The Origin of Subfunctions and Modular Gene Regulation

Allan Force,*,1 William A. Cresko,†,‡ F. Bryan Pickett,§ Steven R. Proulx,‡ Chris Amemiya* and Michael Lynch**

Benaroya Research Institute at Virginia Mason, Seattle, Washington 98101,* † *Institute of Neuroscience, University of Oregon, Eugene, Oregon 97403,* § *Department of Biology, Loyola University, Chicago, Illinois 60626,* ‡ *Center for Ecology and Evolutionary Biology, University of Oregon, Eugene, Oregon 97403 and* *Department of Biology, Indiana University, Bloomington, Indiana 47405*

> Manuscript received February 12, 2004 Accepted for publication February 8, 2005

ABSTRACT

Evolutionary explanations for the origin of modularity in genetic and developmental pathways generally assume that modularity confers a selective advantage. However, our results suggest that even in the absence of any direct selective advantage, genotypic modularity may increase through the formation of new subfunctions under near-neutral processes. Two subfunctions may be formed from a single ancestral subfunction by the process of fission. Subfunction fission occurs when multiple functions under unified genetic control become subdivided into more restricted functions under independent genetic control. Provided that population size is sufficiently small, random genetic drift and mutation can conspire to produce changes in the number of subfunctions in the genome of a species without necessarily altering the phenotype. Extensive genotypic modularity may then accrue in a near-neutral fashion in permissive population-genetic environments, potentially opening novel pathways to morphological evolution. Many aspects of gene complexity in multicellular eukaryotes may have arisen passively as population size reductions accompanied increases in organism size, with the adaptive exploitation of such complexity occurring secondarily.

FUKARYOTIC gene regulation is a remarkably com-

plex process, with each gene displaying multiple the adaptive origin of morphological complexity, the

functions in display and times during developed as a special link betw functions in discrete tissues and times during develop-causal link between genotypic and phenotypic modularment. To accomplish such tasks, the noncoding DNA ity remains unclear, and a formal theoretical framework of individual genes often harbors numerous small *cis-* for the evolutionary origin of regulatory gene structure acting elements that cooperatively interact with multiple remains to be developed. *trans-*acting factors to tune levels of transcription (DAVID- Renewed interest in the evolutionary fates of duplicate son 2001). Mutations in these regulatory regions may genes (PIATGORSKY and WISTOW 1991; CLARK 1994; influence many aspects of phenotypic evolution by im-
Hughes 1994; WALSH 1995; SIDOW 1996; Nowak *et al.* posing the loss or gain of gene expression (Raff 1996; 1997; Wagner 1994, 1998; Force *et al*. 1999; Stoltzfus Gerhart and Kirschner 1997; Force *et al*. 1999; Car- 1999; Lynch and Force 2000; Lynch *et al*. 2001; roll 2001; Carroll *et al*. 2001). Over evolutionary time, Wagner 2001; Rodin and Riggs 2003) has resulted in an increase in the particulate nature of gene regulation the development of models that explicitly incorporate seems to correlate with the subdivision and specializa- the complex, multifunctional organization of eukaryotic tion of body plans of multicellular organisms, leading genes. For example, under the duplication-degenerato organisms in which traits are capable of following tion-complementation (DDC) model (Force *et al*. 1999; independent evolutionary trajectories (WAGNER 1996; LYNCH and FORCE 2000; LYNCH *et al.* 2001), genes are WAGNER and ALTENBERG 1996; RAFF and SLY 2000). posited to contain independently mutable subfunctions WAGNER and ALTENBERG 1996; RAFF and SLY 2000). Increases in the particulate nature of gene regulation that can be partitioned among descendant copies fol-
that affect the structure of developmental networks may lowing a gene-duplication event. A *gene subfunction* has that affect the structure of developmental networks may be thought of as increases in genotypic modularity, been defined as an independently mutable function of while the subdivision and specialization of body regions a gene that falls into a distinct complementation class while the subdivision and specialization of body regions a gene that falls into a distinct complementation class
at the phenotypic level may be thought of as increases (FORCE *et al.* 1999). The defining characteristic of at the phenotypic level may be thought of as increases (FORCE *et al.* 1999). The defining characteristic of a
in phenotypic modularity. Although it is tempting to subfunction is not the number or types of its DNA com-

in phenotypic modularity. Although it is tempting to subtunction is not the number or types of its DNA components, but their integrated operation in performing a task that is mutationally independent of other suites ¹Corresponding author: Benaroya Research Institute at Virginia Machinese 1 and 1.6 a *Corresponding author:* Benaroya Research Institute at Virginia Ma- locus. A subfunction component may correspond to son, 1201 Ninth Ave., Seattle, WA 98101. E-mail: force@vmresearch.org regulatory elements (*e.g.*, transcription-factor binding

sites), splice junctions, mRNA stability elements, and/ or coding regions (*e.g.*, functional motifs), among other possibilities (Force *et al.* 1999, 2004).Under the general DDC model, a variety of population-level mechanisms may lead to duplicate-gene preservation and the partitioning of gene subfunctions (PIATGORSKY and WISTOW 1991; Hughes 1994; Force *et al*. 1999; Lynch and FORCE 2000; LYNCH *et al.* 2001; ADAMS *et al.* 2003; RODIN and Riggs 2003). However, although these mechanisms might explain the evolutionary fates of a large fraction of duplicate genes in metazoans and vascular plants, they also beg the question—How do new gene subfunctions arise in the first place? In this article we present a model for the origin of new regulatory subfunctions by a near-neutral process via cycles of information accre-
tion and loss at individual loci. Our intention is to show
how mutation, duplication, and genetic drift can drive
the evolution of genotypic modularity.
the evolut

tion of new regulatory subfunctions. Several studies on the structure of genetic networks and regulatory regions
the structure of genetic networks and regulatory regions
have provided clues as to the proper structure of mo for the evolution of modularity at the level of gene regula-
ules, each driving independent expression domains and function. Small regulatory elements can arise by *de novo* muta-
tions. Hatched circles represent shared positive and negative
tion or by transpositional insertion, providing many positive regulatory sites that are required fo tion or by transpositional insertion, providing many potential degrees of freedom for altering the number and type of transcription-factor binding sites (ARNOSTI *et al.* from the altered expression of a single structural gene
1996; WRAY 1998; YUH *et al.* 1998; BROSIUS 1999; von the altered expression of a single structural gene
 to the dramatic activation of a whole developmental Dassow and Monro 1999; EDELMAN *et al.* 2000; STONE with the dramatic activation of a whole developmental part of the processes of Processes of Processes and Processes of and WRAY 2001; MACARTHUR and BROOKFIELD 2004).

If various permutations of such elements provide for

functionally equivalent outputs of a gene (see EDELMAN
 $d \leq l$, 2000), then it follows that the steelastic turnower
 et al. 2000), then it follows that the stochastic turnover
of control elements by nearly neutral processes may play
a critical role in the evolution of regulatory regions
a critical role in the evolution of regulatory r

elements may be incorporated into genes to form new (Figure 1). Phase 1 involves accretion, degeneration, regulatory subfunctions: *subfunction cooption* and *subfunc-* and the replacement (ADR) of ancestral transcription*tion fission* (see RAFF 1996; CARROLL *et al.* 2001; DAVID- factor binding sites and phase 2 involves the DDC of son 2001; Force *et al*. 2004). Subfunction cooption in- binding sites within enhancers. The series of events involves the evolution of a new function not carried out by volved in phase 2 are essentially the same as those underthe ancestral gene, whereas subfunction fission involves lying the subfunctionalization of gene duplicates, exsubdivision of a function already present in the ancestral cept in this case the duplicated region comprises just gene. The effects of subfunction cooption may range the enhancers within a gene.

Accretion, Degeneration, and Replacement (ADR)

Duplication, Degeneration, and Complementation (DDC)

was previously under the control of a single positive ancestral element (star). Subsequently, the ancestral shared element In this article, we restrict our attention to the evolu-
on of new requistory subfunctions. Several studies on (star) degenerates, resulting in the replacement of the ances-

independent binding sites to form a semi-independent A CONCEPTUAL MODEL FOR enhancer and (2) duplication of the semi-independent SUBFUNCTION FISSION enhancers, followed by the formation of two entirely independent regions, each critical to a single regulatory There are two broad views of how new regulatory subfunction, by complementary degenerative mutations

Under subfunction fission, the new gene architecture diverges beneath a constant phenotype. Despite this initial invariance of expression patterns, subfunction fission may open up previously inaccessible evolutionary pathways by eliminating some pleiotropic constraints associated with shared regulatory regions while creating others. Therefore, the evolutionary potential of such alterations may not be realized until a new selective environment and/ or appropriate mix of mutations is encountered, at which point modularity at the level of gene architecture may promote the evolution of phenotypic modularity. However, the model that we present highlights the logical distinction between the causal nonadaptive forces that may lead to the restructuring of genomic architecture and the secondary consequences of such change for phenotypic evolution. We now formalize the theory for the two phases contributing to subfunction fission.

Phase 1—accretion, degeneration, and replacement: We start by considering the process by which an allele with two overlapping regulatory subfunctions arises from an allele with one regulatory subfunction (Figure 2). We assume a starting point where several transcription factors are present, some of which are general and some tissue specific. For an initial shared regulatory state in which the same positive transcription factor (TF), TFA, drives the gene's expression in two tissues via the same binding site (A), the ancestral allele has FIGURE 2.—Subfunction fission phase 1: accretion, degener-
only one subfunction because degenerative mutations and replacement (ADR). (Top) Positive transcription in binding site A reduce expression in both domains factors are expressed in both tissues 1 and 2 (TFA) or only
similarly We further assume the presence of tissue-spe-
in tissue 1 (TFB) or tissue 2 (TFC). (Bottom) The ance similarly. We further assume the presence of tissue-spe-
cific transcription factors (TFB and TFC), expressed
in a complementary manner (one in each tissue) with
respect to the ancestral expression of TFA. The exis-
redund respect to the ancestral expression of TFA. The exis-
tence of these tissue-specific transcription factors pro-
mutations lead to the loss of the ancestral positive regulatory tence of these tissue-specific transcription factors promutations lead to the loss of the ancestral positive regulatory
vides the essential setting in which an allele using TFA
as an activator of expression can give rise t and TFC (Figure 2). Such a transition requires the addi- and negative regulatory sites that are required for all functions. tion of binding sites for TFB and TFC, followed by the loss of binding sites for TFA. Although positive Darwin-
ian selection may directly promote subfunction forma-
tion, we restrict our attention in this article to a near-
deleted at rate μ . We denote the presence of a s

transcription factor are subject to mutational accretion containing only binding site A becomes either an *ABc*
and degeneration, then there is no permanent allelic allele at rate use or an allele without any sites *abc* (state under this model, as the alternative classes of still having an intact coding region) at rate μ_d . In addi-
shared and semi-independently regulated alleles are in each expressed allele mutates to the coding null shared and semi-independently regulated alleles are
free to drift in frequency. However, for heuristic pur-
class, denoted by xxx, at rate μ_c . The abc and xxx alleles poses, we first focus on the case in which the population are functionally equivalent but differ in their ability to is initially fixed for the shared regulated allele and evalu- mutate back into a viable state. ate the expected time to a transient state of fixation by To simplify the following small-population-size apsimple model outlined above, there are nine alternative Only alleles containing minimally an A site or both allelic states (Figure 3), eight representing all possible B and C sites may go to fixation, so this reduces our binding sites (A, B, and C) and an additional coding- alleles. It is convenient to further group these alleles

Expression of Upstream Transcription Factors

Allele-specific utilization of alternative transcription factors

ation, and replacement (ADR). (Top) Positive transcription factors are expressed in both tissues 1 and 2 (TFA) or only

tion, we restrict our attention in this article to a hear-

the absence of a site with an uppercase letter and the absence of a site

is the absence of a site with

If we assume that binding sites for all three types of
 allele at rate μ_a or an allele without any sites *abc* (but

the semi-independently regulated allele. Even for the proximation, we exclude all nonfixable classes of alleles. permutations of the three types of transcription-factor consideration to just the *Abc*, *ABc*, *AbC*, *ABC*, and *aBC*

FIGURE 3.—The alleles and mutational pathways for ADR.
The eight alleles containing functional binding sites and their possible transitions are shown. The star, diamond, and square
represent the A, B, and C binding sites as in Figure 1. We
denote the presence of a site with an uppercase letter and
the absence of a site with a lowercase le the absence of a site with a lowercase letter. The shortest path in the time to first arrival at state Z, we treat this final
for the ADR process involves the transition of alleles from the state as an absorbing boundary, for the ADR process involves the transition of alleles from the state as an absorbing boundary, even though class Z can
with back to V so $P_2 = 1$. The mean time to move

class containing the *ABC* allele, and the Z class con- first arrival at the fixed *aBC* state is then taining the *aBC* allele. The shortest path from an ancestral state fixed for the shared regulated *Abc* allele to a fixed state involving the semi-independently regulated *aBC* allele involves just three sequential transitions: W

to X, X to Y, and finally Y to Z. However, many other

longer paths can lead to the same end result. Assuming a

sufficiently small population size, all transitio

abilities, we first consider the elements necessary for population where *N* is equal to the effective population the shortest $(W \rightarrow X \rightarrow Y \rightarrow Z)$ route. First, because size. The simulations kent track of genotype frequencies the shortest (W \rightarrow X \rightarrow Y \rightarrow Z) route. First, because size. The simulations kept track of genotype frequencies
the Abcallele mutates to either the Abcor the AbCallele after random sampling of gametes in diploid, sex at rate μ_a , and because the expected time to neutral populations. We assumed that homozygous recessive fixation is 4*N* generations (where *N* is the effective genotypes lacking expression in either tissue had a fit-
population size), the expected transition time from state ness of zero, whereas all other genotypes were ass W to the adjacent state X is $[1/(2\mu_a) + 4N]$, and the a fitness of one. The simulations were started with the approximate per-generation probability of transition be-
tween these two states is the reciprocal of this quantity. sum of frequencies of all A-site-bearing alleles *(Abc. ABc.*) Second, although the transition to the X class may in-
volve either an *ABc* or an *AbC* allele, in both cases, the and $4Nu_A \le 1$ (*i.e.*, the power of random genetic drift is formation of the Y class results from the addition of a well in excess of the mutation rates), the purely neutral single binding site, so the approximate per-generation theory provides a very good approximation to the time probability of this transition is $[(1/\mu_a) + 4N]^{-1}$. Finally, the transition from the Y to the Z class involves the loss regulated *aBC* allele (Figure 4). At any given mutation of the A site, so the approximate transition probability rates in sufficiently small populations, the tran is $[(1/\mu_d) + 4N]^{-1}$. Conditional on taking the direct route $W \to X \to Y \to Z$, the mean time for the transition cause the rates of movement between alternative states from the *Abc* to the *aBC* state is the sum of the three are primarily determined by the waiting times for muta-

stepwise transition times. However, because the $W \leftrightarrow X$ and $X \leftrightarrow Y$ transitions are reversible, the average time to conversion to the semiregulated state is necessarily larger than that obtained by the shortest path.

To account for all potential paths, we use the transition-matrix **P**, with the element in the *i*th row and *j*th column, P_{ii} , denoting the probability of transition from state *j* to *i*. For our particular application, the four rows and columns are the classes W, X, Y, and Z. Following from the logic developed in the preceding paragraph, the nonzero off-diagonal elements are $P_{\text{WX}} =$ $[(1/\mu_d) + 4N]^{-1}$, $P_{XW} = [(1/(2\mu_a)) + 4N]^{-1}$, $P_{XY} = [(1/(2\mu_a)) + 4N]^{-1}$ $(2\mu_d)$ + 4*N*]⁻¹, $P_{XX} = [(1/\mu_a) + 4N]$ ⁻¹, and $P_{ZY} = [(1/\mu_a)]$ μ_d) + 4N]⁻¹. All remaining off-diagonal entries are equal The eight alleles containing functional binding sites and their
possible transitions are shown. The star, diamond, and square
represent the A-B and C binding sites as in Figure 1. We so $P_{WW} = 1 - P_{XW}$, $P_{XX} = 1 - P_{WX} - P_{YX$ $W \to X \to Y \to Z$ classes. mutate back to Y, so $P_{ZZ} = 1$. The mean time to move from the fixed *Abc* state to the fixed *aBC* state is obtained by recursively multiplying the transition matrix by the into four classes: the W class containing the *Abc* allele,
the X class containing the *ABc* and *AbC* alleles, the Y
denote the probability that the population is in each
state, starting with the vector $[1, 0, 0, 0]^T$.

$$
\bar{t}_{\mathrm{F}} = \sum_{t=1}^{\infty} (p_{Z,t} - p_{Z,t-1}) t.
$$
 (1)

after random sampling of gametes in diploid, sexual ness of zero, whereas all other genotypes were assigned sum of frequencies of all A-site-bearing alleles (*Abc*, *ABc*, and $4N\mu_d \leq 1$ (*i.e.*, the power of random genetic drift is to first arrival at the fixed state of the semi-independently rates in sufficiently small populations, the transition time is essentially independent of population size, beare primarily determined by the waiting times for muta-

dently regulated *aBC* allele, starting from a state of fixation for the shared regulated *Abc* allele in a small population during for the shared regulated *Abc* allele during ADR. Solid lines denote the solution of Equation 1 in the text, whereas the values of μ_a for three fixed values of μ_d . data points connected by dotted lines were obtained by simulation, as described in the text. Here the ratio of forward and reverse mutation rates was held constant ($\mu_a/\mu_d = 1$), and the mutation rate to coding-region null alleles was μ_c = 0.00001. For most data points, ≥ 100 replicates were run.

drift to fixation. In general, the time to subfunction criterion for our simulations of a completely monomorfission declines as the ratio of μ_a to μ_d increases, eventu- phic state becomes increasingly unlikely, and focusing ally reaching an asymptote at $1/\mu_d$ generations at high on such an extreme state as an indicator of the availabil- μ_a/μ_d , as the final degenerative step involving the Y → ity of *aBC* alleles becomes increasingly misleading.
Z transition becomes the limiting factor (Figure 5). Because large populations will typically harbor p

frequently met in eukaryotes. We know that the average ure 3, an alternative way to consider the potential for value of $4N\mu$, where μ is the substitutional mutation a locus to undergo an ADR transition is to consider the rate per nucleotide, is 0.002 for vertebrates, 0.010 for equilibrium distribution of average allele frequencies. invertebrates and land plants, and $\tilde{0}$.1 for eukaryotic To accomplish this, we ran simulations of single replimicrobes (Lynch and Conery 2003). Thus, given that cate populations and averaged the frequencies of the transcription-factor binding sites typically contain 4–20 alleles over a large number of generations (Figure 6, nucleotides, we can expect $4N\mu_d$ to be on the order of top, bottom left). The clear result is that the average 4–20 times $4N\mu$ and hence ≤ 1 for most multicellular frequency of the semi-independently regulated *aBC* alspecies. Although new sites may arise in regions sur- lele decreases with increasing population size, irrespecrounding the existing enhancer, μ_a is generally unlikely tive of the specific mutation rates μ_a and μ_d . Figure 6, to greatly exceed μ_d ; therefore $4N\mu_a$ is also expected bottom right, shows the infinite population size equilibto be ≤ 1 . These rough approximations suggest that the rium frequencies of the four allele classes (see the APpopulation-genetic environments of most multicellular per pendix for the analytical solution). Such behavior reorganisms enable alternative alleles like those in Figure sults from the increased efficiency of mutationally induced 3 to drift freely back and forth to transient states of selection against *aBC* alleles at large *N* relative to the

estimates the transition time to fixed states (Figure 4). exceeds the rate of degenerative mutation, the redun-There appear to be two reasons for this behavior. First, dantly regulated *ABC* allele dominates, as a consebecause a semi-independently regulated allele has an quence of the mutational pressure toward gain of bind-

Figure 5.—Time to transient fixation of a semi-indepen-FIGURE 4.—Time to transient fixation of a semi-indepen-
dently regulated *aBC* allele, starting from a state of fixation ADR [small = $N(\mu_a + \mu_d) \leq 0.1$). Results are given for various

additional transcription-factor binding site relative to the ancestral shared regulated allele and mutates at twice the rate to a nonfixable allele, the former is at a weak selective disadvantage of order μ_d . Second, because of the reversibility of mutations and the extended tions, rather than by the time for such mutations to time to fixation with increasing N , arrival at the stopping

Because large populations will typically harbor poly-The conditions $4N\mu_a \ll 1$ and $4N\mu_d \ll 1$ may be morphisms involving the full spectrum of alleles in Figfixation in an effectively neutral fashion. less mutationally sensitive alleles *ABC*, *ABc*, *AbC*, and For larger *N*, the neutral theory progressively under- *Abc*. When the rate of accretionary mutation equals or

Figure 6.—Average frequencies for the four classes of fully functional alleles, as a function of effective population size for three mutation ratios (all with $\mu_a + \mu_d = 0.0005$ and $\mu_c = 0.0001$) and as a function of the mutation ratio for infinite populations (see APPENDIX for derivation). In the latter case, the equilibrium frequencies depend only on the ratio of mutation rates, not on their absolute values (bottom right).

allele dominates for the opposite reason. For all condi- each of the A, B, and C sites, making a model comprising tions examined, the semi-independently regulated *aBC* 65 alleles. Genotypes carrying at least one functional A allele maintains equilibrium frequencies of at least 0.04, site or genotypes carrying at least one each of functional so these results indicate that most large populations are B and C sites with zero A sites were assumed to have a potentially poised to make the transition to a semiregu- fitness of 1. Simulations were initiated with the locus lated state. fixed for the *AAbbcc* allele and ended when the fre-

model is that it involves only three binding sites (A, B, \ldots) for the six-site model show that the behavior is qualitaand C), whereas most enhancer regions contain multi-
tively the same as that of the three-site model, except ple copies of different transcription-factor binding sites. that at small population sizes the time for ADR of To address this concern we ran simulations for a six-
A-bearing alleles is $\sim 60\%$ shorter (Figure 7, top). While

ing sites. When μ_a/μ_d < 1, the shared regulated *Abc* site model, in which an allele may contain up to two One criticism that may be raised against our simple quency of all *A*-bearing alleles had gone to zero. Results

For the three-site and six-site models $\mu_a/\mu_d = 1.0$ and $\mu_c =$ $\mu_a = 0.0001$, respectively.

there are two ancestral A sites to lose, four (two B and and preservation of two fully independent regulatory eletwo C) sites may be gained. The additional viable combi-

ments by a process that we call *enhancer subfunctionaliza*-
 tion The end product of this internal duplication event nations decrease the time to fission by doubling the rate *tion*. The end product of this internal duplication event of addition of B and C sites. In addition, the simulation is a state in which each of the duplicate regul of addition of B and C sites. In addition, the simulation is a state in which each of the duplicate regulatory regions results show that $\sim 95\%$ of the alleles at equilibrium becomes restricted to driving expression in results show that $\sim 95\%$ of the alleles at equilibrium becomes restricted to driving expression in a single tissue.

Bor simplicity, we again consider a single continuous

ulatory regions via enhancer subfunctionalization: The gated through theory and simulations for gene dupli-ADR phase presented above can lead to the formation cates (FORCE *et al.* 1999; LYNCH and FORCE 2000; LYNCH of two subfunctions with semi-independent regulation. *et al*. 2001), and we follow the previous terminology for Subsequent ADR events of both positive and negative enhancer subfunctionalization.

Duplication, Degeneration, and Complementation (DDC)

Allele-specific utilization of alternative transcription factors

Figure 8.—Subfunction fission phase 2: enhancer subfunctionalization via duplication, degeneration, and complementation. The ancestral semi-independent enhancer (left) drives FIGURE 7.—Time to transient fixation of a semi-indepen-
dently regulated *aaBXCX* allele for the six-site model starting
from a state of fixation for the shared regulated *AAbbcc* allele
from a state of fixation for the s For the three-site and six-site models $\mu_a/\mu_d = 1.0$ and $\mu_c =$ shared positive and negative regulatory sites that are required 0.00001. Squares and diamonds represent $\mu_a = 0.00001$ and for all functions. for all functions.

tion of a regulatory region may facilitate the formation

exhibit at least partial redundancy with respect to the For simplicity, we again consider a single continuous ancestral A function and \sim 12% are of the semi-indepen-
stretch of DNA, with tissue-specific transcription f ancestral A function and \sim 12% are of the semi-indepen-
dently regulated class similar to the results of the three-
binding to unique B and C sites (see Figures 1 and 8) dently regulated class similar to the results of the three-
site model (see Figure 6, top right, and data not shown). with a fraction of the DNA-binding sites in the enhancer site model (see Figure 6, top right, and data not shown). with a fraction of the DNA-binding sites in the enhancer
This analysis may suggest that enhancers exhibiting at being required by both overlapping subfunctions. If This analysis may suggest that enhancers exhibiting at being required by both overlapping subfunctions. If least partial redundancy should be common and that such an enhancer duplicates to a local site that is comsuch an enhancer duplicates to a local site that is comsemi-independently regulated alleles may have appre- pletely linked to the ancestral site, subfunctionalization ciable frequencies when the rates of addition and dele- may eventually preserve the duplicate enhancers tion are nearly equal. through complementary degenerative mutations under **Phase 2—the formation of independent modular reg-** genetic drift. This process has previously been investi-

regulatory elements may act to reinforce the initial fis- Degenerative mutations in the shared component sion event. Another type of reinforcing event may in- lead to loss of both subfunctions at rate μ_c , while degenvolve enhancer duplication. The rate of duplication of erative mutations in the unique component B and C entire genes is known to be on the order of 1% per sites lead to the loss of each subfunction at rate μ_r . gene per million years (Lynch and Conery 2003), and Therefore, the total rate of mutation for the overlapping small duplications of ≤ 1000 bp are far more frequent enhancer corresponding to a subfunction pair is $2\mu_r$ + than whole-gene duplication (KATJU and LYNCH 2003), μ_c , and the total rate for duplicate enhancer pairs is so internal duplication has the potential to contribute $4\mu_r + 2\mu_c$. Assuming that the duplicated regions are significantly to regulatory-region evolution. Local duplica- entirely functionally redundant, such that alleles carrying the duplicates have identical fitness to those with the ancestral state, the probability of initial fixation of a duplicate enhancer allele is simply its initial frequency, *i.e.*, the neutral expectation, $1/(2N)$, where *N* is the size of the diploid population. Subfunctionalization requires that the first degenerative mutation to become fixed falls in a B or C site, the probability of which is $2\mu_{\rm r}/(2\mu_{\rm r} + \mu_{\rm c})$. Finally, the last mutation to fix must fall in the nonshared unique site remaining in the still intact enhancer, and this will occur with probability $\mu_r/$ $(2\mu_r + \mu_c)$ in populations of sufficiently small *N*. The product of the three terms is the probability that a newly arisen allele with a duplicate enhancer will be converted to a state of a nonoverlapping pair of enhancers by degenerative mutation,

$$
Pr(Sub) = 2\left(\frac{1}{2N}\right)\left(\frac{\mu_r}{2\mu_r + \mu_c}\right)^2 = \frac{(\alpha)^2}{N},\qquad(2)
$$

where $\alpha = \mu_r/(2\mu_r + \mu_c)$.

As noted previously, this simple approach fails when
 $\mu_c N$ begins to exceed ~0.1 (LYNCH and FORCE 2000;

LYNCH *et al.* 2001). Subfunctional alleles mutate to null

alleles at a higher rate, μ_c , than nonfunctional al carrying an intact overlapping enhancer and one dead overlapping enhancer. The mutation rate difference is tion per enhancer is $(2\mu_r + \mu_c) = 0.00001$. Solid lines (slightly small and begins to significantly affect the dynamics when deleterious) and dotted lines (neutral) re small and begins to significantly affect the dynamics when
the effective population size is large enough. In the
APPENDIX, we derive two estimates for the probability of enhancer subfunctionalization that account for this

subfunctionalization, θ_{Sub} , which is the ratio of the actual
probability of subfunctionalization and the neutral
probability of fixation $1/(2N)$. Provided $N\mu_c < 0.1$, θ_{Sub}
is not also modified by the modified FORCE *et al.* 2004). The formation of new subfunctions is very close to the prediction of the small-population and the association of subfunctions with different genes theory, α^2/N (Figure 9). θ_{sub} then slowly incr theory, α^2/N (Figure 9). θ_{sub} then slowly increases with

N with a maximum slightly greater than the small-pop-

ulation prediction occurring in the vicinity of $N\mu_c \approx 1$.

Here is a maximum slightly greater than t rapidly, with $\theta_{\text{Sub}} \approx 0$ for $N\mu_c > 10$.

our previous work may have more global significance on the phenotype. More importantly, however, under

(diamonds) is $\mu_c/(2\mu_r + \mu_c) = 0.25$ and in the bottom curve (squares) is $\mu_c/(2\mu_r + \mu_c) = 0.75$ and the total rate of mutation per enhancer is $(2\mu_r + \mu_c) = 0.00001$. Solid lines (slightly

change in behavior in large populations. The behavior
of the approximations was verified by individual-based
of the approximations incorporating the sequential pro-
computer simulations incorporating the squeeting the seq

However, with further increases in *N*, θ_{sub} drops very We refer to the subfunction formation and resolution rapidly, with $\theta_{sub} \approx 0$ for $N\mu_c > 10$. *modular restructuring* (Figure 10). First, new subfunctions are formed within a gene by subfunction fission or co-SUBFUNCTION FORMATION AND RESOLUTION option processes (formation). Second, subfunctions are
LEAD TO THE MODULAR RESTRUCTURING partitioned among different gang conject following gang HE MODULAR RESTRUCTURING partitioned among different gene copies following gene
OF GENE NETWORKS duplication by DDC mechanisms (resolution). The modu-The results reported in this communication and in lar restructuring process might have immediate effects

Figure 10.—Modular restructuring by subfunction formation and gene duplication. Near-neutral processes in small populations may change genotypic modularity passively. Subfunction formation and the resolution of subfunctions between gene duplicates lead to changes in the underlying genotypic-phenotypic map (columns 2 and 3) without affecting the phenotype (first column), first three rows. Column 2 illustrates changes at the level of a gene and column 3 illustrates changes at the gene network level. In the fourth row, the effects of modular restructuring accrued passively permit subsequent adaptive changes at the phenotypic level. Hatched circles and squares represent an ancestral subfunction that undergoes fission into two subfunctions represented by open and solid circles and squares.

type may not be affected in any discernible way. Third, sites with new sites that drive more restricted patterns of the new underlying genetic circuitry created by modular gene expression. Duplication of overlapping enhancers restructuring may open up new pathways for rapid mor- may then lead to the formation of two entirely indepenphological change. For instance, mutations may have dent and modular regulatory regions through enhancer unique phenotypic effects on the new genetic architec- subfunctionalization. ture that are now beneficial due to the removal of ances- Population size plays a key role in this process. Protral pleiotropic effects. Modular restructured genetic vided the effective population sizes are sufficiently small architectures may provide the evolutionary potential for where $N(\mu_a + \mu_d) \leq 0.1$, the time for ADR closely rapid responses to novel environmental conditions. reflects the behavior of the small population theory Therefore, modular restructuring at the genomic level derived here. The time for ADR is extended in large may in part provide a population-level mechanism for populations because of a small mutationally induced the frequent observation of relatively rapid bursts of selective advantage of the most redundant *ABC* allele. evolution and long periods of stasis observed in the In the case of the *ABC* allele, if any of the three sites is fossil record (GOULD and ELDREDGE 1977, 1993, for deleted, the resulting allele is viable when homozygous example). and may be fixed in the population. In contrast, deletion

functions via fission where multiple expression domains its immediate precursor, the *ABC* allele, is increased under unified genetic control become subdivided into by differential mutation pressure. However, mutation more restricted expression domains under independent pressure begins to strongly affect the allele frequencies genetic control. Subfunction fission may proceed by the only when $N(\mu_a + \mu_d) > 0.1$. Given that the rates for

relatively constant environmental conditions the pheno- replacement of ancestral transcription-factor binding

of any site in the *aBC* allele results in a nonviable allele DISCUSSION when homozygous, which is unlikely to go to fixation in very large populations. Therefore, while the fixation We have investigated the origin of new regulatory sub-
of the *aBC* allele is inhibited in very large populations, μ_a and μ_d are not likely to be $>10^{-6}$ and could be orders aid the near-neutral fission process. If populations go of magnitude less, the minimum effective population through prolonged periods of large effective size folsize where the distribution of allele frequencies begins lowed by prolonged periods of small effective size, a to be affected by mutation-induced selection pressure buildup of the redundant precursor *ABC* allele during is \sim 100,000. Therefore, mutationally induced selection the former period and the fission *aBC* allele during drives enhancers and genes toward overlapping func- the latter period is possible. It is unlikely the slightly tion and nonmodularity in large populations. However, deleterious *aBc* and *abC* alleles would contribute signifiin small populations, ADR and DDC processes allow cantly to the evolution of the *aBC* alleles under our systems to diffuse toward modularity, meaning popula-
tions are likely to harbor a distribution of nonmodular, was strictly beneficial, then these indirect pathways

quasi-modular, and modular enhancer structures.
Previously, Stone and Wray simulated the evolution our results suggest why a population-genetic Previously, Stone and Wray simulated the evolution Our results suggest why a population-genetic perspec-
of new transcription-factor binding sites by point muta-
tive, incorporating random genetic drift, is central to of new transcription-factor binding sites by point muta- tive, incorporating random genetic drift, is central to tion to estimate the time to formation of new sites and understanding the evolution of genotypic and poten-
then estimated their time to fixation using neutral the-
tially phenotypic modularity. While many (WAGNER 1995: then estimated their time to fixation using neutral the-
ory (STONE and WRAY 2001). While their calculations CHEVERUD 1996: WAGNER and ALTENBERG 1996: GERory (Stone and Wray 2001). While their calculations CHEVERUD 1996; WAGNER and ALTENBERG 1996; GER-
for the time to fixation were incorrect (MACARTHUR HART and KIRSCHNER 1997: RAFE and RAFE 2000: RAFE for the time to fixation were incorrect (MACARTHUR hard KIRSCHNER 1997; RAFF and RAFF 2000; RAFF and BROOKFIELD 2004), their treatment of the time for and SLY 2000) have argued that modularity may be and BROOKFIELD 2004), their treatment of the time for and SLY 2000) have argued that modularity may be origin of new sites by mutation is consistent with our directly selected for at the individual level, or indirectly results. If we assume $\mu_a \cong \mu_d \cong 10^{-7}$, the expected results. If we assume $\mu_a \cong \mu_d \cong 10^{-7}$, the expected selected for at the population level as an enhancer of number of generations for ADR is $\sim 50,000,000$ at an every evolvability, our work suggests that new subfunc number of generations for ADR is \sim 50,000,000 at an evolvability, our work suggests that new subfunctions effective population size of 100,000 (see Figure 4). This and genetic modularity can evolve under certain popueffective population size of 100,000 (see Figure 4). This and genetic modularity can evolve under certain popularity is a slow rate for the evolution of new subfunctions by lation-genetic scenarios via a nearly neutral pro is a slow rate for the evolution of new subfunctions by lation-genetic scenarios via a nearly neutral process,
fission, but given that the number of subfunctions in without any selection promoting modularity itself. In fission, but given that the number of subfunctions in without any selection promoting modularity itself. In the genome is greater than the number of genes, it may addition, an increase in the number of regulatory subthe genome is greater than the number of genes, it may addition, an increase in the number of regulatory sub-
be a significant process over long-term evolution. Our functions corresponds to an increase in the complexity be a significant process over long-term evolution. Our functions corresponds to an increase in the complexity
model provides a baseline for the time to formation of a
new regulatory subfunction, which may be reduced sig-
 a selective advantage of $s = 0.01$ and their effects are additive (data not shown and also see MACARTHUR and additive (data not shown and also see MACARTHUR and FORCE 2000; LYNCH *et al.* 2001; LYNCH and CONERY
BROOKFIELD 2004).

BROOKFIELD 2004).

In contrast to our near-neutral fission process, models

of compensatory evolution suggest enhancers may evolve

through pairs of individually deleterious mutations that

through pairs of individually de are beneficial in combination (CARTER and WAGNER (NIH) (RR14085, HG02526-01, 5F32GM020892), and the National (
2002). Under this model. evolution of functionally con-
Science Foundation (IBN-0321461, IBN-023639). Work in t 2002). Under this model, evolution of functionally con-

science Foundation (IBN-0321461, IBN-023639). Work in the Pickett

served enhancers may occur by a two-step process with laboratory is supported by grants NIH 2R15GM served enhancers may occur by a two-step process with $\frac{1\text{aboratory is supported by grants NIH 2R15C}}{\text{Department of Agriculture 2003-35304-13252}}$ second step involving a beneficial compensatory mutation. This model makes the prediction that enhancers will evolve faster in very large populations where the LITERATURE CITED double-mutant allele arises from segregating single-
mutant deleterious alleles in the population. For con-
duplicated by polyploidy show unequal contributions to the tranmutant deleterious alleles in the population. For con-
served enhancers to evolve faster than under neutrality scriptome and organ-specific reciprocal silencing. Proc. Natl. served enhancers to evolve faster than under neutrality scriptome and organ-specific reciprocal silencing. Proc. Natl.

in large populations requires the assumption that the new double-mutant enhancer allele has a higher f than the ancestral enhancer allele. It is not clear how synergy. Development 122 (1): 205–214.
 Examples the case unless the process BONNETON, F., P. J. SHAW, C. FAZAKERLEY, M. SHI and G. A. DOVER, frequently this would be the case, unless the process
were cyclical where slightly deleterious mutations would
were cyclical where slightly deleterious mutations would
back between *Musca domestica* and *Drosophila melanog* become fixed by drift in small populations and then a Dev. 66: 143–156.
 BROSIUS, J., 1999 Genomes were forged by massive bombardments new deleterious allele could act as an intermediate in
the formation of a compensatory beneficial allele. Inter-
CARROLL, S. B., 2001 Chance and necessity: the evolution of morphoestingly, long-term cyclical population size would also logical complexity and diversity. Nature **409:** 1102–1109.

was strictly beneficial, then these indirect pathways

directly selected for at the individual level, or indirectly) (Force *et al*. 1999, 2004; Lynch and

-
-
-
-
-
- Carroll, S. B., J. K. Grenier and S. D. Weatherbee, 2001 *From* MacArthur, S., and J. F. Y. Brookfield, 2004 Expected rates and
- CARTER, A. J. R., and G. P. WAGNER, 2002 Evolution of functionally conserved enhancers can be accelerated in large populations: a
- CHEVERUD, J. M., 1996 Developmental integration and the evolution of pleiotropy. Am. Zool. 36: 44–50.
- of pleiotropy. Am. Zool. **36:** 44–50. molecular coevolution. Evol. Dev. **3:** 397–407.
- Davidson, E. H., 2001 *Genomic Regulatory Systems: Development and Evolution*. Academic Press, San Diego.
- EDELMAN, G. M., R. MEECH, G. C. OWENS and F. S. JONES, 2000 Syn-
thetic promoter elements obtained by nucleotide sequence variation and selection for activity. Proc. Natl. Acad. Sci. USA 97:
 $3038-3043$.
- FORCE, A., M. LYNCH, F. B. PICKETT, A. AMORES, Y. L. YAN *et al.*, 1999 RAFF, R. A., and B. J. SLY, 2000 Modularity and dissociation in the Preservation of duplicate genes by complementary, degenerative evolution of gene e Preservation of duplicate genes by complementary, degenerative
- FORCE, A. G., W. A. CRESKO and F. B. PICKETT, 2004 Informational RODIN, S. N., and A. D. RIGGS, 2003 Epigenetic silencing n
accretion, gene duplication, and the mechanisms of genetic mode evolution by gene duplication. J. accretion, gene duplication, and the mechanisms of genetic mod-
ule parcellation, pp. 315–337 in *Modularity in Evolution and Development*, edited by G. SCHLOSSER and G. P. WAGNER. University of Chicago Press, Chicago. muscoidea fly species. Evol. Dev. **3:** 251–262.
HART, I., and M. KIRSCHNER, 1997 Cells, Embryos and Evolution. SIDOW, A., 1996 Gen(om)e duplications in the evolution of early
- GERHART, J., and M. KIRSCHNER, 1997 *Cells, Embryos and Evolution*. Blackwell Science, Malden, MA.
- GOULD, S., and N. ELDREDGE, 1977 Punctuated equilibria: the tempo STOLTZFUS, A., 1999 On the possibility and mode of evolution reconsidered Palaeobiology 3: 115–151 tion. J. Mol. Evol. 49 (2): 169–181.
- GOULD, S., and N. ELDREDGE, 1993 Punctuated equilibrium comes
- HANCOCK, J. M., P. J. SHAW, F. BONNETON and G. A. DOVER, 1999
High sequence turnover in the regulatory regions of the develop. VON DASSOW, G., and E. MONRO, 1999 Modularity in animal develop-
-
-
-
- HUGHES, A. L., 1994 The evolution of functionally novel proteins

after gene duplication. Proc. R. Soc. Lond. Ser. B 256: 119–124.

KATJU, V., and M. LYNCH, 2003 The structure and early evolution of general ending the stru
-
-
-
- ity of preservation of a newly arisen gene duplicate. Genetics **159:** 1789–1804. Communicating editor: D. M. Rand
- *DNA to Diversity*. Blackwell Science, Malden, MA. modes of evolution of enhancer sequences. Mol. Biol. Evol. 21 meta. A. I. R., and G. P. WAGNER. 2002 Evolution of functionally (6): 1064–1073.
- conserved enhancers can be accelerated in large populations: a McGREGOR, A. P., P. J. SHAW, J. M. HANCOCK, D. BOPP, M. HEDIGER
population genetic model. Proc. R. Soc. Biol. 169: 953-960. *et al.*, 2001 Rapid restructuring et al., 2001 Rapid restructuring of bicoid-dependent hunchback
promoters within and between dipteran species: implications for
- RK, A. G., 1994 Invasion and maintenance of a gene duplication. Nowak, M. A., M. C. BOERLIJST, J. COOKE and J. M. SMITH, 1997
Proc. Natl. Acad. Sci. USA 91: 2950–2954. Evolution of genetic redundancy. Nature 388: 167–171. Evolution of genetic redundancy. Nature 388: 167–171.
PIATGORSKY, J., and G. WISTOW, 1991 The recruitment of crystallins:
	- *Functions* precede gene duplications. Science 252: 1078–
1079
	- RAFF, E. C., and R. A. RAFF, 2000 Dissociability, modularity, evolvability. Evol. Dev. 2: 235–237.
	- RAFF, R., 1996 *The Shape of Life*. University of Chicago Press, Chicago.
RAFF, R. A., and B. J. SLY, 2000 Modularity and dissociation in the
- mutations. Genetics 151: 1531–1545.
CE, A. G., W. A. CRESKO and F. B. PICKETT, 2004 Informational RODIN, S. N., and A. D. RIGGS, 2003 Epigenetic silencing may aid
	-
	- SHAW, P. J., A. SALAMEH, A. P. MCGREGOR, S. BALA and G. A. DOVER, 2001 Divergent structure and function of the bicoid gene in
	- vertebrates. Curr. Opin. Genet. Dev. **6:** 715–722.
STOLTZFUS, A., 1999 On the possibility of constructive neutral evolu-
	-
- and mode of evolution reconsidered. Palaeobiology 3: 115–151. tion. J. Mol. Evol. 49 (2): 169–181.
LD. S., and N. ELDREDGE, 1993 Punctuated equilibrium comes STONE, J. R., and G. A. WRAY, 2001 Rapid evolution of cis-regula of age. Nature sequences via local point mutations. Mol. Biol. Evol. **18** (9): 1764– **366:** 223–227.
- High sequence turnover in the regulatory regions of the develop-
ment and evolution: elements of a conceptual framework for evo-
ment and evolution: elements of a conceptual framework for evo-
ment and evolution: elements mental gene hunchback in insects. Mol. Biol. Evol. 16: 253–265. The ment and evolution: elements of a
curs. A. L. 1994. The evolution of functionally novel proteins devo. J. Exp. Zool. 285: 307–325.
	-
	-
	-
	-
	-
	-
- EVIDENCE TOP STANDUP SERVENT OF EVALUATION OF EVALUATION OF EVALUATION SOCIETY. The MALSH, J. B., 1995 How often do duplicated genes evolve new func-
LYNCH, M., and J. S. Conery, 2003 The origins of genome complex-
ity. Sc
	-
- Ity. Science 302: 1401–1404.

LYNCH, M., and A. FORCE, 2000 The probability of duplicate gene

PERRICAL TREATER SCIENCE, 2000 The probability of duplicate gene

PERRICAL TREATER SCIENCE, 2001 The probabil-

LYNCH, M., M. O

APPENDIX

Equilibrium frequencies of fission alleles in an infinite population: Here we compute the distribution of allele frequencies in an infinite population using a matrix-modeling approach. The probability that a binding site is added is μ_a and the probability that a binding site is lost through mutation is μ_d . All individuals that have a genotype where both expression domains are covered produce the same expected number of offspring, while individuals that do not produce zero offspring.

We can define a matrix with elements A_{ij} that describe the number of genotype *i* offspring (row *i*) produced by a single adult of genotype *j* (column *j*). Because the genotypes *AbC* and *ABc* have the same mutational properties (each goes to *Abc*, *ABC*, and either *aBc* or *abC* with the same probability) we can lump them into a single class. We index the genotypes as

> $\overline{}$ 1 ABC 2 AbC or ABc 3 Abc 4 aBC

.

We can compute the matrix entries by considering the probability an individual in class *j* produces an individual in class *i*. This depends on the probability of each binding site being mutated. For example, ${\bf A}_{11}$ = $(1-\mu_{\rm d})^3$ because an individual with all three functional binding sites will produce an individual with three functional binding sites only if none of those sites are lost to mutation. Thus, the matrix **A** is given by

$$
\begin{pmatrix}\n(1 - \mu_d)^3 & \mu_a (1 - \mu_d)^2 & \mu_a^2 (1 - \mu_d) & \mu_a (1 - \mu_d)^2 \\
2(1 - \mu_d)^2 \mu_d & (1 - \mu_a)(1 - \mu_d)^2 + \mu_a (1 - \mu_d) \mu_d & 2(1 - \mu_a) \mu_a (1 - \mu_d) & 2\mu_a (1 - \mu_d) \mu_d \\
(1 - \mu_d) \mu_d^2 & (1 - \mu_a)(1 - \mu_d) \mu_d & (1 - \mu_a)^2 (1 - \mu_d) & \mu_a \mu_d^2 \\
(1 - \mu_d)^2 \mu_d & \mu_a (1 - \mu_d) \mu_d & \mu_a^2 \mu_d & (1 - \mu_a)(1 - \mu_d)^2\n\end{pmatrix}.
$$
\n(A1)

The long-term frequency of genotype class *i* can be found by computing the dominant right eigenvector of **A**. This represents the stable distribution of genotype densities, excluding the genotype classes that have no reproductive success. This vector can be normalized to produce frequencies by dividing by the sum of the vector elements. Note that because class 2 contains two genotypes, the frequency of genotypes *AbC* and *ABc* is half of the frequency of class 2.

The probability of enhancer subfunctionalization: Here we derive an approximation to the probability of enhancer subfunctionalization. We begin by considering a pair of linked overlapping duplicate enhancers within a gene. Each of two independent regulatory elements, *B* and *C*, within a single overlapping enhancer is knocked out at rate μ_r and the entire overlapping enhancer with shared regulatory elements is knocked out at rate μ_c (see Figure 8). We use the following shorthand: A single intact enhancer is denoted by *BC* for the two independently mutable components of the overlapping enhancer structure. If either site is functionally deleted it is replaced with an *****, and if both independent components or the shared components are functionally deleted the dead enhancer is denoted by ******. Four allele classes are formed during the process of enhancer subfunctionalization that are viable when fixed in populations. These include the duplicate enhancer alleles $BC|BC$ with frequency ϕ , the partial subfunctional alleles **C*|*BC*, *B** |*BC*, *BC*|**C*, and *BC*|*B** with frequency *x*, the subfunctional alleles **C*|*B** and *B**|**C* with frequency *y*, and the single nonfunctional enhancer class alleles ** |*BC* and *BC*|** with frequency *q*. The initial nonduplicate enhancer *BC* alleles, with frequency q' , are identical in state to the single enhancer class alleles but are kept track of separately because they are not descendants of the original duplicate *BC*|*BC* allele. Furthermore, we refer to an allele class by its respective uppercase letter, *P*, *X*, *Y*, *Q* , and *Q*.

We divide the problem into a series of fixation events of interval length 4*N* generations, because on average this is the coalescence time of a single neutral allele in a diploid population. We can then estimate the probability of enhancer subfunctionalization Pr(Sub) as a summation of the individual probabilities of fixation of subfunctional alleles during each interval. Thus,

$$
Pr(Sub) = \sum_{i=1}^{\infty} Pr(\bar{y}_i), \qquad (A2)
$$

where $Pr(\bar{y}_i)$ is the probability of fixation of the subfunctional Y alleles in interval *i* and \bar{y}_i is the mean frequency of subfunctional *Y* alleles in interval *i*.

The original duplicate enhancer *P* allele begins as a single copy in the population. We make the assumption that during each interval one of the viable alleles goes to fixation. This assumption is clearly valid when the population size is small, as the probability of homozygosity is close to one. In large population sizes the full spectrum of alleles will be present at the time of fixation and will deviate slightly from this assumption. Following the first fixation event where either a duplicate *P* allele or partial subfunctional *X* allele is fixed, subfunctional *Y* alleles can be derived from either ancestor. Therefore, we can rewrite Pr(Sub) as

$$
Pr(Sub) = \sum_{i=1}^{\infty} (Pr(\bar{y}_{i,P}) + Pr(\bar{y}_{i,X})), \qquad (A3)
$$

where $Pr(\bar{y}_{i,R})$ and $Pr(\bar{y}_{i,X})$ are the probabilities of fixation of the subfunctional alleles at the *i*th fixation event derived from a fixed duplicate P allele or a fixed partial subfunctional X allele at the end of interval $i - 1$.

For the frequencies of alleles at the end of each interval, we use a subscript referencing the interval number and/ or allele from which it was derived. Thus, \bar{p}_1 is the frequency of *P* after the first interval and \bar{p}_2 is the frequency of *P* after the second and subsequent intervals derived from a *P* ancestor. Similarly, \bar{x}_1 is the frequency of *X* after the first interval, $\bar{x}_{2,P}$ is the frequency of *X* after the second and subsequent intervals derived from a *P* ancestor, and $\bar{x}_{2,X}$ is the frequency of *X* after the second and subsequent intervals derived from a *X* ancestor. The probability of

Subfunction Fission 445

fixation of *Y* for the first interval is $Pr(\bar{y}_1)$. The probabilities of fixation of *Y* for the second interval and subsequent intervals are $Pr(\bar{y}_2, p)$ for *Y* derived from *P* and $Pr(\bar{y}_2, \bar{y})$ for *Y* derived from *X*. The probabilities of fixation of *Y* within the second and subsequent intervals remain the same but are weighted by the decaying cumulative frequencies of *P* and *X*. Using the geometric series, it can be shown the probability of enhancer subfunctionalization is

$$
Pr(Sub) = Pr(\bar{y}_1) + Pr(\bar{y}_{2,P})\left(\frac{\bar{p}_1}{1-\bar{p}_2}\right) + Pr(\bar{y}_{2,X})\left[\frac{\bar{x}_1}{1-\bar{x}_{2,X}} + \left(\frac{\bar{x}_{2,X}}{1-\bar{x}_{2,X}}\right)\left(\frac{\bar{p}_1\bar{p}_2}{1-\bar{p}_2}\right)\right]
$$
(A4)

and the scaled probability of subfunctionalization is

$$
\theta_{\text{Sub}} = 2N \Pr(\text{Sub}). \tag{A5}
$$

Next, we determine expressions for the frequencies of the alleles after each interval. For the first interval and subsequent intervals the mean frequencies of the alleles derived from duplicate *P* alleles can be approximated in the following manner. The duplicate enhancer *P* alleles with arrangement $BC|BC$ mutate at a total rate of $(4\mu_r +$ $2\mu_c$) into *X*, *Y*, and *Q* alleles. The frequency of the duplicate P alleles after *t* generations is described by the decay equation,

$$
p_t = p_0 e^{(-4\mu_r + 2\mu_c)t}.
$$
\n(A6)

The partial subfunctional *X* alleles, with four arrangements **C*|*BC*, *B**|*BC*, *BC*|**C*, and *BC*|*B**, originate from the *P* alleles. The formation of *X* alleles requires a single independent regulatory element knockout at rate μ_r and requires that no other mutations occur in the remaining three independent regulatory sites (at rate $3\mu_r$) and the two shared regulatory regions (at rate $2\mu_c$). Thus, the frequency of *X* derived from a duplicate *P* ancestor is

$$
x_t = p_0 4e^{(-3\mu_r + 2\mu_c)t} (1 - e^{(-\mu_r t)}) \,. \tag{A7}
$$

In a similar fashion, equations for the frequencies of Y , Q , and Q' alleles can be obtained

$$
y_{t} = p_{0} 2 e^{(- (2\mu_{r} + 2\mu_{c})t)} (1 - e^{(-\mu_{r}t)})^{2},
$$
\n
$$
q_{t} = 2p_{0} [e^{(- (4\mu_{r} + \mu_{c})t)} (1 - e^{(-\mu_{c}t)}) + e^{(- (2\mu_{r} + 2\mu_{c})t)} (1 - e^{(-\mu_{r}t)})^{2} + e^{(- (2\mu_{r} + \mu_{c})t)} (1 - e^{(-\mu_{r}t)})^{2} (1 - e^{(-\mu_{c}t)})
$$
\n
$$
+ 2e^{(- (3\mu_{r} + \mu_{c})t)} (1 - e^{(-\mu_{c}t)}) (1 - e^{(-\mu_{r}t)}),
$$
\n(A9)

$$
q'_{t} = q_{0}e^{(-(2\mu_{r} + \mu_{c})t)}.
$$
\n(A10)

After normalization the expected frequencies of the alleles across all possible populations at the time of fixation are $\overline{p}_t = p_t / F$, $\overline{x}_t = x_t / F$, $\overline{y}_t = y_t / F$, $\overline{q}_t = q_t / F$, and $\overline{q}'_t = q_t / F$, where $F = p_t + x_t + y_t + q_t + q'_t$.

To obtain the frequencies $(\bar{p}_1, \bar{x}_1, \bar{y}_1, \bar{q}_1, \text{ and } \bar{q}_1')$ for the first interval we set $p_0 = 1/2N$, and $q_0 = 1 - 1/2N$. If following the first fixation event a duplicate *P* allele is fixed, the above equations (A6)–(A10) are used to determine the allele frequencies $(\bar{p}_{2,P}, \bar{x}_{2,P}, \bar{y}_{2,P}, \text{ and } \bar{q}_{2,P})$ after 4*N* generations for the second and subsequent intervals where $p_{\scriptscriptstyle 0}$ = 1. If following the first fixation event a partial subfunctional *X* allele is fixed, we can obtain the allele frequencies $(\bar{x}_{2,X}, \bar{y}_{2,X}, \text{ and } \bar{y}_{2,X})$, in a similar manner to those above with x_0 set equal to 1:

$$
x_t = x_0 e^{(-\beta \mu_r + 2\mu_c)t},\tag{A11}
$$

$$
y_t = x_0 e^{(- (2\mu_t + 2\mu_c)t)} (1 - e^{(-\mu_t t)}), \tag{A12}
$$

$$
q_t = \alpha e_0^{(-t(2\mu_r + 2\mu_c))}(1 - e^{(-t\mu_r)}) + e^{(-t(3\mu_r + 2\mu_c))}(1 - e^{(-t\mu_c)}) + e^{(-t(2\mu_r + \mu_c))}(1 - e^{(-t\mu_c)}) (1 - e^{(-t\mu_r)}).
$$
 (A13)

The expected frequencies of the alleles across all possible populations at the time of fixation are then \bar{x}_t = x_t / F , $\bar{y}_t = y_t / F$, $\bar{q}_t = q_t / F$, and $\bar{q}_t' = \bar{q}_t' / F$, where $F = x_t + y_t + q_t$.

The three probabilities of fixation, $Pr(\bar{y}_2, p)$, $Pr(\bar{y}_2, \chi)$, and $Pr(\bar{y}_1)$, are functions of the subfunctional *Y* allele frequency during each interval. In Figure 9, we plot two approximations, the first where we treat the fixation of *Y* alleles as a neutral process and the second where we treat the fixation of *Y* alleles as the fixation of a slightly deleterious allele. In the first case, the fixation probabilities are equal to the frequencies of *Y* at each interval *i*. In the second case, we use the diffusion approximation for the probability of fixation of a beneficial allele in a diploid population

$$
P(\bar{y}_i) = \frac{1 - e^{-(4\bar{y}_i sN)}}{1 - e^{-(4sN)}}
$$

446 A. Force *et al.*

(KIMURA 1962), where \bar{y}_i is the frequency of the slightly deleterious subfunctional alleles, *s* is the selection coefficient, and *N* is the population size. Consider the following two alleles, the *Y* allele *B**|**C* and the *Q* allele *BC*|**. The rate of mutation of the *Y* alleles to a nonfixable allele state is $2\mu_c + 2\mu_r$ and the rate of mutation of the *Q* alleles to a nonfixable allele state is $\mu_c + 2\mu_r$. Therefore, the subfunctional alleles die at a rate μ_c relative to the single nonfunctional enhancer *Q* alleles, suggesting the selection coefficient *s* for the *Y* alleles is $-\mu_c$.