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ABSTRACT
To predict emergence of drug resistance in patients undergoing antiretroviral therapy, we study accumu-

lation of preexisting beneficial alleles in a haploid population of N genomes. The factors included in the
model are selection with the coefficient s and recombination with the small rate per genome r (r � s√k,
where k is the average number of less-fit loci per genome). Mutation events are neglected. To describe
evolution at a large number of linked loci, we generalize the analytic method we developed recently for
an asexual population. We show that the distribution of genomes over the deleterious allele number
moves in time as a “solitary wave” that is quasi-deterministic in the middle (on the average) but has sto-
chastic edges. We arrive at a single-locus expression for the average accumulation rate, in which the effects
of linkage, recombination, and random drift are all accounted for by the effective selection coefficient
s ln(Nr)/ln(Ns 2k/r). At large N, the effective selection coefficient approaches the single-locus value s.
Below the critical size N c � 1/r, a population eventually becomes a clone, recombination cannot produce
new sequences, and virus evolution stops. Taking into account finite mutation rate predicts a small, finite
rate of evolution at N � N c . We verify the accuracy of the results analytically and by Monte Carlo simulation.
On the basis of our findings, we predict that partial depletion of the HIV population by combined anti-
retroviral therapy can suppress emergence of drug-resistant strains.

THE prediction that accumulation of beneficial mu- strated. At smaller N, we predicted and calculated the
rate of Muller’s ratchet effect.tations in a finite population is slowed down, if

evolving loci are linked in a chromosome (Fisher 1930; This work is motivated by evolution of drug resistance
in human immunodeficiency virus (HIV)-infected indi-Muller 1932), was supported by analytic works on mod-

els with two or a few loci (Hill and Robertson 1966; viduals undergoing combined antiretroviral therapy.
Unlike many viruses, HIV has an efficient mechanismFelsenstein 1974; Otto and Barton 1997), as well as

numerical studies (Hey 1998). It has been proposed for recombination. Our model describes a haploid pop-
ulation of genomes with a large number of linked loci,that the biological role of recombination is to counter-

act the adverse effect of linkage on progressive evolu- subject to infrequent recombination. We derive an accu-
mulation rate of preexisting beneficial mutations andtion of organisms and accelerate fixation of beneficial
demonstrate a transition from zero rate (in the presencemutations. On the basis of that effect, a number of works
of mutation, almost zero) to the independent-locus limit,have addressed the evolution of sex (Barton 1995,
as either the recombination parameter r or the popula-1998; Otto and Barton 1997).
tion size N increases. The analytic method representsRecently, we presented analytic results on the average
an extension of the method we developed to describeaccumulation rate of beneficial mutants in an asexual
asexual populations (Rouzine et al. 2003).haploid population (Rouzine et al. 2003). The model

included weak selection (s � �L) acting at a large num-
ber of linked loci, as well as advantageous, deleterious,

MODEL AND RESULTSand compensatory mutation, and assumed the absence
of recombination. In a broad range of population sizes, Model: The model (Figure 1) considers a haploid pop-
the accumulation rate was shown to be proportional to ulation of N genomes with a large number of linked sites
the logarithm of the population size and the selection L (see Table 1 for definitions of parameters and vari-
coefficient. At an exponentially large population size, ables). Each locus can carry either a more-fit or a less-
a transition to the independent-loci result was demon- fit allele. After each discrete generation, all the genomes

are replaced with their progeny. Fitness of a genome
with k deleterious (mutant) alleles, i.e., relative progeny
number with respect to the best-fit sequence that could1Corresponding author: School of Medicine, Tufts University, 136 Har-

rison Ave., Boston, MA 02111. E-mail: irouzine@tufts.edu evolve, is given by exp(�sk). By definition, the best-fit
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Figure 1.—A model of evolution in the
presence of selection, recombination, and ran-
dom drift. (A) Haploid population at two con-
secutive generations. Brown line, part of a ge-
nome with more-fit loci; blue circles, mutant
(less-fit) loci. (B) Recombination mechanism.
Green broken line, route of reverse tran-
scriptase between the two RNA templates.

genome has k � 0 and fitness 1. The last expression for each infected cell in the previous generation. If an
assumes that all the loci have identical effect on fitness infected cell is coinfected with another virus particle,
and that epistasis is absent. The role of epistasis, in the the probability of which event we denote r, a fraction
form of compensatory mutations, was studied previously of particles budding from the cell will carry heterolo-
for an asexual population (Rouzine et al. 2003). gous pairs of genomic RNA. Upon entry into a cell, the

The choice of a model of recombination depends on two RNAs are reverse transcribed, leading to a new pro-
a particular biological system. For the purpose of this virus. Only one RNA template is copied at a time. Re-
work, we focus on assumptions and parameters relevant combination between the two genomes occurs due to
to HIV populations in vivo. In the case of HIV, an individ- �10 switches of reverse transcriptase between the two
ual genome is represented by a proviral DNA sequence RNA templates (Levy et al. 2004). We treat the number
integrated into a cellular chromosome. Each infected of switches M as a large number and assume that the
cell produces virus particles that carry pairs of RNA copies new DNA genome is composed of, approximately, a half-
of the genome and can infect new cells. During persis- and-half mixture of sequences from each parental ge-
tent infection, on the average, one new cell is infected nome. (The exact number of crossovers per genome

M, as it turns out, is not important for our results. We
also considered the opposite limit of a single switch,TABLE 1
M � 1. From a somewhat longer derivation, we obtained

Definition of parameters and variables the same result for the accumulation rate and a slightly
different result for the profile of distribution of ge-

N Population size
nomes over k. We also note that the intersite recombina-s Selection coefficient
tion rate often used in genetics, r is , is related to ourr Recombination parameter (frequency of cell
recombination parameter r , as r is � rM�L/L , where �Lcoinfection)

� Mutation rate per locus is the number of bases between the two sites.)
L Total no. of loci Our central approximation is that, for each genome
V Accumulation rate per genome with k less-fit loci, these loci are distributed randomlyk No. of less-fit alleles in a genome

and uniformly among L available sites, and their posi-k k averaged over population
tions do not correlate between different genomes. Thew Standard deviation of k (wave width)

k0 No. of reverting loci approximation does not imply complete independence
t Time (generation number) of loci, because the variance of k between genomes,
f(k, t) Frequency of genomes with given k as we show, is smaller than the Poisson value, √k . How-
R(k, t) Recombination gain function ever, the interdependence between genomes is ac-
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Figure 2.—Schematic of the moving
solitary wave. Thick and thin lines, the
distribution of genomes over the less-fit
allele number f(k, t) and the recombina-
tion gain function R(k, t), respectively.
Spike, a new recombinant clone gener-
ated beyond the wave edge; �, interval
where most such clones are generated;
w and V, the width and the speed (evolu-
tion rate) of the wave, respectively.

counted for only in the averaged-over-genome sense. The frequency of coinfection, r, in patients infected
with HIV has not been measured directly. In untreatedWe hope to lift this approximation and take into ac-

count the effects of site-by-site correlation elsewhere. patients, infected spleen cells with three to four inte-
grated proviral DNAs have been observed (Jung et al.The effective size of population is given by the num-

ber of proviruses, N, that produce infectious virus parti- 2002), which implies r � 1. Whether these cells are
typical, and what fraction of HIV DNA-positive cells latercles able to reach new cells. We focus on the case when

N is constant in time. We assume that any pair of ge- express viral RNA and proteins, has not been estab-
lished. Double-RNA labeling of infected cells ex vivo isnomes in the effective population has an equal probabil-

ity of recombination (panmixia assumption). needed to give a definite estimate of r. In patients
treated with antiretroviral drugs or vaccines, the virusThe model does not include mutation events, because

we are interested in the case when the accumulation load decreases by orders of magnitude, and the value
of r is expected to be small. In the present work thatrate is much larger than the neutral mutation rate (dele-

terious mutation is a small correction), and all the bene- aims at investigating the effect of virus depletion on the
ficial one-locus alleles already exist in the beginning evolution rate, we consider r � s√k . If a population of

infected cells is dilute in the tissue, and effective recom-(e.g., they have been generated already by previous ad-
vantageous mutation events). Under these assumptions, bination occurs between genomes coming from distant

infected cells, the frequency of coinfection r is not ancomparison with the results obtained for an asexual
population (below) shows that mutation may be impor- independent parameter of the model, but is itself pro-

portional to the infected cell number N, as given bytant only when both r and N are very small (r � 10�4,
N � 1/r). r(N) � N/N0 , where N0 is a new independent parameter

that replaces r.Parameter range: In a real virus population, the selec-
tion coefficient varies broadly among different nucleo- Main results: According to our basic assumption, the

frequency of genomes with different mutation numberstides. In our simplified model, variation is neglected,
and all loci are assigned the same “average value,” s , that k (except for genomes with smallest k) averaged over

many random realizations can be described determin-has to be found from fitting data. The relevant range
of s can be anticipated from the timescale of a particular istically. This assumption is confirmed below by Monte

Carlo simulation up to rather small population sizes,experiment. Sites with s � 10�3 or smaller correspond
to �104 virus generations and exceed duration of an N � 102. The deterministic equation predicts (see ana-

lytic derivation) a moving solitary wave with a slowlyaverage HIV infection. Such loci can be safely con-
sidered as neutral. In this work, we focus on the interme- changing profile (Figure 2). The wave speed is the aver-

age accumulation rate of beneficial mutations, V �diate range, s � 0.1–0.01. The higher values, s � 1, are
expected to be relevant for emergence of drug-resistant �dk/dt. In the truly deterministic limit, N � ∞, the wave

has a Gaussian form that decays asymptotically at bothstrains under therapy.
The characteristic number of mutant loci k also de- large and small k. The width of the wave w, defined as

the standard deviation of k, is given by the Poisson valuepends on a particular experiment. In accumulation of
beneficial alleles in untreated patients, k can be esti- √k implying that different loci evolve independently at

infinite population size. In contrast, at finite populationmated as the number of (mostly drug-unrelated) poly-
morphic loci, �100 (Rouzine and Coffin 1999b). In size, the semideterministic wave ends, on the high-fit-

ness side, at a finite value of k (Figure 2).experiments on fixation of drug-resistant or immune-
escape mutants under multiple drugs (epitopes), k is The edges of the wave, including the important high-

fitness (small k) edge, are essentially stochastic andon the order of the number of drug-binding sites (see
below). require a separate treatment. Genomes beyond the
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high-fitness edge (at small k) are absent, because most
infrequent recombinants produced in this region be-
come extinct due to random drift before they can be
amplified by selection. The speed of the wave is deter-
mined by rare recombinants emerging just outside the
edge that succeed in passing the stochastic bottleneck
(Figure 2). To estimate fitness and the average time to
generation of such recombinants, we use a two-variant
argument: a recombinant is considered a minority vari-
ant and all other genomes the majority variant with
fitness equal to the average fitness of the population.
Matching the time in which the recombinant is gener-
ated (Rouzine et al. 2001) to the time in which the
wave moves over to engulf the recombinant, we obtain
expressions for the wave width w and the wave speed
V, as given by

w 2 � pk, V � psk,

p �
ln(Nr)

ln(Ns 2k/r)
, 1/N � r � s√k . (1)

The formula neglects logarithmic factors in the argu-
ments of large logarithms. Thus, the wave width w is
smaller than √k , reflecting the fact that linked loci are
not independent. The width is related to the wave speed,
as given by V � sw 2. Accordingly, the wave speed is
smaller due to linkage than the deterministic value sk,
which represents the Fisher-Muller effect partly com-
pensated by recombination. Equation 1 predicts the

Figure 3.—The average speed and squared width of a soli-existence of a critical point in the population size, N � tary wave at � � 0: Monte Carlo simulation vs. analytic results.
1/r, below which the wave speed and width are zero. Both quantities are divided by the respective deterministic values.
Monte Carlo simulation at realistic parameter values Purple dots, the wave speed [average Monte Carlo, �(dk/dt)/

(sk)]; green dots, the wave width square [average Monte Carlo,confirms Equations 1 with good accuracy (Figure 3). At
w2/k]; vertical bars, 60% statistical errors for the estimate oflarge r, r � s√k , the transition from p � 0 to p � 1 is
the average; purple lines, analytic results (Equation 1). The

not described by Equation 1, but is sharp. value of s and the average mutation number at the start, kst,
Equation 1 is valid when less-fit loci are rare. In the and at the sampling time, k0, are shown at the top. The values

of r are shown on the curves. Simulation results are averagedbeginning of a drug-resistance experiment, a popula-
over 40 random runs (top) and 10 runs (bottom). Lavendertion is almost uniformly less fit at some number (k0) of
lines, results for an asexual population for � � 10�4 and theloci, except for a minority of genomes that have more-
total locus number L � 103 characteristic for HIV.

fit alleles at a locus or two. The frequency of deleterious
alleles per locus decreases gradually from almost 1 to

At the boundaries of the interval in N, the values of palmost 0 and, in the middle of the process, is not small.
are close to 0 and 1, respectively.For this case, we obtained a more general expression

To test the analytic results, we carried out Monte Carlofor V, given by Equation 1, in which k is replaced with
simulation of the same model for representative param-k(1 � k/k0). This represents a standard deterministic
eter values. Simulated frequency of genomes with k mu-result, with the selection coefficient multiplied by a fac-
tations at different times is shown in Figure 4, A and D,tor of p.
for two different population sizes. The average mutationThe above results apply regardless of whether the re-
number k decreases exponentially in time (Figure 4, Bcombination parameter r is fixed or depends on other
and E); the normalized slope of this decrease, as wellmodel parameters. Because the frequency of coinfec-
as the normalized variance �w 2/k �, is compared in Figuretion r is expected to be proportional to the population
3 to the analytic result for p (Equation 1). Although thesize, r(N) � N/N0 , Equation 1 takes a form
analytic results for the accumulation speed somewhat
underestimate the accumulation rate, the agreement is

p �
ln(N/√N0)

ln(s√k(1 � k/k0)N0)
, r(N) � N/N0 , fair. A solitary wave in a random realization consists of

separate peaks that become increasingly sparse as N
decreases (Figure 4, A and D). However, the centered√N0 � N � sN0 √k(1 � k/k0). (2)
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profile averaged over 40 runs agrees well with the ana-
lytic result (Figure 4, C and F). In particular, the simu-
lated wave profile is asymmetric, revealing a finite cutoff
at the high-fitness edge predicted by the analytic theory.
Below the critical size, N � 1/r, the wave sooner or later
degenerates into a single clone. Recombination cannot
produce new sequences anymore, and the “wave” stops
(Figure 4G).

If we allow for a finite mutation rate �, and r is small
(r � 10�4), the accumulation rate below the critical
point in population size may become finite. Figure 3
includes the analytical results obtained for an asexual
population for parameter values relevant for HIV. [We
used Equations 15, 16, and 19–21 in Rouzine et al. (2003)
and estimated 	 � √
 for |v | � √
/ln(1/√
) from Equa-
tions 26 in the same work.] At large population sizes,
the asexual accumulation rate is given by Vasex � 2s
ln(N�k)/ln2(s/�k) (Rouzine et al. 2003), which, in a
broad range of N, is smaller than the recombination-
driven rate by a large factor of k . The result for the
asexual rate remains valid until a population becomes
exponentially large, ln(N�k) � k ln2(s/�k); beyond this
point, the rate is given by the one-locus result, Vasex � sk.
In contrast, the recombination-driven evolution rate
given by Equation 1 reaches 50% of the one-locus rate
already at N � (1/r)(s√k/r)2. Therefore, at large k , even
very modest recombination is more efficient for gener-
ating highly fit genomes than mutation (provided the
necessary more-fit alleles exist in the beginning).

Implication for HIV evolution and antiretroviral ther-
apy: The time to drug resistance depends on the num-
ber of antiretroviral drugs used in therapy. To give a
general idea about the magnitude of this effect, we
use an example of parameter values typical for an HIV
infection in vivo : the mutation rate for transitions, � �
3 � 10�5 (Mansky and Temin 1995); the average effec-
tive population size in untreated patients, Nun � 106

(Rouzine and Coffin 1999a; Frost et al. 2000); and
r(Nun) � Nun/N0 � 1 (upper estimate, Jung et al. 2002),
implying N0 � 106. Drug-resistance alleles in untreated
patients are slightly less fit than wild-type alleles; on the
basis of reversion experiments, we assume, for these sites,
s � 0.1. One generation of infected cells corresponds
to 1 day.

Figure 4.—Monte Carlo simulation of the frequency of
genomes with different mutation numbers f(k, t). (A) Lines
in alternating colors: f(k, t) at different times (generations of
infected cells) shown above the curves. Black line, fitting f(k,
t) with a Guassian function; top and bottom, f(k, t) in logarith-
mic and linear scales, respectively. Model parameters are
shown at the top. (B) Population-average mutation number
k as a function of time. (C) Wave profile (centered distri-
bution of genomes over the mutation number) φ(x). Red line,
simulation result averaged over the interval of k shown at the
top and over 40 random runs; blue line, analytic result (Equa-
tion 19). (D–F) Analogous results for a larger population size
N. (G) Simulation below the critical population size, Nr � 1.
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Because Nun� � 1, a population contains genomes N � √N0 � 103, which is higher by a factor of 30 than
the estimate for k0 � 2.that are drug resistant at a single base, at a deterministic

Resistant alleles can still accumulate due to mutation.frequency given by �/s � 3 � 10�4 (Nun�/s � 300 copies).
The analysis, for this mechanism, is more complex, be-However, the proportion of patients that carry a genome
cause it essentially depends on the value of s that de-with two resistant alleles is small, Nun(�/s)2 � 0.1; it is
pends, in its turn, on the drug concentration. At a largeeven smaller for three alleles, Nun(�/s)3 � 3 � 10�5.
number of drugs, the value of s per site required toAn onset of antiretroviral treatment depletes a (wild-
achieve the decrease in virus fitness necessary to main-type) population to a low number, N � Nun . In the
tain depletion of wild-type virus will be �1. Therefore,presence of drug, each resistant base in a genome in-
the asexual evolution rate will be small, as compared tocreases the logarithm of fitness by s � 1. An important
the case k0 � 1 (see the previous section).parameter is the minimum number of resistant alleles

In any case, we can conclude that the net drug con-per genome, k0 , required to reach the critical level of
centration required to prevent rebound of resistantfitness, at which virus can start expanding back in the
strains can be significantly decreased, if the number ofpresence of drug (therapy failure). The value of k0 corre-
target sites in the HIV genome is large.lates with (but is not equal to) the number of drugs in

In our early work (Rouzine and Coffin 1999b), wea cocktail targeting different sites and depends on de-
used a one-locus deterministic model to interpret evolu-tails of drug binding and population dynamics (e.g., the
tion of reverse transcriptase in chronically infected un-increase in the target cell number during therapy). A
treated patients. The extrapolated average number oftherapy depending on a single base, k0 � 1, such as 3TC
diverse sites per genome per patient is 100–300; ontreatment, fails rapidly in every patient due to outgrowth
the average, these bases are highly diverse (25%). Weof preexisting mutants.
proposed that these bases are, at the typical samplingFor k0 � 2, which is the case with most current drug
time t � 1000, in the middle of reversion to better-fitcocktails, failure will occur in the 10% of patients that
variants and estimated s � 0.01. According to our pres-have preexisting two-base mutants. For the remaining
ent findings, the reversion speed is given by the one-90%, the outcome will depend on the population size
locus expression, if r(Nun) � s√k � 0.1. Even if the esti-under therapy (and, indirectly, on the drug dosage). A
mate r(Nun) � 1 overestimates the coinfection frequencypopulation is dominated by genomes with one resistant
by a factor of 10, our new findings confirm the validityallele. Recombination or mutation can add a second al-
of our earlier approach.lele. A single copy of a double mutant will be fixed rap-

idly in a population and cause immediate therapy fail-
ure. The average time to such event, t res , is either 1/�N ANALYTIC DERIVATION
or 1/r(N)N, whichever is smaller. We call a therapy suc-

The derivation presented in this section is asymptoti-cessful if t res � 1000. Then, the condition of successful
cally exact over a range of parameters, such that k �therapy, from either the recombination or the mutation
1, s√k � r , 1 � ln(Nr) � min[k, 1/(s2k), (s√k/r)2 lntime, is N � 30 (viremia �1 copy/ml serum). Indeed,
(s√k/r)]. We make use of these strong inequalities andthe currently used high-dosage therapy either fails rap-
neglect terms that represent small corrections. In sev-idly (in �10% of patients) or achieves long-lasting con-
eral places (appendix, Note 1–Note 5), smallness of atrol of viremia at the level �5 copies/ml. The above
term is verified after the derivation. Monte Carlo simula-estimate assumes that there is one possible site for each
tion (Figure 3) confirms that our use of the strongof the two alleles, and the two bases are sufficiently far
inequalities is appropriate for parameter values typicalapart (�1000 nt, the crossover length). If the bases are
for HIV infection.close, or if there is more than one possible site, the upper

Deterministic equation for randomized loci: We con-bound on N will, respectively, increase or decrease.
sider the case of infinite population size, N � ∞. LetFor k0 � 3, virtually none of drug-naive patients have
f(k , t) be the average fraction of nucleotide sequencespreexisting fully resistant genomes. In a typical patient,
that have, as compared to the best-fit sequence thattwo consecutive recombination or mutation events have
could evolve, k deleterious mutations. For the modelto occur. After the first event, a double-mutant genome
illustrated in Figure 1, the continuity equation for f(k , t)

expands rapidly to the entire population; a second event
has a form

makes virus resistant. The success condition, by analogy
with the previous case, is N � 45 (the first mutation can f(k , t � 1) � f(k , t) � {e�s [k�k (t )] � 1}f(k , t)
choose between two sites).

� r[R(k , t) � f(k , t)], (3)
Suppose that the critical number of drug-resistance

sites is large, k0 � 1 (for example, 20). Now, the early where t is time measured in generations of infected cells;
recombination events are not the limiting factor. As we s is the selection coefficient; e�s k (t ) � �dk · e�s k f(k , t); r
find in this work, accumulation of beneficial alleles due is the recombination parameter (for symmetric co-infec-

tion, equal to the probability that an infected cell isto recombination will stop, if Nr(N) � 1, which yields
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coinfected by another virus); rR(k , t) is the gain in
sequences with k mutations due to recombination be- 
(x) �

1

√�k �dx1�dx2 φ(x1)φ(x2)e�(x1/2�x2/2�x )2/k, (8)
tween other sequences, as defined below; and �r f(k , t)
is the loss of sequences with k mutations due to recom- where x � k � k, and V � �dk/dt is the solitary wave
bination with other sequences. Functions f and R are speed toward higher fitness (reversion/accumulation rate).
normalized, as given by �R(k , t)dk � � f(k , t)dk � 1. In Equation 7, we neglected the time dependence of
Equation 3 neglects mutation events. the wave profile, which is asymptotically correct, if the

In the stated parameter range (model and results), wave is far from the origin k � 0 (Note 4).
we have s |k � k | � 1 for all relevant k (appendix, Note 1), The general solution of Equation 7 has a form
so that the exponential in Equation 3 can be replaced
with its linear expansion in k � k. In addition, f(k , t) φ(x) �

b
w 2

e�(x�b)2/2w2 �
x

x0

dx� · 
(x�)e (x��b)2/2w2, (9)
can be approximated with a function continuous in t
(appendix, Note 2). As a result, we have

where x0 is an arbitrary integration constant to be deter-
mined later in this subsection, and we introduced the�f

�t
� �s[k � k(t)] f(k , t) � r[R(k , t) � f(k , t)], notation(4)

where k(t ) � �dk · kf(k , t) is the average mutation num- b � r/s, (10)
ber per genome.

w 2 � V/s. (11)The form of the recombination gain function R(k , t)
in Equation 4 is determined from the model assump- At infinite population size, Equation 9 is supposed to
tions that a recombinant genome inherits 50% of each apply at any x, even when φ(x) is very small. Therefore,
parental genome, and positions of k mutations are fully we must have x0 � �∞ ; otherwise the distribution func-
random within each genome. In this and the next five tion φ(x) will be negative at x � x0 . The solution of
sections, we consider a population with a small fre- Equations 8 and 9, for which the integral in Equation
quency of less-fit alleles per locus. A more general case 9 does not diverge at x� � �∞, has the form
is considered in the end of this section. Recombination
of two genomes with k 1 and k 2 mutations, respectively, φ(x) � 
(x) �

1

√2�k
e�(x2/2k ), N � ∞, (12)

makes a genome with k � (k 1 � k 2)/2 � ε 1 � ε 2 muta-
tions, where ε 1(2) is the Poisson fluctuation of the muta- w 2 � k . (13)
tion number in the copied half of a parental genome,

For the wave speed, V, we haverestricted by the condition that the total mutation num-
ber in the genome is fixed and equal to k 1(2). The fluctu- V � �dk/dt � sk , N � ∞. (14)
ation variance is given by �ε 2

1(2)� � k 1(2)/4, where k 1(2)/2
Equation 12 that can be verified by direct substitutionis the average number of mutations in half of a genome,
into Equations 8 and 7 implies that the variance of k isand the additional factor 1⁄2 is due to the restriction.
equal to the Poisson value k(t), i.e., that, in the limit ofSince fluctuations in the two genomes are independent,
infinite population size, loci evolve independently. Be-and, in the stated parameter range, the width of the dis-
low we show that, if the recombination parameter r istribution in k is smaller than k, |k1 � k2 | � k (appen-
large, loci are independent at finite N as well. Equationdix, Note 3), we have �(ε1 � ε2)2� � (k1 � k2)/4 � k/2.
14 is a well-known deterministic result for the averageThe resulting expression for R(k , t) has a form
reversion rate in the presence of selection.

Finite populations—solitary wave profile has an end:R(k , t) �
1

√�k �dk 1�dk 2 f(k 1, t)f(k 2 , t)e�(k1/2�k2/2�k )2/k .
At finite N, the number of sequences in each group Nφ(x)(5)
is a finite integer and, naturally, cannot be less than one.

Solitary wave solution: A partial solution of Equation Small groups of sequences near the edges of the solitary
4 describes a steady process in which the distribution wave are destroyed by random drift, i.e., by random sam-
function assumes an almost constant profile in k, as pling of genomes that give progeny for the next gener-
given by ation. As a result, the wave can end at a finite negative

x � x0 : at x � x0 , φ(x) � 0. The value x � x0 corresponds
f(k , t) � φ(k � k(t)), R(k , t) � 
(k � k(t)). (6) to the best-fit sequences present in a population (Figure 2).

We assume that, at sufficiently large N, random driftThe “solitary wave” solution, Equation 6, describes grad-
can be neglected for groups of sequences with k locatedual reversion of mutant loci (accumulation of beneficial
far from the wave edges and that Equation 9 holds inmutations) on sufficiently long timescales. Substituting
the ensemble-average sense. This assumption is equiva-Equations 6 into Equations 4 and 5, we get
lent to neglecting the correlation function ��f(k , t)�k�,
where �f(k , t) and �k are random fluctuations of the cor-V

dφ
dx

� �sxφ(x) � r[
(x) � φ(x)], (7)
responding quantities, in the right-hand side of Equa-
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tion 3. Results of the Monte Carlo simulation show the totics (Equation 15), because it is valid at any x � x0 . Al-
together, the function φ(x) has four important charac-accuracy of this approach for the average values of φ(x),

V, and w 2 up to N as small as 100–1000 (Figure 3 and teristic intervals in x : (i) x � x 0, where it is zero; (ii)
0 � x � x0 � �x (Note 5), where Equation 19 predictsFigure 4, C and F).

At finite x0 , the integral in Equation 9 does not need φ(x) � x � x0 ; (iii) the central interval |x0 | � |x | � �x ,
where φ(x) is given by the Gaussian asymptotics, Equa-to converge at x � �∞, and values of w 2 � k are allowed.

As we show below, (i) the left tail of distribution φ(x) tion 15; and (iv) x � |x0 |, where φ(x) � 
(x), Equation 17.
Equation 18, obtained within a deterministic approach,is long, |x0 | � w, and (ii) in most of the interval x0 �

x � |x0 |, the integral in x� in Equation 9 is contributed relates the cutoff length, |x0 |, to the standard deviation,
w (that also defines the solution speed, Equation 11).from a small region near the edge, x � x0 � �x (appen-

dix, Note 5). Therefore, in this interval of x, Equation 9 To obtain a second equation for the two parameters,
we have to consider stochastic effects at the high-fitnesstakes a Gaussian form,
edge of the wave.

φ(x) �
1

√2�w
e�((x�b)2/2w2 ), w 2 � k, |x0 | � |x | � �x, �x � x0 , Stochastic high-fitness edge: The extension of the

high-fitness edge in time is illustrated in Figure 2. We
(15) use a two-variant argument considering a clone forming

near the edge as a minority variant with an effective√2�b
w �

∞

x0

dx� · 
(x�)e (x��b)2/2w2
� 1, (16) selection coefficient S � s |x0 | and the other genomes

in the population as the majority variant. Recombina-
tion creates a single copy of a genome in a group beyondwhere the second equation is the normalization condi-
the edge, x � x0 , with a small probability of rN
(x)tion for φ(x), and �x is defined in the appendix, Note 5.
per generation. As we show below in this subsection, atThus, parameter w represents the standard deviation of
sufficiently large N, we have |x0 | � √k . Most genomessequences in k, i.e., a characteristic width of the wave
outside of the wave are produced in a small region nearprofile φ(x). It is smaller than the Poisson value √k due
the edge with a width � given byto linkage.

Substituting Equation 15 into Equation 8 and inte- � � |d ln 
/dx |�1
x�x0

� k/|x0 | � |x0 |. (21)
grating over x1 and x2 , for the recombination-gain func-
tion we obtain The total rate of genome production, in this region, is

G � rN
(x0)�. After a sequence is produced, it will,

(x) �

1

√�(w 2 � k)
e�(x�b)2/(w2�k), w 2 � k , (17) most likely, become extinct in a few generations. If it

survives and grows into a clone exceeding a characteris-
tic size, fN � 1/S, which event has a probability �Swhich is valid at any x. [We can use asymptotics (15)
(Rouzine et al. 2001), the clone will be amplified byfor φ(x), because the integrals in x1 and x2 in Equation
selection and become a part of the solitary wave. The8 converge at |x1(2)| � w � |x0 | (appendix, Note 5)].
average time to seeding a successful clone isThe edge position x0 can be expressed in terms of w

using the normalization condition, Equation 16. Substi-
t seed � 1/(GS) �

1

Nsr√k
e x 2

0 /(w 2�k ), (22)tuting Equation 17 into Equation 16, expanding the
logarithm of integrand in Equation 16 linearly in x� �
x0 (Note 5), and integrating in x�, we obtain where we have substituted Equation 21 for � and Equa-

tion 17 for 
(x0) into the expression for G . On the other
hand, the time to successful seeding must be equal to thex 2

0 � k
2p(1 � p)

1 � p
ln�s√k(1 � p)

r 	, r � s√k(1 � p),
time in which the solitary wave moves by �, as given by(18)

t seed � �/V � 1/(|x0 |sp), (23)where we have neglected logarithmic factors in the argu-
ment of the large logarithm. where we used Equations 11 and 20 for V and Equation 21

In the low-fitness tail, x � |x0 |, the integral in Equation for �. From Equations 22 and 23, we obtain the desired
19 is contributed mostly from the region x� � x, and second equation for x 2

0 ,
φ(x) decays like 
(x) given by Equation 17, i.e., more
slowly than it does at 0 � x � |x0 |. x 2

0 � k(1 � p) ln(Nr/p), (24)
Substituting Equation 17 into Equation 9 yields

where we have neglected a logarithmic factor in the
argument of the large logarithm. Within the same accu-φ(x) �

b

k 3/ 2 p√�(1 � p)
e�(x�b )2/ 2kp �

x

x0

dx� · e (1�p )(x��b )2/ 2p(1�p )k,
racy, solving Equations 18 and 24 for x 2

0 and p, we arrive
at Equation 1 that represents the main result of this work.(19)

The validity of the above derivation is limited, in par-
p � w 2/k , 0 � p � 1. (20) ticular, by the condition Nr � 1. At Nr � 1, from Equa-

tions 24 and 21, we have |x0 | � √k , � � |x0 |, so that ourEquation 19 is more general than the Gaussian asymp-
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assumption that new clones are generated near the high- Here dx�/V � dt is a small interval in time, the expres-
sion in brackets is the rate at which recombination gen-fitness edge no longer holds. That a new clone is gener-

ated at a large distance from the wave implies that the erates genomes, and S(x) � s |x | is the survival probabil-
ity of a clone given by the effective selection coefficient.old wave becomes extinct before it incorporates the new

clone. Therefore, the new clone takes over the entire pop- Using Equations 21, 22, 23, and 17, we get
ulation. Because self-recombination of a single clone
does not make any new genomes, the wave stops. We G(x) �


(x)

(x0)�

�
1
�

e (x 2
0�x 2)/k (1 � p ). (27)

conclude that a critical point in Nr exists, (Nr)c � 1,
below which the speed and the width of the wave are If G(x) � 1, parameter 1/G(x) yields the average dis-
exactly zero. Interestingly, Equation 1 that does not need tance in k between clones. We observe that clones tend
to be correct at Nr � 1, nevertheless, extrapolates to to accumulate near the wave center x � 0, where the
V � 0 at Nr � 1. recombination gain 
(x) is maximum. The total num-

Solitary wave consists of sparse clones: The above ber of clones is given by
derivation may appear inconsistent: the main part of
the distribution f(k , t) is treated in the ensemble-aver-

M tot � �
x

x0

dxG(x) �
1


(x0)�
�

Nr
p

, (28)age sense, as a continuous function in k , while the high-
fitness edge is treated discontinuously and stochastically.

where we used Equations 22 and 23.In fact, each group with a given number of mutations is
On the basis of Equations 25 and 28, we observe that,created as a clone (a group of identical sequences), at

at Nr � 1 [within accuracy of ln(s/r)], the numbersa distance from the high-fitness edge k � x0 � k � 1.
of all clones are on the order of 1. At this point, as weTherefore, at any one time and in any realization, an
discussed, the wave degenerates into a single clone andactual distribution of genomes over k is not continuous
stops. At Nr � 1, we have M tot � M lar � 1; i.e., the dis-but consists of separate peaks representing clones, with
tribution f(k , t) consists of a moderately large numbergaps between them (Figure 4, computer simulation).
of tall peaks corresponding to edge-born clones andBecause clones are positioned randomly in k, as long as
more numerous smaller peaks corresponding to clonestheir total number is large, they average out into a con-
born inside the wave. The clone structure defined bytinuous dependence (Figure 4, D and F). The form of
Equations 25–28 can be used to measure experimentallythe average simulated wave profile agrees with the ana-
the population size and other parameters.lytic result with good accuracy, which demonstrates con-

Reversion of an almost uniform population: In thesistency of our approach.
previous sections, we considered the case when less-fitNow we make some useful estimates pertaining to the
alleles are sparse and randomly located in the genome.clone structure of the wave. We start by estimating the
In an experiment on drug-resistant strain evolution, annumber of clones that are created near the edge, x �
initial population consists of identical sequences withx0 . Because the growth of a clone, after it passes the
deleterious alleles at k0 loci, with a small admixture ofstochastic bottleneck, is exponential in time, these edge-
sequences carrying a beneficial allele at one of theseborn clones are expected to grow to much larger sizes
loci. The average frequency of a beneficial allele at athan the recombinant clones created inside the wave.
locus, f0 , is assumed to be in the range 1/(Ns) � f0 � 1,The average distance in k between the large clones is
so that it exceeds the size of stochastic bottleneck, andthe same as the initial distance of a new edge-born
random drift is not important for these groups of se-clone to the edge, ��, Equation 21. Therefore, the total
quences. One the other hand, because 1 � f0 � 1, po-number of large clones within a wave is given by
sition of deleterious loci in different genomes mostly

M lar � |x0 |/� � ln(Nr), (25) coincide, and the previous consideration based on
Equation 5 does not apply directly.where we used Equations 24 and 21 and neglected a

Let us consider k0 clones with a beneficial allele atlogarithmic factor inside a large logarithm.
one of k0 loci that are deleterious in other sequences.The second estimate is of the average number of all
The process of reversion consists of two stages: at theclones at location x, G(x). A clone with k mutations can
first stage, these sequences are amplified by selectionbe generated in a time interval [t 1 , t 2] given by the con-
over a timescale (1/s)ln[1/(k0 f0)], until k0 clones shareditions k � k(t 1) � x0 , k � k(t 2) � x. By analogy with
population equally, so that k � k0 � 1. At the secondthe derivation under Stochastic high-fitness edge, G(x) is
stage, recombination of these clones drives the reversiongiven by
process by collecting beneficial variants within a ge-
nome. Because recombination occurs by multiple and

G(x) � �
x

x0

dx�

V
[rN
(x�)]S(x�) random template switches, positions of the few benefi-

cial alleles among k0 possible positions will become ap-
proximately random after several rounds of recombina-�

rN
V(d ln 
/dx)


(x)S(x). (26)
tion and amplification. Therefore, while beneficial
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alleles are few, k0 � k � k0 , we can use Equation 5 for rected for the absence of self-recombination and nor-
the recombination gain function 
, in which k is substi- malized to 1. All groups with �n(k , t � 1)� smaller than
tuted by k0 � k . As time goes on, the wave moves toward a set small value nemp � 1 were declared “empty in the
smaller k , and a good proportion of formerly mutant next generation.” Then, we generated new numbers of
loci will become better fit, k0 � k � k0 . Therefore, we sequences for nonempty groups, n(k , t � 1), by one of
have to use a more general replacement, two methods.

i. If the average size of a group, �n(k , t � 1)�, wask → (k0 � k)k
k0

, (29)
smaller than a set number nstoch � 1, and the total frac-
tion of such groups was less than a set value ftot � 1, we

that corresponds to the random distribution of k bene-
considered these groups “stochastic” and generatedficial alleles over k0 available positions.
pseudorandom Poisson numbers n(k , t � 1) with theIn the previous case k/k0 � 1, parameter k enters the
averages �n(k , t � 1)�. The remaining large groupsproblem only through the function 
 (Equation 5). There-
were treated deterministically by setting n(k , t � 1) �fore, all the previous results apply after the replacement, �n(k , t � 1)�.Equation 29.

ii. If the total fraction of the stochastic groups exceeded
ftot , we treated all nonempty groups stochastically, as
follows. We generated N random points in the inter-COMPUTER SIMULATION
val [0, 1] separated into subintervals, each interval

Thus, we obtained analytic expressions for the ensem- corresponding to a group k, with its width propor-
ble-average properties of an evolving population. To test tional to �n(k , t � 1)�. The new number n(k , t � 1)
these results further, and to connect them to stochastic was set to be the number of random points falling
evolution in a separate realization, we undertook a Monte within interval k . We checked that choosing nemp �
Carlo study. We considered a population with a small 10�4–10�5, nstoch � 500–1000, and ftot � 0.2 did not
frequency of deleterious alleles. We have used the same change the results significantly.
approach to recombination as described above (assum-

The method described above was designed to en-ing random distribution of alleles within a genome),
hance the speed of the algorithm without a significantwith one correction. To account for the fact that recom-
loss in accuracy. We were able to simulate populationsbination within a clone has zero effect, we assumed that
with k as large as 500 and arbitrarily large N.a group with k mutations does not recombine with itself.

After each Monte Carlo run, we calculated the timeThe approach is valid, because k and, therefore, the
dependence of the average mutation number k(t), thewidth of the wave w given by Equation 1 are large (ex-
logarithm of the accumulation rate ln V(t) � ln[k(t) �cept near the critical point, where p � 1/k). At moder-
k(t � 1)], the normalized average variance w2(t)/k(t),ate or small Nr, the wave in each realization consists of
and the centered wave profile φ(x) � n(k , t)/N, x �rare groups with sparse k (see section above; Figure 3).
k � round(k). Then, we averaged the three values overSparsity of groups implies automatically that most of
a time interval, such that k0 � k(t) � 1.2k0 , where k0them represent separate clones that grew from infre-
was a “sampling” mutation number, and then over 10–40quent recombinants. The probability that an isolated
computer runs. We verified that using a shorter timegroup consists of, e.g., two clones is as small as 1/�k ,
interval for averaging did not affect our results, because,where �k is the average spacing between two neighbor
on the average, ln V and w 2(t)/k(t) changed slowly ingroups. Therefore, in this case, the exclusion of self-
time. Due to the additional averaging over the timerecombination of a group is approximately identical to
interval, the modest number of random runs (10–40)exclusion of self-recombination of a clone. As N de-
was sufficient to ensure, for most points in N, a smallcreases, the number of clones becomes smaller, and
statistical error for the estimate of the average value ofthe correction becomes more and more important. In
p (Figure 3, �0.1). To minimize the transitional periodcontrast, at very large Nr, the wave consists of groups
to a steady-moving wave, we used the analytic result,densely situated at adjacent k . The correction, in this
Equation 15, as the initial condition f(k , 0). We verifiedcase, is incorrect, because each group consists of many
that choosing the initial wave center at k � k st � (5 �clones; however, it is also small, because the probability
10)k0 was sufficient to decrease the remaining effect ofthat a recombining genome recombines with another
initial conditions below the statistical error.genome with exactly the same k is small, �1/w � 1.

Examples of simulated dependences f(k , t) and k(t)In our simulation, we stored the (integer) number
are shown in Figure 4; we discussed them previously.of sequences with k mutations at each generation t,
The ensemble-average reversion rate Vav � e � lnV � and then(k , t) � Nf(k , t). At each generation change, we calcu-
wave width square w 2

av � �w 2/k�k0 , normalized to thelated the expected value �n(k , t � 1)� for all k � 1, . . . ,
respective deterministic (independent-loci) values sk0L, using the deterministic equation, Equation 3, with the

recombination gain function R(k , t), Equation 5, cor- and k0 for different values of model parameters, are
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presence of selection: general theory and application to virology.shown in Figure 3. In agreement with the analytic theory
Microbiol. Mol. Biol. Rev. 65: 151–185.

(Equation 11), the values of Vav/(sk0) and w 2
av/k0 are

Communicating editor: H. G. Spencervery close. We also observe that simulation confirms the
existence of a critical point in Nr, where the reversion
speed becomes zero, and that the analytic dependence

APPENDIXV(N) (Equation 1) is reproduced with a sufficient accuracy
to be practically useful. At large recombination parame- Note 1: In Equation 4, we assumed that, for all rele-
ters, r � s√k , a steep increase in Vav/(sk) from 0 to 1 vant k , s |k � k | � 1. Because the far low-fitness tail is
occurs at Nr �30 (Figure 3). not essential, it is sufficient to check this condition at

Conclusion: We have obtained an asymptotically accu- the high-fitness edge, k � k � x0 . Using Equation 24
for x0 , we obtain the validity conditionrate expression for the accumulation rate of beneficial

mutations for the case where small amounts of benefi-
ln(Nr) � 1/(s 2k). (A1)cial alleles exist in the beginning, and mutation can be

neglected. On the basis of our findings, we predict that Note 2: In Equations 4 and 7, we assumed that f(k , t)
depletion of an HIV population by antiretroviral therapy can be approximated with a function continuous in t ,
below a critical size will suppress accumulation of drug- which implies V |d ln φ/dx | � 1. At negative x, |d ln φ/dx |
resistant mutations. When beneficial alleles do not pre- reaches its maximum at x � x0 (Equation 15), where
exist in a population, mutation and recombination are we have
expected to work together, and alternative formalism has
to be developed. We plan to carry out this task elsewhere. V 
d ln φ

dx 

x0

� psk
|x0 |
w 2

� s√k ln(Nr), (A2)
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Note 3: In Equation 5, we assumed that the solitary
wave is narrow compared to the distance from the ori-
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|x0 | � |x | � �x, where �x � pk/[(1 � p)|x0 |], the inte-r � s√k , ln(Nr) � �s√k
r 	

2

ln
s√k

r
. (A7)

gral in Equation 19 is mostly contributed from a region
x� � x0 � �x. Using Equation 18, we have �x/|x0 | �We also assumed that, over most of the interval |x | �
ln�1(s√k(1 � p)/r) � 1, which, again, yields inequali-|x0 |, the integral in x� in Equations 9, 16, and 19 is
ties (A7).contributed from a small region, x� � x0 . Indeed, at


