4N possible outcomes

with ambiguous nucleotides being integrated over theirof nucleotide substitutions is underestimated. Second,
it is easier in a statistical framework to include measures possible realizations. The multinomial outcome proba-

bilities become functions of an unknown tree �k thatof uncertainty and these levels may be high in the in-
ferred gene trees given the sparse data from which they describes the relatedness of the N taxa, branch lengths

tk � (tk 1, . . . , tk B), and a model to describe nucleotideare reconstructed.
One additional advantage of building stochastic mod- mutation along these branches, all within partition k.

I elect for a reversible, continuous-time Markov chainels for HGT is the ability to compare competing models
and to incorporate possible differences in the stochastic (CTMC) model for nucleotide substitution (Felsen-

stein 1981) popularized by Tamura and Nei (1993)processes across genes, while assessing the significance
of these differences in a formal statistical framework. (TN93). The TN93 model is further parameterized by

two transition:transversion rate ratios, �k between pu-As one example of possible differences across genes,
Jain et al. (1999) propose the complexity hypothesis. rines A and G and �k between pyrimidines C and T, and

the stationary distribution of the underlying MarkovUnder this hypothesis, genes are divided into one of two
classes, informational or operational genes. Between chain �k � (�k A , �k G, �k C , �k T). The final scale parameter

in the TN93 model is fixed such that branch lengthsclasses, the rates of HGT differ. It is suspected that rates
are higher for operational genes than for informational measure the expected number of nucleotide substitu-
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tions between the nodes in �k that the branch connects.
Because I assume a reversible model for nucleotide sub-
stitution and make no clock-like restrictions on branch
lengths, the root of each tree is unidentifiable (Felsen-
stein 1981). As a consequence, the descriptions of all
trees to follow are unrooted with N � 2 internal nodes
and B � 2N � 3 branches.

Across-gene hierarchical model: Following the hierar-
chical framework of Suchard et al. (2003a), I take
branch lengths tk as exponentially distributed with un-
known expected divergence �k within partition k and
model
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Figure 1.—Subtree prune and regraft operator applied to

a six-taxon tree. (1) Operator selects and cuts any branch in
the initial tree, pruning away a subtree. (2) Operator regraftsand
subtree by selecting and subdividing a preexisting branch in
the remaining tree. (3) Resultant tree for this realization.�k � Dirichlet(N� 	 �), (1)

where V � (A, G, M)t and � � (�A , �G, �C , �T) are
unknown across-partition-level expectations, variance- called adjacent. Restricting attention to simple graphs in
covariance matrix R � diag(
 2

� , 
 2
� , 
 2

�) has diagonal which pairs of vertices may be connected to each other
form, and 
�2

� , 
�2
� , 
�2

� , and N� are unknown across- only by a single edge and no vertex is connected to
partition-level measures of precision. Leaving V, R, �, itself by a looping edge, a single vertex v from graph �
and N� as unknowns specified only by hyperprior distri- may be adjacent from as few as zero to as many as M �
butions and estimating these parameters simultaneously 1 other vertices. The set of all vertices adjacent to v are its
with the within-partition-level continuous parameters, neighborhood �(v) and the size of this neighborhood
�k , �k , and �k for all k, enables the borrowing of strength |�(v)| � d(v). The specification of a neighborhood for
of information from one partition by another, produc- each vertex completes the description of �, and many

choices are available.ing more precise within-partition-level estimates. I assume
conjugate (when possible) and flat or noninformative Subtree-prune-regraft-based model: One approach to de-

fining neighborhoods for each possible tree stems fromhyperpriors on these across-partition-level parameters,
as discussed in Suchard et al. (2003a). While the devel- subtree transfer operations (Allen and Steel 2001).

Subtree transfer operators act on trees producing localopment of hierarchical priors over the continuous within-
partition-level parameters has been straightforward, rearrangements. Applying a subtree transfer operator

to one tree � results in the creation of one of severalconstructing a hierarchical prior over gene trees �k that
incorporates the stochastic nature of HGT is more in- possible new topologies that differs from � by an extent

dependent on the operator. The collection of all treesvolved. This is illustrated in the next section.
Horizontal gene transfer models: To build a stochas- one operation away from � � v becomes its neighbor-

hood �(v) under that operator. Nearest-neighbor inter-tic model for HGT, I first present a formal description
of the set of all possible N -taxon trees, commonly re- change (Robinson 1971), tree bisection and reconnec-

tion (Swofford et al. 1996), and subtree prune andferred to as “tree space” (Billera et al. 2001), as a
mathematical graph and then discuss several possible regraft (SPR) (Hein 1990, 1993) are three examples.

In light of the goals of this article, SPR offers an advan-random walks (D. Aldous and J. Fill, unpublished
results) on this graph that mirror the observed effects tage over the former two operators because of its poten-

tial biological interpretation. Applying the SPR operatorof HGT.
There exist M � (2N � 5)!/2N�3(N � 3)! possible to � � v with its resultant drawn from �SPR(v) mirrors

the differences observed between a species tree and antrees relating N extant taxa (Felsenstein 1981). On
the basis of these M trees, I construct a graph � � (�, individual gene tree affected by one HGT (or recombi-

nation) event (Hein 1990, 1993; Jain et al. 1999; Allenε) with vertex set � and edge set ε. Each tree represents
a different vertex, or node, in the graph, such that the and Steel 2001).

Figure 1 illustrates one realization of the SPR operatorsize of the vertex set |�| � M. An edge uv � ε of a
graph describes a direct connection between two of applied to a six-taxon tree. The operator works in two

steps. The first step selects and cuts any branch in thethe graph’s vertices u, v � �. The number of edges
emanating from a single vertex v defines its degree d(v). initial tree, �initial . Cutting the branch prunes away a

subtree, �subtree . This subtree then regrafts itself usingTwo vertices that are joined together by a single edge are
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the same cut branch to a new internal node obtained
by subdividing a preexisting branch in �initial � �subtree .

Several important properties about the graph �SPR

induced by the SPR operator have been previously stud-
ied. First, �SPR is regular, implying that every vertex v �

�SPR possesses the same degree d(v) � 2(N � 3)(2N � 7)
and, hence, neighborhood size (Allen and Steel 2001).
Also, �SPR is connected, meaning that a sequence of
consecutive edges (a path) exists, connecting every pair
of vertices in �SPR (Robinson 1971; Allen and Steel
2001).

One straightforward stochastic process on any simple
graph � is an unweighted random walk. A random walk
on � proceeds from vertex to vertex along existing edges
of the graph, generating a discrete-time Markov chain
(DTMC), where the states of the chain are the visited
vertices. As unweighted, the chain uniform randomly
chooses its next vertex to visit from all neighbors of its

Figure 2.—One possible Markov chain realization on acurrent vertex. For this DTMC, the one-event transition
simplified graph for the species tree 
 and four gene treesprobability matrix A has entries
�1, . . . , �4 . All chains begin at the same vertex representing
the species tree 
 (in white). The chain producing gene tree
�1 has length E1 � 3 (blue), the chain for �2 has length E 2 �

(A)uv �

⎧
⎭
⎫
⎩

1
d(u)

if vertices u and v are adjacent or

0 otherwise,
1 (red), the chain for �3 has length E 3 � 2 (yellow), and the
chain for �4 has length E 4 � 3 (green). Note that this latter(2)
chain returns to its starting state; a parsimony-like analysis

defining the probability of u changing into v as a result would estimate E 4 � 0. Not depicted are chains with actual
length zero; these are most probable a priori .of one random event. It should be noted that A is just

the adjacency matrix of � rescaled to be a stochastic
matrix [i.e., �v(A)uv � 1].


 � Multinomial(z), (4)On the basis of K random walks on the graph �SPR

induced by the SPR operator, I construct a hierarchical where z � (z1, . . . , zM) are constants, the prior probabili-
prior over the joint distribution of all gene trees �k . To ties of the M possible N-taxon trees. When little or no
accomplish this task, I assume: information is available about 
, one reasonable choice

is z1 � . . . � zM � 1/M ; alternately, one may chooseAn unknown species tree 
 exists.
z such that the prior odds of competing hypothesesThe vertex representing 
 is the initial state of K Markov
regarding 
 are one in a hypothesis-testing settingchains.
(Suchard et al. 2003a). A further choice is discussedThe Markov chains are conditionally independent given
later. I further assume a conditionally independent
 and A.
prior on all Ek ,The vertex representing �k is the final state of the kth

chain. Ek � Poisson(�k), (5)
And each chain is of unknown length 0 � Ek � ∞.

where �k is the expected number of HGT events for
Figure 2 depicts one set of the possible paths of K � 4 gene k and is a deterministic function of across-gene-
Markov chains starting at species tree 
 and ending at level parameters. This prior is conjugate to (3), allowing
gene trees �k on a small portion of a representative all Ek to be integrated out of the model, improving
graph. The lengths of paths Ek shown range from one sampling efficiency (Liu 1994),
to three. I illustrate no paths of length zero, but these
realizations should be most likely. A parsimony-like anal- q(� k � v |
 � u, �k) � �

∞

Ek�0

q(� k � v |
 � u, E k)q(E k |�k).
ysis considering beginning and end points of the chains
in Figure 2 would, for example, underestimate E 4 as (6)
zero instead of three.

Letting q(�k � v |
 � u, �k) � (P)uv , the multistep transi-Given the assumptions listed above, the probability
tion probability matrix,of species tree 
 giving rise to gene tree �k after Ek HGT

events is
P � �

∞

Ek�0

AEkq(Ek |�k),
q(�k � v |
 � u, Ek) � (AE k)uv . (3)

To complete the hierarchical specification, I assign a � �
∞

Ek�0

AEk exp(��k)
�Ekk

E k!
,

prior distribution over 
 by letting
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� exp(��k)exp(�k A), 1983). GLMs link the mean response, in this case �k ,
to a set of linear predictors. First, I divide all K genes� exp{�k(A � I)} � exp(�kQ), (7)
into one of C possible classes, where the definition of

where I is the M 	 M identity matrix and Q � P � I
the classes depends on the specific research question

is the CTMC infinitesimal rate matrix representation of
at hand. To identify gene-class membership in the GLM,

the HGT process. In this parameterization, �k are scaled
I construct a K 	 C design matrix D � (Dk c), where

as the expected number of HGT events per gene. Let
matrix elements Dk 1 � 1 for all k, representing the base-

� � (�1, . . . , �K). Then, recalling the conditional
line multiplier for the reference class, andindependence assumption between Markov chains, the

joint distribution over all gene trees �k becomes
Dk c �

⎧
⎨
⎩
1 if gene k � class c
0 otherwise, (9)q(� 1 � v1 , . . . , �K � vK |
 � u, �) � �

K

k�1

(P)uvk
. (8)

for c � 2, . . . , C, representing the offset multipliers
Calculating the probabilities in (8) requires numeri- for the remaining classes. Such a design matrix is stan-

cal methods to determine the matrix exponential involv- dard in regression problems involving categorical de-
ing PSPR. These methods involve calculating the com- pendent variables. I model
plete set of eigenvalues and eigenvectors of PSPR ,
requiring �(M 3) operations. Such procedures become log �k � �

C

c�1

� cDk c , (10)
quickly computationally prohibitive as N, and hence M,
increases. As a consequence, numerical approximations

where linear combinations of predictors � � (�1, . . . ,may be necessary to develop weighted graph extensions
�C) specify, on the log-scale, the expected number ofto �SPR directly. The weights in these extended graphs
HGT events for all classes. I complete the hierarchicalwould be functions of unknown parameters and sam-
prior specification by assumingpling these parameters would necessitate repetitive diag-

onalization. � � Normal(L, �). (11)
Random walks with analytic solutions: An alternative to

I set L � (�2, 0, . . . , 0) and � � diag(10, . . . , 10).this computational barrier involves using random walks
This provides a quite diffuse prior on �, with the medianon graphs for which analytic solutions are known for
expected number of HGT events per gene � 0.14 (Gar-any size M. To help find such solutions, Equation 7
cia-Vallve et al. 2000) for all classes.demonstrates the close connection between a DTMC

As an example of how this GLM construction func-with a Poisson-distributed number of events and a CTMC.
tions, consider the C � 2 classes case. Then,In fact, any such DTMC can be expressed as a unique

CTMC, called the “continuized” version (D. Aldous
and J. Fill, unpublished results). Analytic solutions for �k �

⎧
⎨
⎩
exp(� 1) if gene k � class 1
exp(� 1) 	 exp(� 2) if gene k � class 2. (12)several weighted and unweighted CTMC processes on

a complete graph are commonly used in phylogenetics.
When �2 � 0, no difference across classes exists. Like-In a complete graph, all vertices are adjacent to all
wise, when �2 � 0, the expected number of HGT eventsothers. The most notable examples are the CTMC mod-
per gene is smaller in class 2 than in class 1, and whenels for nucleotide substitution. The simplest model by
�2 � 0, the expected number is larger.Jukes and Cantor (1969) is unweighted. In the appen-

dix, I present the multistep transition probability matrix
PGJC for a generalized Jukes-Cantor (GJC) model involv- STATISTICAL FRAMEWORK
ing an arbitrary number of vertices M. Proposed by

Comparing the relative appropriateness of the variousKimura (1980), the next most sophisticated model for
stochastic models for HGT proposed in preceding sec-a complete graph is weighted. This model presupposes
tions and testing for significant differences in the ex-that the vertices are divided into two disjoint sets, �1 �
pected number of HGT events across genes can be ac-�2 � �, and that transitions within and between �1 and
complished using Bayesian model selection via Bayes�2 occur at varying rates. In terms of HGT, such a
factors. Bayes factors are the Bayesian analog of theweighted random walk may prove useful to model vary-
likelihood-ratio test (LRT), but suffer from fewer diffi-ing rates of HGT between different groups of taxa. Let-
culties than LRTs in discrete spaces, when comparingting M1 � |�1|, M2 � |�2|, and R equal the ratio of
non-nested models and with sparse data (Suchard etwithin- to between-transition rates, I present the
al. 2001). A Bayes factor B10 measures the relative changemultistep transition probability matrix PGK given M1 , M2 ,
in the support of the data Y in favor of one statisticaland R for a generalized Kimura (GK) model in the
model M1 over another model M0 and equals the ratioappendix.
of the marginal likelihood m(Y|M1) of M1 over the mar-Modeling differences across gene classes: I incorpo-
ginal likelihood m(Y|M0) of M0 (Kass and Rafteryrate potential differences across genes in the expected
1995). To calculate Bayes factors, frequently more effi-number of HGT events �k by employing a generalized

linear model (GLM) approach (McCullagh and Nelder cient methods than estimating the multidimensional
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TABLE 1integrals hidden in the marginal likelihoods directly are
available. Functional definitions of two distinct gene classes,

When models are nested, a relatively simple Bayes adopted from Rivera et al. (1998)
factor calculation is available via the Savage-Dickey ratio
(Verdinelli and Wasserman 1995) and involves gener- Gene-class c �

ating a posterior sample from the larger model only
1. Informational 2. Operational(Suchard et al. 2003b). For example, to assess the sig-
Transcription Regulatory genesnificance of differences across gene classes in the ex-
Translation Cell envelope proteinspected number of HGT events, let M1 represent the
tRNA synthetases Intermediary metabolismunrestricted model proposed above. Nested within M1
GTPases/vacuolar Biosynthesis of amino acids, fattyexists M0 , the equal-rates model, where �c � 0 for c �

ATPase homologs acids phospholipids, cofactors,
2, . . . , C. Further, the GJC model is nested within the and nucleotides
GK model, as both are equal when R � 1.

On the other hand, the GJC and SPR models are non-
nested, but both possess zero free parameters in their
respective P matrices. For two arbitrary models M0 and Bacillus subtilis (Bs), a gram-positive bacterium; Methano-
M1 in situations like this, it is possible to estimate the coccus jannaschii (Mj), a methanogen; and Archaeoglobus
posterior probabilities p(M0|Y) and p(M1|Y) by con- fulgidus (Af), a thermophilic sulfate-reducing methano-
structing a mixture model over the joint space of M0 gen relative. The first four organisms are Eubacteria,
and M1. By applying the Bayes theorem, while the last two are Archaea. Jain et al. (1999) con-

struct the gene alignments on the basis of amino acid
B10 �

p(M1|Y)

p(M0|Y)�q(M1)

q(M0)
�

Posterior odds
Prior odds

, (13) translations, assuming a star tree to reduce alignment
bias (Lake 1991), and classify each gene into one of
two distinct classes, informational and operational geneswhere q(M0) and q(M1) are the prior probabilities of
(Rivera et al. 1998). Table 1 lists the functional charac-models M0 and M1 in the mixture. Generally, I assume
teristics of the genes that fall into each class. As a gener-equal prior probabilities, q(M0) � q(M1) � 1⁄2 , when
alization, informational gene products interact in largereporting posterior estimates. However, improved effi-
complex systems; this is especially true of the transla-ciency in estimating B10 can be garnered by adjusting
tional and transcriptional apparatuses. On the otherthese prior probabilities such that p(M0|Y) � p(M1|Y)
hand, most operational gene products function inde-(Carlin and Chib 1995; Suchard et al. 2002).
pendently or in small protein assemblies. In total, JainModels SPR and GK neither are nested nor contain
et al. (1999) assign 56 genes as informational and 88 asthe same number of free parameters. One might enter-
operational, employ these genes to examine the com-tain constructing a reversible-jump Markov chain Monte
plexity hypothesis, and find support for higher levels ofCarlo (MCMC) sampler (Green 1995) over the joint
HGT among the operational genes as compared to thespace of these models to compute the Bayes factor in
informational genes.support of SPR over GK. However, a simpler algebraic

I parallel the above analysis by assuming that thesolution exists given the two preceding Bayes factor
number of the different gene classes C � 2. I let classcalculations,
c � 1 represent the informational genes and class c �
2 represent the operational genes. To further maintainB SPR,GK �

B SPR,GJC

BGJC,GK

. (14)
consistency with Jain et al. (1999), I exclude third codon
position nucleotides from all alignments and assumeTo estimate all model parameters and Bayes factors, I
that first and second codon position nucleotides areemploy MCMC. I further develop this MCMC algorithm
evolving independently under the same process for eachand discuss its performance in the appendix.
gene.

Selection of stochastic model: I begin by comparing
EXAMPLE the relative likelihoods of the three different stochastic

models, SPR, GJC, and GK. For the GK model, I defineTo illustrate these stochastic models for HGT and
my two disjoint sets of trees as (1) those that support amethods to test hypotheses about them, I examine a
split between the four Eubacteria and the two Archaea,large set of orthologous, prokaryotic genes collected by
�1, and (2) those that do not, �2 . These definitionsJain et al. (1999). The data consist of K � 144 separate
offer a first approximation to modeling differing ratesgene alignments. Each alignment contains orthologous
of HGT within life domains and across domains in thiscopies of a single gene from six prokaryotes. These
example. HGT events that start and end in set �1 areprokaryotes are: Aquifex aeolicus (Aa), an early branching
within domain transfers, while events that start in �1thermophilic eubacterium; Escherichia coli (Ec), a pro-

teobacterium; Synechocystis 6803 (S6), a cyanobacterium; and end in �2 , or vice versa, are across domain transfers.
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form two distinct clades (Feng et al. 1997) and Aa is
the earliest branching species of the Eubacteria studied
(Deckert et al. 1998). The branching order of the re-
maining three Eubacteria Ec, S6, and Bs is more ambigu-
ous (Giovannoni et al. 1996). The three possible resolu-
tions of this trifurcation are depicted on the right side
of Figure 3. Much of the debate surrounding the trifur-
cation depends on data choice and reconstruction
methodology. For example, the top resolution produces
species tree 
Ec-S6 that places Ec and S6 as nearest neigh-
bors. Protein synthesis elongation factor (EF) Tu gene
reconstructions support this tree (Lake and Rivera
1996) and Jain et al. (1999) fix 
Ec-S6 as their reference
tree in their analysis. Reconstructions of 16S rRNA phy-
logeny support the middle resolution of species tree

Bs-S6 (Cole et al. 2003) with Bs and S6 as nearest neigh-
bors. The final resolution of species tree 
Ec-Bs gains

Figure 3.—Species tree relating six prokaryotes. Species
support from reconstructions of phenylalanyl-tRNA syn-are: Aquifex aeolicus (Aa), Escherichia coli (Ec), Synechocystis 6803
thetase (Teichmann and Mitchison 1999). However,(S6), Bacillus subtilis (Bs), Methanococcus jannaschii (Mj), and

Archaeoglobus fulgidus (Af). Branch order of three Eubacteria even these three critical genes are subject to HGT (Wolf
Ec, S6, and Bs is under debate, leading to three possible et al. 1999; Zap et al. 1999; Ke et al. 2000) and their
subtrees (shown on right). reconstructed phylogenies may inaccurately represent

the true species tree.
On the basis of the SPR model for HGT, I infer 
Bs-S6

The log10 Bayes factor in favor of SPR over GJC and as the most likely species tree with �0.999 posterior
the log10 Bayes factor in favor of GK over GJC are probability. The two other resolutions, 
Ec-Bs and 
Ec-S6 ,

are the second and third most likely species trees, re-log10 B SPR,GJC � 19.2 and log10 BGK,GJC � 5.7. (15)
spectively. To estimate the Bayes factors in favor of 
Bs-S6

Figure 4a illustrates the scaled regeneration quantile against 
Ec-Bs and 
Ec-S6 , I judiciously reweight my prior
(SRQ) plot for estimating the relative posterior proba- probabilities on trees z and calculate
bilities used to calculate log10 B SPR,GJC. No substantial

log10 BBs-S6,Ec-Bs � 7.3 and log10 BEc-Bs,Ec-S6 � 5.9. (17)deviation from the slope � 1 line implies the MCMC
chain is mixing sufficiently to generate this estimate. Similar to the back calculation completed in previous
Combining the results in (15), I calculate the log10 Bayes section, I estimate
factor in favor of SPR over GK as

log10 BBs-S6,Ec-S6 � 7.3 � 5.9 � 13.2, (18)
log10 B SPR,GK � 19.2 � 5.7 � 13.5. (16)

while direct calculation of log10 BBs-S6,Ec-S6 using the sam-
pler yields approximately the same result. Figure 4, b–d,Considering these Bayes factor estimates, the data

strongly reject (Kass and Raftery 1995) the two com- depicts the SRQ plots relevant to these Bayes factor
calculations. Again, the MCMC chain appears well mix-plete graph models with analytic solutions in favor of

the more biologically plausible process based on the ing. Although the posterior support for 
Ec-Bs and 
Ec-S6

initially appears quite small, on a relative scale it is not;SPR operator. However, the GJC and GK models should
not be discounted completely; their computational com- probabilities for the remaining 102 trees are �15 orders

of magnitude smaller.plexity does not increase with increasing number of taxa
N and they can offer some insight into the underlying Data sets as large as the K � 144 gene alignments from

Jain et al. (1999) are currently rare. Consequentially, Ibiological processes. For example, the Bayes factor in
favor of GK over GJC offers some indirect support for examine via simulation the number of alignments neces-

sary to identify the species tree under the SPR model.differing HGT rates within domains rather than across
domains. One caveat should be kept in mind to keep Under this simulation, I randomly sample without re-

placement a fixed number of gene alignments K andfrom drawing too strong a conclusion from this find-
ing—the unbalanced study design with only two Arch- then estimate the posterior support for 
Bs-S6 , assuming

this is the true species-tree. I repeat this simulation 20aea precludes identifying HGT events within that do-
main. All further results in this article are based on the times for each value of K. For K � 2, the expected

posterior probability of 
Bs-S6 � 0.14. This estimate isSPR model.
Estimating the species tree: Figure 3 displays the cur- approaching its prior value, signifying appropriate

MCMC sampling with limited data. Approximately K �rently accepted species tree relating the six prokaryotes
studied here. The four Eubacteria and two Archaea 50 gene alignments are required to achieve an expected
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As seen from Table 2, the average transition:transver-
sion ratio for purines A� is significantly different from
the ratio for pyrimidines G �, as the ratios’ 95% Bayesian
credible intervals (BCIs) do not overlap, and both ratios
are greater than one. This supports the use of the TN93
model for nucleotide substitution over a more restricted
model. Estimates of A, G, and � are consistent with a
previous study using a subset of the data in a hierarchical
framework (Suchard et al. 2003a). Also in comparison
to this previous study, differences in estimates of M,

 2

A , 
 2
G , 
 2

M , and N� all trend in the correct directions
given the increase in the number of taxa and genes fit
here.

Varying rates of HGT across gene classes: Figure 5
displays model estimates for the linear predictors �1 and
�2 and for the expected number of HGT events per
gene, �k , for the informational and operational gene
classes. The two top plots display histograms of the pos-
terior samples of �1 (left) and �2 (right). These plots
also include normal approximations to the posterior
(solid lines) and prior densities (dashed lines). Examin-Figure 4.—Scaled regeneration quantile (SRQ) plots to

assess MCMC sampler performance when estimating four rela- ing the plot on the right, the prior density at �2 � 0
tive posterior probabilities. Plot a was generated when compar- (dotted vertical line) is considerably higher than the
ing the SPR and GJC stochastic models. Plots b–d were gener- normal approximation to the posterior density. Further,ated when comparing the three most probable species trees.

the 95% BCI of �2 � (0.27–1.15) and does not coverNo substantial deviation in the slopes from 1 (dashed lines)
zero. Both observations support the hypothesis that �2 �implies that the chains are mixing well enough to produce

stable estimates. 0 and, hence, that rates of HGT differ between informa-
tional and operational genes. Formally, the Bayes factor
in favor of differing rates is given by the Savage-Dickeyposterior probability �0.80 and K � 70 are required
ratio. The log10 Bayes factor,for �0.90.

Hierarchical estimates of evolutionary pressures: Ta- log10 B�rates,�rates � 0.9, (20)
ble 2 presents the posterior estimates of the across-gene-

offers substantial support (Kass and Raftery 1995) inlevel parameters used to pool information about (�k ,
favor of differing rates.�k , �k , �k). The table also lists posterior estimates of

The bottom plot in Figure 5 transforms �1 and �2A� � exp(A � 1⁄2 
 2
A), into the expected number of HGT events per gene and

displays histograms of the posterior samples of theseG � � exp(G � 1⁄2 
 2
G),

quantities. Depicted in dark shading is �k for the opera-
M � � exp(M � 1⁄2 
 2

M). (19) tional genes and depicted in light shading is �k for the
informational genes. Although �k for operational genesThese transformed variables report the across-gene-level
is significantly greater than �k for informational genesaverages of the two transition:transversion ratios and

expected divergence on their usual, instead of log, scale. from the argument above, a small amount of overlap is

TABLE 2

Hierarchical across-gene-level estimates of evolutionary pressures

Log-scale central tendencies Natural-scale central tendencies Measures of precision

Parameter Mean (95% BCI) Parameter Mean (95% BCI) Parameter Mean (95% BCI)

A 0.48 (0.4–0.52) A� 1.65 (1.59–1.71) 1/
 2
A 26.59 (20.29–33.77)

G 0.23 (0.180–0.28) G � 1.29 (1.23–1.35) 1/
 2
G 20.28 (14.67–27.15)

M �1.67 (�1.74–�1.60) M � 0.19 (0.18–0.21) 1/
 2
M 17.02 (11.65–23.93)

� A 0.35 (0.35–0.35) N � 542.66 (455.47–639.81)
� G 0.30 (0.29–0.30)
� C 0.17 (0.16–0.17)
� T 0.19 (0.18–0.19)

Posterior means and 95% Bayesian credible intervals (BCIs) are reported for each parameter.
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observed (solid shading) between these marginal histo-
grams. This overlap results from the high negative corre-
lation between �1 and �2 (data not shown) and illustrates
the need for caution in making inference on the basis
of marginal posterior summaries alone.

REMARKS

In this article, I proposed a simple class of stochastic
models for HGT. The models are based on a random
walk process in tree space and allow for the development
of a joint distribution over multiple gene trees given an
unknown species tree. I consider two general forms of
random walks. The first stems from subtree transfer
operations, in particular the SPR operator that mirrors
the observed effects that HGT has on an inferred tree.
The second form is based on walks over complete graphs
and offers numerically tractable solutions for increasing
number of taxa. I fit these models using a Bayesian
framework to data from six prokaryotes. I find strongest

Figure 5.—Analysis of the complexity hypothesis. The top
support for the species tree that places Bs and S6 as two plots depict the posterior distributions of linear predictors
nearest neighbors. This tree is supported by 16S rRNA �1 and �2 using histograms and normal approximations (solid
reconstructions, but differs from the EF-Tu tree as- lines). Also shown are the predictors’ prior densities (dashed

lines). Greater prior than posterior density at �2 � 0 (dottedsumed by Jain et al. (1999). I demonstrate the flexibility
line) supports a difference in HGT rates between gene classes.of these stochastic models to test competing ideas about
The bottom plot depicts the posterior distributions of the

HGT by examining the complexity hypothesis and find expected number of HGT events per gene for informational
support for increased HGT of operational genes com- genes (light shading) and operational genes (dark shading).
pared to informational genes. This latter finding re-
mains unchanged if I fix the species tree to equal the
EF-Tu tree (data not shown). due to sparse phylogenetic data, evolutionary model

misspecification, and parallel/convergent evolution canThe specific stochastic models for HGT developed in
this article have important limitations. First and fore- falsely produce incongruence between trees (Cao et al.

1998). These effects should upwardly bias the inferredmost, the random walks explore only the discrete, topo-
logical portion of tree space and do not consider number of HGT events. However, I suspect this bias is

less than one HGT event per gene as only a modestchanges in branch lengths between trees as part of the
underlying HGT process. As a result, HGT between percentage of genes should be affected and the error

should produce just minor changes in the inferred tree.nearest neighbors in a tree remains unidentified as this
process does not result in a change in the topological There is no a priori reason to suspect that this bias differs

between the informational and operational gene classes;configuration of the tree. Model extensions that con-
sider a continuous random drift process on the joint so the bias does not affect the relative difference be-

tween classes in HGT rates and inference regarding thespace of (�, t) (Billera et al. 2001) may circumvent this
shortfall. For a related problem involving coalescence, complexity hypothesis.

For the SPR model, numerical approximations to theYang (2002) shows that including branch lengths t into
the probabilistic model across loci improves power. Ad- matrix exponentials involving the multistep transition

probability matrix PSPR may offer promise in handlingditionally, I assume that the K DTMCs representing the
random walks of the gene trees �k away from the species research problems with larger numbers of taxa N (Moler

and Van Loan 2003). As N increases, the square dimen-tree 
 are conditionally independent given 
. This as-
sumption implies that the evolutionary histories of all sions of PSPR grow superexponential, while the size of

the neighborhood of each vertex grows only as �(N 2).genes are unlinked, while evidence for the HGT of, at
a minimum, complete operons abounds in prokaryotes As a consequence, PSPR becomes increasingly sparse. In

this situation, the number of unique eigenvalues in-(Koonin et al. 2001). Possible modeling aspects include
allowing for linked or partially linked genes. creases substantially slower than the matrix’s dimension.

Krylov subspace techniques (Sidje and Stewart 1999)HGT is not the only process that may cause incongru-
ence between gene trees. Although the effects of lineage may stretch computational limits upward to N � 8 or

more.sorting should be minor given the extensive divergence
between the species studied here, the inclusion of para- In spite of these limitations, these stochastic models

for HGT offer several advantages over previous ap-logous genes copies within the orthologous alignments
may mislead inference. Also important, stochastic error proaches to studying HGT using multiple orthologous
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APPENDIX

Complete models: To determine the multistep transition probability matrix PGJC for the GJC model with M � 2
states, I first recall that

PGJC � exp(�kQGJC) (A1)

is generated from an unweighted complete graph. As a complete graph, it is trivially connected and, therefore, has
a unique stationary distribution. This distribution is (1/M, . . . , 1/M).

To determine the eigenvalues of QGJC, I write

QGJC �
1

M � 1
J �

M
M � 1

I, (A2)

where QGJC is scaled such that �k is expressed in terms of the expected number of HGT events per gene, J is the
M 	 M matrix of all ones, and I is the M 	 M identity matrix. Matrix J has a rank of one and, therefore, one
nonzero eigenvalue that equals M/(M � 1). Given the eigenvalues of J and expression (A2), the M eigenvalues of
QGJC become

�0,
�M

M � 1
, . . . ,

�M
M � 1�. (A3)

Like the standard Jukes-Cantor model, where M � 4, the GJC model for any M � 2 continues to have only two
distinct eigenvalues. Conceptually this results because the qualitative behavior of the underlying Markov chain does
not change as the size of the state-space increases.

By letting �k → ∞, I see that the stationary distribution is the eigenvector corresponding to the 0 eigenvalue. By
examining the other limiting case where �k � 0 and considering the initial conditions, algebraic rearrangement
yields
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(PGJC)uv �

⎧
⎪
⎨
⎪
⎩

1
M

�
M � 1

M
exp(�

M
M � 1

�k) if u � v

1
M

�
1
M

exp(�
M

M � 1
�k) otherwise. (A4)

The state-space of the GK model is partitioned into two disjoint sets �1 and �2 . Let M1 � |�1| and M2 � |�2|,
where M1 � M2 � M, and let R be the ratio of rates for transitions within a structural set to transitions between
sets. Then, following arguments similar to those above, one can find the multistep transition probability matrix PGK

for the GK model.
If u � �1, then

(PGK)uv �

⎧
⎪
⎪
⎭
⎫
⎪
⎪
⎩

1
M

�
M1 � 1

M1

exp(�φ1��k) �
M2

M1M
exp(�φ2��k) if u � v

1
M

�
1

M1

exp(�φ1��k) �
M2

M1M
exp(�φ2��k) else if v � �1

1
M

�
1
M

exp(�φ2��k) otherwise, (A5)

where

� �
M

[M1(M1 � 1) � M2(M2 � 1)]R � 2M1M2

,

φ1 � M1R � M2,

φ2 � M. (A6)

By symmetry, if u � �2, then

(PGK)uv �

⎧
⎪
⎪
⎭
⎫
⎪
⎪
⎩

1
M

�
M2 � 1

M2

exp(�φ3��k) �
M1

M2M
exp(�φ2��k) if u � v

1
M

�
1

M2

exp(�φ3��k) �
M1

M2M
exp(�φ2��k) else if v � �2

1
M

�
1
M

exp(�φ2��k) otherwise, (A7)

where φ3 � M2R � M1. For R � 1, note that there are four unique eigenvalues when M1 � M2 and three unique
eigenvalues otherwise. This is consistent with the standard Kimura model, in which M1 � M2 � 2 with three unique
eigenvalues.

Sampling algorithm: For each gene-partition k, let �k � (�k , tk , �k , �k , �k , �k) and, then, assemble � � (�1, . . . ,
�K) to be the collection of all gene-level parameters. To specify the hierarchical prior parameters, let φ � (V, R, �,
N� , 
, �). Across-gene-level parameters φ also include R when considering the GK model and mixing parameter
� � {0, 1} when comparing models SPR and GJC. I employ a MCMC approach to sample from each model’s joint
posterior distribution, p(�, φ|Y). I generate samples from these posteriors using two nested Metropolis-within-Gibbs
cycles, as laid out in Suchard et al. (2003a) for hierarchical phylogenetic models. The outer cycle first iterates over
gene partitions k and then over the parameters in φ. Within each gene partition k, the inner cycle proceeds over
the parameters in �k . With the exception of proposals for 
, �, R, and �, all parameter proposals follow those in
Suchard et al. (2003a).

The multinomial prior placed on 
 is conjugate to its sampling density. As a result, it is possible to Gibbs sample

 from its full conditional distribution for moderately small M. This full conditional distribution remains multinomial
with M state probabilities given by

p(
 � u|Y, 	�
) �
�K

k�1(P)uvk
zu

�w���K
k�1(P)wvk

zw

, (A8)

where �k � vk for all k and 	�
 is the vector of all model parameters (�, φ) excluding 
. Similar to the reweighted
prior approach to estimate �, varying z can improve sampling efficiency when estimating the relative posterior
probabilities of specific species trees 
.

I draw the transition ratio R and linear predictors � via separate Metropolis-Hastings proposals. For R, I propose
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new parameter values by generating a normal random variate centered at the current value of R with a tunable
variance s 2

R. Given the high degree of correlation between column vectors in the design matrix D, I expect the
posterior distribution of � to also exhibit strong correlation. This expectation stems from a normal linear regression
approximation to p(exp(�)|�) that has a variance-covariance structure proportional to (D
D)�1. As a consequence,
component-by-component updating of �c in � should lead to a slowly mixing MCMC chain (Roberts and Sahu
1997). To help ensure adequate mixing, I propose all �c simultaneously using a multivariate normal random variate
centered at the current value of � with a tunable variance-covariance matrix diag(s 2

�1
, . . . , s 2

�C
)�. I adjust the tun-

able variances such that proposals have acceptance rates of 30–40% (Gelman et al. 1996) and fix the correlation
matrix � approximately equal to the posterior correlation of � determined by a trial chain.

When comparing HGT models using a mixture approach, I sample the mixing parameter � directly from its full
conditional distribution in a Gibbs step,

�|Y, 	�� � Bernoulli(a), (A9)

where

a �
b1q(M1)

b0q(M0) � b1q(M1)

bi � �
K

k�1

(PMi
)uvk

, (A10)

for i � 0, 1, 
 � u, and �k � vk. Values a may be saved at each iteration and used to construct a Rao-Blackwellized
estimator for p(M1|Y) (Suchard et al. 2003a).

Finally, the inferred number of HGT events Ek for the SPR model can be recovered after posterior simulation.
The full conditional distribution

p(Ek|Y, 	�Ek
) � p(Ek|�k , 
, �k),

�
(AEk)uvk

e��k(�k
Ek/Ek!)

(P)uvk

, (A11)

where 
 � u and �k � vk. Since (AEk)uvk
� 1,

p(Ek|Y, 	�Ek
) �

1
(P)uvk

p(E*|�k), (A12)

where

E* � Poisson(�k). (A13)

As the full conditional distribution of Ek is bounded above, I can generate random draws from it using rejection
sampling. Starting with a posterior sample [�(p)

k , 
(p), �(p)
k ], I draw one replicate E (p)

k for each p � 1, . . . , P. For each
p, I first generate E* from a Poisson(�(p)

k ) distribution and U from the uniform distribution. Then, if U � (AE *)uv/
(P)uv , where 
(p) � u and �(p)

k � v, I set Ek
(p) � E*. Otherwise, I reject the current proposal and begin again by

regenerating (E*, U).
MCMC performance: I run my MCMC chains for 1.1 	 105 outer Metropolis-within-Gibbs cycles, discard the first

104 cycles as burn-in, and subsample every 10 cycles. This process retains P � 104 posterior samples with decreased
autocorrelation. The total chain length and burn-in time appear moderately longer than required by examining
time-series plots of the model log-likelihood during simulation.

To assess the performance of the MCMC sampler, I employ scaled SRQ plots (Mykland et al. 1995; Li et al. 2000;
Suchard et al. 2002). SRQ plots are useful to demonstrate adequate sampler mixing within discrete model parameters.
For the primary measures in this study, two important discrete parameters are the species tree 
 and the model
mixture parameter �. In particular, I use SRQ plots to assess mixing when comparing the relative probabilities of
two possible species trees and of differing stochastic models for HGT. In these SRQ plots, the local slope around
a given point depicts the ratio of the relative posterior probability estimate based on the entire MCMC chain to an
estimate based on a short segment of the chain around that point. Substantial deviation of the slope from one
implies that the sampler is slowly mixing and, as a result, the chain is not sufficiently long to generate stable estimates.
For continuous model parameters and Bayes factors based on the Savage-Dickey ratio, I assess convergence by
comparing posterior estimates obtained from simulations of at least five independent chains with starting values
drawn directly from the model priors.




