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We present a statistical mechanics approach for the prediction of
backtracked pauses in bacterial transcription elongation derived
from structural models of the transcription elongation complex
(EC). Our algorithm is based on the thermodynamic stability of the
EC along the DNA template calculated from the sequence-depen-
dent free energy of DNA–DNA, DNA–RNA, and RNA–RNA base
pairing associated with (i) the translocational and size fluctuations
of the transcription bubble; (ii) changes in the associated DNA–RNA
hybrid; and (iii) changes in the cotranscriptional RNA secondary
structure upstream of the RNA exit channel. The calculations
involve no adjustable parameters except for a cutoff used to
discriminate paused from nonpaused complexes. When applied to
100 experimental pauses in transcription elongation by Escherichia
coli RNA polymerase on 10 DNA templates, the approach produces
statistically significant results. We also present a kinetic model for
the rate of recovery of backtracked paused complexes. A crucial
ingredient of our model is the incorporation of kinetic barriers to
backtracking resulting from steric clashes of EC with the cotrans-
criptionally generated RNA secondary structure, an aspect not
included explicitly in previous attempts at modeling the transcrip-
tion elongation process.

cotranscriptional folding � statistical mechanics

Transcription is the first step in protein synthesis and the step at
which most regulation of gene expression takes place. The

transcription process is carried out by RNA polymerase (RNAP)
(1–3), a multisubunit molecular motor, the basic structure of which
is conserved from bacteria to eukaryotes (4). Over the past decade
a great deal has been learned about the structure of RNAP,
particularly in the context of yeast (5, 6), thermophilic bacteria (7,
8), and Escherichia coli (9–12). Given the high degree of structural
conservation of RNAP, and the synthesis of structural, biochemical,
and kinetic information from bacteria and yeast, we are able to
begin building mechanistic models of transcription valid across
species.

This article focuses on the general question of whether our
current knowledge is sufficient to produce predictive quantitative
models of transcription. In particular, we consider the possibility of
predicting pause positions where RNAP halts either reversibly
(pauses) or irreversibly (arrests) (13). Pauses, which are character-
ized by highly variable durations and efficiencies (3), are an
ubiquitous aspect of transcription elongation and are known to play
regulatory roles particularly in synchronizing transcription with
other biological processes, such as translation in bacteria (14),
factor-dependent and factor-independent termination (15, 16), and
interactions with regulatory proteins (17). Even though pauses are
not associated with a consensus sequence, pause positions along the
template are strongly sequence-dependent. This sequence depen-
dence is encoded indirectly, through the effect of base-pairing
nucleic acid interactions on the motion of RNAP along DNA.

The thermodynamic properties of transcription elongation have
been studied in the pioneering articles of von Hippel and collab-
orators (18, 19) (see also ref. 3 and references therein). von Hippel

and collaborators have also shed light on the kinetics of RNA
synthesis (20) and have discussed the kinetics of pausing in the
context of factor-mediated antitermination (21). Although this
body of work has had significant impact on our understanding of
transcription in general and of transcription elongation in particu-
lar, no attempt at a quantitative prediction of transcriptional
pausing has appeared in the literature until the recent article of Bai
et al. (22). This work sought to address the problem of pause
prediction within a simplified kinetic model ignoring all effects of
RNA folding. Although a nontrivial step forward, the model
presented in ref. 22 appears to have limited predictive power (see
below).

The limited success in predicting transcriptional pauses under-
scores the complexity of the problem. Both transcription elongation
and pausing are intrinsically nonequilibrium, kinetic phenomena
that are affected by both the transcribed DNA sequence and the
folding of the upstream RNA. Although the free energy associated
with RNA folding is included in discussions of the thermodynamics
of RNA synthesis (20), the role of slow folding–unfolding kinetics
in the regulation of transcription elongation and pausing have been
ignored up to this point. The two principal aims of this article are
(i) to critically evaluate the capability of the thermodynamic model
to predict transcriptional pausing both in the presence and in the
absence of RNA folding effects and (ii) to compare the thermo-
dynamic predictions with those of a highly simplified kinetic model
that incorporates the qualitative effect of kinetic barriers induced
by RNA folding.

Model of Transcription Elongation
The basis for our quantitative analysis is the structural and mech-
anistic model of the elongation complex (EC) (3, 5, 10, 23),
sketched in Fig. 1. The EC consists of a melted DNA duplex region
of 12–14 nt (transcription bubble) enclosed within RNAP and
stabilized by interactions with the enzyme and with the last 8 or 9
nt of the synthesized RNA transcript (the DNA–RNA hybrid). The
RNA transcript upstream of the hybrid exits RNAP via the ‘‘RNA
exit channel’’; whereas the duplex DNA downstream of the bubble
threads through a ‘‘sliding clamp’’ in the enzyme, which holds on
tightly to the DNA while allowing for smooth sliding during
transcription elongation. The ‘‘secondary channel’’ provides the
access of the incoming nucleoside triphosphate (NTP) to the active
center where the catalysis of phosphodiester bond formation takes
place, resulting in the elongation of the RNA transcript by one
nucleotide. Immediately after the transcript elongation step the EC
is in the so-called ‘‘pretranslocated’’ state (translocational state 0)
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in which the 3� end of the transcript overlaps the catalytic site. The
next incorporation step requires that RNAP translocate forward by
one base pair, into the ‘‘posttranslocated’’ state (translocational
state �1), making the catalytic center available for the binding of
the next NTP.

There are two basic proposals for how translocation occurs: the
‘‘powerstroke’’ mechanism makes use of the energy released during
phosphodiester bond formation to drive translocation between
states 0 and �1 (24, 25); whereas in the ‘‘Brownian ratchet’’
mechanism bidirectional translocational steps occur stochastically
as a result of reversible thermal (Brownian) motion of the poly-
merase along DNA (22, 26–28). In the latter case the phosphodi-
ester bond formation rectifies the motion and resets the system into
a state with a longer transcript length, poised to incorporate the
next NTP. In this article we adopt the Brownian ratchet picture,
recently supported by single-base-pair-resolution single-molecule
experiments (29).

According to this latter picture, between incorporation steps,
RNAP can undergo further reverse translocation (‘‘backtracking’’)
accessing translocational states �1, �2, �3, . . . (see Fig. 1) and can
potentially undergo further forward translocation (‘‘hypertranslo-
cation’’) accessing translocational states �2, �3, �4, . . . During
both backtracking and hypertranslocation the catalytic center of the
enzyme looses contact with the 3� end of RNA, and the EC leaves
the productive elongation pathway. Both motions are believed to be
involved in transcription regulation: it has been proposed that
hypertranslocation provides a mechanism for intrinsic termination
of transcription (30), whereas backtracking plays a role in control-
ling transcription fidelity by affecting the speed of elongation and
facilitating the editing action of cleavage factors (31).

The motion of RNAP along the nucleic acid scaffold can be
visualized in terms of thermally induced transitions between free
energy minima associated with translocational states, n, along the
template, for a fixed length of the RNA transcript, m. The free
energy difference between two neighboring translocational states,
n and n � 1, is associated with (i) the breaking the DNA–DNA base
pair in front and annealing the base pair behind the moving bubble,
(ii) the change in the RNA–DNA hybrid base-pairing, (iii) the
folding of the RNA transcript protruding out of the exit channel (1,
3, 18), and (iv) the possible change in RNAP–DNA and RNAP–
RNA interactions.

The above picture defines a free energy landscape that, for a
strictly uniform sequence [e.g., poly(A)], would be flat for positions
upstream of position 0: in this case the energy cost in breaking the
base pair in the direction of motion is exactly compensated by
the energy gain from annealing the base pair at the other end of the
bubble while the hybrid energy remains unchanged [note that for a
poly(A) sequence there is no folding of the RNA transcript]. On the
other hand, the cost of shortening of the hybrid associated with each
forward translocation step results in an uphill free energy profile
downstream of position 0. Clearly, for real biological DNA tem-
plates the sequence dependence profoundly affects the free energy
landscape. In particular, the free energy contributions from (i)–(iii)
above involve the nucleic acid duplex stabilities, which are highly
sequence-dependent (32, 33); whereas the contribution from (iv)
above includes the contacts of nucleic acid backbones with RNAP
and is not expected to be strongly sequence-dependent.

Equilibrium Modeling of Transcriptional Pausing
In this article we will focus on the identification of backtracked
pauses [also referred to as class II pauses (34)], i.e., pauses resulting
from the backtracking of RNAP at positions along the sequence
corresponding to a particularly weak hybrid. The model presented
here, although sufficient to identify potential sites for hairpin-
induced (class I) pauses (34), is too simplistic to determine their
stability because these pauses are expected to involve sequence-
nonspecific interactions between the RNA fold and subunits of the
enzyme (35).

Strictly speaking, achieving equilibrium at each position along a
template (for a fixed transcript length) requires a sufficiently long
time so that RNAP has a chance to equilibrate over all transloca-
tional states while, at the same time, the nascent RNA transcript is
able to reach its lowest free energy folded conformation for each
and every translocation position. In such an idealized equilibrium
situation, RNAP would pause at all positions corresponding to deep
minima of the free energy landscape upstream of translocational
state 0. In practice, given the slow unfolding rates of RNA second-
ary structure with respect to typical translocation rates (see Kinetic
Modeling of Transcriptional Pausing), reaching equilibrium at each
translocation position is unlikely to occur on experimentally rele-
vant time scales. In this case, RNAP is only expected to backtrack
until it encounters a fold of the RNA secondary structure, which
provides a kinetic barrier to further backtracking. Moreover, elon-
gation proceeds without pausing through the shallower minima of
the free energy landscape, implying that in a real experiment one
should observe fewer pauses than predicted by a strict equilibrium
analysis.

To identify backtracked pauses from an equilibrium calculation,
we have formulated a minimal set of heuristic rules that mimic the
fact that in real experiments RNAP only equilibrates over a finite
region in the vicinity of translocational position 0. Our working
hypotheses are as follows: (i) candidate backtracked pause positions
correspond to backtracked minima of the free energy profile; (ii)
consecutive pauses resulting from the repeated backward shift of a
particular pause by 1 nt with each transcript elongation step are
clustered together and counted as a single pause [we note that
criterion (i) implies that a cluster grows until a new minimum
appears closer to position 0]; and (iii) a free energy minimum

Fig. 1. Model of the EC. Shown is a schematic representation of the EC, in a
state labeled as (m, n, b) � (m, n, (x, h, y)). The figure shows three transloca-
tional states, n � �1, n � 0, and n � �1, for a fixed transcript length of 16; at
position 0 the 3� end of RNA occupies the active center of the enzyme (the blue
dot); x and y indicate, respectively, the number of unpaired DNA bases
upstream (to the left) and downstream (to the right) of the hybrid of length
h, and thus the size of the bubble is given by sb � x � h � y. In averaging over
the bubble configurations, x, h, and y were varied between 2 and 5, 8 and 9,
and 1 and 2, respectively, resulting in a variation of sb from 11 to 16.
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satisfying both (i) and (ii) is classified as a pause if the time of
recovery of an EC backtracked to that position is longer than a
cutoff, to be determined by optimizing the statistical significance of
the results.

Statistical Mechanics Approach. We are now in position to discuss
the calculation of the free energy profile as a function of position
along the template. The state of the EC is labeled by m, the
transcript length; n, the translocation position; and b, the bubble
configuration. The equilibrium assumption implies that the
probability of a state (m, n, b) of the EC is given by the
Boltzmann distribution,

Pn,b
�m� � Zm

�1e�
Gm,n,b

kBT ; Zm � �
n,b

e�
Gm,n,b

kBT , [1]

where kB is Boltzmann’s constant, and T is the temperature. The
bubble configuration b � (x, h, y) is described in terms of x(y),
the number of unpaired DNA bases upstream (downstream) of the
hybrid of length h, resulting in a bubble of size sb � x � h � y (see
Fig. 1). Gm,n,b, the free energy associated with the state (m, n, b),
can be decomposed as

Gm,n,b � Gm,n,b
DNA�DNA � Gm,n,b

RNA�DNA � Gm,n,b
RNA�RNA � GNS.

[2]

Here, DNA–DNA, RNA–DNA, and RNA–RNA labels, respec-
tively, the sequence-dependent free energy cost in forming the
transcription bubble of size sb, the free energy of the RNA–DNA
hybrid and the free energy associated with the secondary structure
of the RNA upstream of the exit channel. GNS incorporates all
sequence nonspecific interactions of nucleic acids with the enzyme
and is taken to be a constant in the current calculation.

Multiple Bubble Configurations. Previous models of transcription
have used a fixed-length transcription bubble (12–17 bp) and a
fixed length RNA–DNA hybrid (8–12 bp) (18, 19, 22). These
assumptions are unjustified from a physical point of view: in
principle, both the size of the bubble and the size of the hybrid
can change spontaneously as a result of thermal fluctuations with
probabilities that decrease exponentially with the associated free
energy cost. The notion of multiple bubbles is consistent with
changes in the size of the transcription bubble recently detected
experimentally during transcription initiation (R. H. Ebright,
personal communication). To account for the variation in bub-
ble�hybrid size, we have averaged over 16 different bubble
configurations (see Fig. 1) corresponding to bubble lengths
11–16 nt and a hybrid of 8–9 nt. The results are insensitive to the
choice of the upper bound on the bubble size (because larger
bubbles appear with exponentially small probability), and all
other bounds are consistent with the constraints imposed by the
structural model. It then follows from Eq. 1 that the equilibrium
probability for an EC at position n, for a fixed transcript length
but including multiple bubble configurations, is given by

Pn
�m� � �b Pn,b

�m� � Zm
�1e�

Gm,n
eff

kBT . [3]

Thus, in the presence of bubble and hybrid size fluctuations the
pause positions will be identified from the minima of the effective
free energy, Gm,n

eff � �kBT[ln Pn
(m) � ln Zm]. The DNA–DNA

(bubble) and RNA–DNA (hybrid) contributions to Gm,n
eff are cal-

culated by using a nearest-neighbor thermodynamic model for
DNA–DNA and DNA–RNA duplex stabilities (at 37°C) using
parameters from ref. 32, whereas the RNA–RNA (folding) con-
tribution is obtained from the VIENNARNA package (33). The
number of hypertranslocated configurations is bounded by the
length of the hybrid, whereas the backtracked ones are fixed at 9,

to account for paused complexes known to backtrack by �6 nt (36).
Increasing backtracking beyond 9 nt does not affect our results in
the presence of RNA folding (see below). In addition, we allow the
entire RNA transcript beyond the exit channel to fold.

Criteria for Pausing. As already implied above, our pausing crite-
rion is based on the intuitive notion that, for transcript lengths
associated with transcriptional pauses, the incorporation rate of
the next nucleotide drops substantially below the maximum
elongation rate along the template. The steady state elongation
rate of a transcript of length m to the next transcript length, m �
1, for a particular sequence and NTP concentration, [N], is given
by kE

m � [N]�([N] � Kd
eff(m)) (taking the PPi release rate, �P �

1), with an effective dissociation constant,

Kd
eff�m� � Kd� � 1 � e

�Gm,�1
eff �Gm,0

eff �

kBT � e
�Gm,�1

eff �Gm,�1
eff �

kBT

� e
�Gm,�1

eff �Gm,�2
eff �

kBT � e
�Gm,�1

eff �Gm,�3
eff �

kBT � …�
� � e�

�Gm,�2
eff �Gm,�1

eff �

kBT � e�
�Gm,�3

eff �Gm,�1
eff �

kBT

� e�
�Gm,�4

eff �Gm,�1
eff �

kBT � … � e�
�Gm,�8

eff �Gm,�1
eff �

kBT � 	 .

[4]

To account for the RNA-folding kinetic barriers resulting from the
finite time scales accessible experimentally, we restrict the back-
tracked states for each transcript length in Eq. 4 to the sequence
downstream of the position where RNAP first clashes into a RNA
secondary structure. At these positions, further backtracking of
RNAP incurs a penalty for breaking one or more base pairs of the
fold. This penalty leads to a decrease in the backtracking rate by at
least a factor of 10 corresponding to breaking of one or more
RNA–RNA base pairs [with binding energy E, 2 kBT 	 E 	 5.75
kBT (33) per base pair].

Identifying whether RNAP pauses at a particular transcript
length, m, on a given template involves calculating the maximum
elongation rate over all m, maxm(kE

m), and counting the particular
m as a pause site if the elongation rate at that transcript length is
sufficiently slow, kE

m 	 � maxm(kE
m). [Note that, as in the gel

experiments used to identify transcriptional pauses (36–38), a pause
site refers to the transcript length for which pausing occurs, without
reference to the precise backtracked position along the template.]
The cutoff parameter, � (0 	 � 	 1), is determined by optimizing
the statistical significance of our predictions over all experimental
templates.

Statistical Significance. Evaluating the statistical significance re-
quires optimizing some appropriate combination of conven-
tional statistical measures: the numbers of true positives, TP
(correctly predicted experimental pauses); false positives, FP
(predicted pauses not seen experimentally); and false negatives,
FN (missed experimental pauses). Typical choices are the pos-
itive predictive value, PPV � TP�(TP � FP) (the fraction of
predicted pauses that are correct), and the sensitivity, � �
TP�(TP � FN) (the fraction of experimental pauses correctly
identified). Although the performance of the algorithm could be
optimized, for example, by maximizing PPV and � simulta-
neously, we find it more transparent to optimize and plot a single
statistical measure of performance. In particular, we choose to
minimize the proportion of incorrect to correct predictions, �1 �
(FP � FN)�TP. We have also examined a number of other
measures of performance, such as �2 � PPV � � (see the
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supporting information, which is published on the PNAS web
site), all of which yield qualitatively similar results. To under-
score the statistical significance, we compare our predictions for
four models (see below) with the corresponding results obtained
by randomly assigning the same number of pause sites as found
experimentally, from a discrete uniform distribution along each
template. Finally, we demonstrate that pause patterns are en-
coded in a sequence-specific manner, by comparing our results
with those obtained when our algorithm is applied to random-
ized sequences with the same length and AT�GC content as our
templates.

Equilibrium Results. The model was used to analyze 10 templates
with a total of 100 known pauses (see the supporting informa-
tion): seq10 (36), seq11, seq12, seq13 (V.E. and E.N., unpub-
lished work), D123, D167, D111, D112, D104, and D387 (37).
We apply our pausing criteria to four thermodynamic models
(implemented in MATLAB): (i) single bubble (2, 9, 1) without
RNA folding (SBNF), (ii) single bubble with RNA folding
(SBF), (iii) multiple bubbles without RNA folding (MBNF), and
(iv) multiple bubbles with RNA folding (MBF). Fig. 2a illustrates
the clustering of pauses as a result of the backward shift of a
particular free energy minimum with increasing transcript
length: the pause sites 32, 33, and 34 from seq11 originate from
the shift of the backtracked pause at site 32 by 1 and 2 nt,
respectively. For each of the sites 35, 36, and 37, the first free
energy minimum is located at translocation position 0, and thus

these sites are not classified as pauses. The next paused cluster
arises for site 38, in which case the first free energy minimum is
shifted backward by 2 nt.

We note that both the 
3-nt error in assigning experimental
pause sites (37) and the clustering of pauses implicit in our
algorithm result in a larger fraction of the sequence covered by
predicted pauses than observed experimentally. The error of 
3 nt
implies that meaningful results cannot involve �30% sequence
coverage by predicted pauses, a constraint that is imposed on the
optimization of statistical significance (for comparison, experimen-
tal pauses cover 12% of the sequence space). In determining the
cutoff parameters, we used Kd � 20 �M (see the supporting
information) and NTP concentrations appropriate for each exper-
imental condition (10 �M for Chamberlin’s data, 40 �M for
sequence seq10, and 30 �M for sequences seq11–seq13). Our
results correspond to cutoff fractions � � 0.0012, 0.015, 0.010, and
0.075 for SBNF, SBF, MBNF, and MBF, respectively, with the
corresponding percentages of sequence covered, 29%, 28%, 30%,
and 23%.

For illustration, Fig. 2b compares the experimental pauses (lane
1) with our best (MBF) thermodynamic result (lane 2) for template
D111. In addition, the pattern of pause clusters obtained by
applying our algorithm to a randomized sequence, with the same
AT�GC content as D111, is significantly different from those
generated from the actual template. This difference can be quan-
tified by measuring the dot-product-overlap between the two
patterns associated with sequence S (see the supporting informa-
tion), d[S, S�(S)] � S� � S���S�� � S�� � 0.30 [here S�(S) is the randomized
sequence obtained from S].

Fig. 2d shows the total proportion of incorrect to correct pre-
dictions, �1, over the 10 templates. The best results are obtained for
the case of MBF, in which case the algorithm identifies 84% of the
experimental pauses (i.e., sensitivity, � � 84%), with a PPV, quoted
as a percentage, of 68%. The PPV reflects the fact that, as alluded
to above, the algorithm predicts more pauses than are seen exper-
imentally. These results are highly statistically significant as can be
seen from a comparison with the average of many random assign-
ments of pause sites, which leads to a PPV of 32% and a � value
of 32%. The other three thermodynamic models are also statisti-
cally significant when compared with the random assignment of
pauses, with (PPV, �) for SBNF, SBF, and MBNF of (60%, 78%),
(64%, 80%), and (60%, 70%), respectively. We note that the cutoffs
for the different models span a large range of values. In particular,
progressively lower cutoff values were required to reduce the
sequence coverage to or below 30% for MBF, SBF, MBNF, and
SBNF, respectively. Because (i) the lower bound on the duration of
experimentally defined pauses is given by the time resolution, of the
order of 1 s (38), and (ii) at saturating NTP the average elongation
time is one order of magnitude lower, it follows that the elongation
rate at typical pause sites should be of the order of 10% of the
maximum rate. This is in agreement with the cutoff found for MBF,
greater (by a factor of 5) than the cutoffs for SBF and MBNF, and
substantially greater than the cutoff for SBNF, pointing to MBF as
the most physically reasonable of the four models. [It is worth
mentioning that, although for SBF and MBF the amount of
backtracking is completely determined by the sequence-dependent
positions of RNA-folding barriers, allowing backtracking beyond 9
nt (to 15 nt) in the case of SBNF and MBNF does not affect the
results provided that the corresponding cutoffs are further de-
creased below their already unphysically small values.] In addition,
the optimization of �2 (see the supporting information), and other
statistical measures we have examined, reinforces MBF as the
model with the highest predictive power. It is also worth mentioning
that the global dot-product-overlap between MBF pause patterns
on actual and randomized templates is dglobal � �S d[S, S�(S)]�10 �
0.26, lending support to the idea that pause sites are encoded by
sequence-dependent signals on DNA.

Finally, MBF reproduces the correct NTP concentration depen-

Fig. 2. Equilibrium and kinetic results. (a) Example of a pause cluster, �32 (red),
�33 (green), �34 (black) on template seq11: these are consecutive pauses back-
tracked by 2, 3, and 4 nt, respectively, resulting from the backward shift of a local
free energy minimum. (b) Illustration of pause clusters on D111 comparing
experimental data with the multiple-bubble-folding model (MBF) and kinetics
(see text). Red (yellow) indicates pause (nonpause) sites. (c) Incorporation prob-
ability curvesasa functionof timefor transcript length85onD167. In theabsence
of folding barriers, the recovery rate is slow, consistent with a backtracked pause
at position 85 (green curve); in the presence of folding barriers, backtracking is
suppressed, and the EC recovers quickly, eliminating the pause (magenta curve).
(d) Overall pause statistics on all 10 templates using the proportion of incorrect to
correct pause predictions, �1. For comparison, d includes results from kinetics (see
KineticModelingofTranscriptionalPausing), results fromtheconvergedaverage
of many random assignments of pause sites (Random), and results obtained on
our 10 templates by using the model of Bai et al. (22) (Bai I, Bai II, and Bai III).
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dence of pausing by yeast Pol III on the SUP4 template (38). It is
encouraging that (i) we predict the correct pause sites and trend in
their number (the number of experimental pauses decreases from
10 at 100 �M to 4 at 1 mM, whereas the corresponding predicted
numbers decrease from 7 to 4) and (ii) the statistical significance
increases with decreasing NTP concentration. This latter depen-
dence is as expected, because a decreasing NTP concentration is
accompanied by a decreasing elongation rate, in which case the
experimental situation should be better approximated by an equi-
librium model (D.ÓM., V.R.T., and A.E.R., unpublished work).

Kinetic Modeling of Transcriptional Pausing
As already stressed above, transcriptional pausing is an intrinsically
kinetic phenomenon strongly affected by the complex dynamics of
folding–unfolding of the RNA available beyond the exit channel.
Indeed, this view is supported by in vitro experiments demonstrating
the ‘‘antiarrest’’ effect of RNA folding in the process of transcrip-
tion by mammalian RNAP downstream of the mouse �-globin
promoter (39). Also, it is found that the transition to competent
elongation of early RNAP II transcription complexes requires the
synthesis of RNA transcripts longer that 50 nt (40); for shorter
transcripts, a significant fraction of ECs on the same DNA sequence
backtrack and sometimes even become arrested. It is appealing to
interpret the inhibition of backtracking in the case of longer
transcripts as being due to kinetic barriers induced by the slow
kinetics of cotranscriptional folding–unfolding of the upstream
RNA.

The kinetics of transcription elongation in the presence of
cotranscriptional RNA folding is tractable in two special limiting
cases: (i) in the case in which the relaxation of the RNA to its
native fold would occur faster than any of the translocation steps,
the motion of RNAP can be described as translocation between
the minima of the free energy functional in Eq. 4; and (ii), in the
opposite extreme limit, in which translocation rates are orders-of-
magnitude faster than folding rates, folding does not affect RNAP
motion. In practice there is no clear separation of time scales
between translocation and folding kinetics, and the interplay be-
tween them must be taken into account for a proper understanding
of the kinetics of transcription elongation under biologically rele-
vant conditions.

Kinetic Model. Rather than following the full kinetics of the
elongation process, we focus on the simpler problem of the
kinetics of the recovery of paused complexes: we imagine that
the EC was ‘‘walked’’ to a particular position along DNA
corresponding to a fixed value of the transcript length, at which
point the system is starved of NTP. Once RNAP has had a
chance to equilibrate fully, so that the probability of occupying
a particular position relaxes to the form given in Eq. 3, we add
the next complementary NTP and monitor the incorporation
rate. The rate of recovery of a complex equilibrated at a
particular transcript length gives a quantitative measure of
pausing at that particular position.

Our strategy is to propagate the probability for a given transcript
length according to the Master equation (41) starting from an initial
condition given by the equilibrium probability distribution in Eq. 3.
In principle, each of the components of the initial distribution,
corresponding to a different translocation position, is associated
with a different equilibrium RNA folding configuration of the
available transcript. The main idea is that, as long as we propagate
the system for a time short compared with that required for a fold
rearrangement, the forward kinetic rates will not be affected by
RNA folding, whereas backtracking against a fold involves a free
energy penalty resulting in a substantial kinetic barrier. The impli-
cation of this oversimplified picture is that unfolding of typical folds
is slow compared with a typical translocation step. This assumption
can be motivated by noting that translocation is not the rate-limiting
step in transcription elongation (42). In E. coli, elongation proceeds

at �10–35 nt�s at saturating (millimolar) NTP concentrations (43)
while the prefactor in the Arrhenius rate of unfolding of short RNA
duplexes is �30 s�1. The latter follows from the estimated half-life
of a GC-rich 10-bp RNA duplex of 100 years (44)!

The independent evolutions of the individual components of the
initial equilibrium distribution (see the supporting information) are
combined to produce the time-dependent probability from which
we can extract the elongation rate for a given transcript length. For
simplicity, we only follow the behavior of the most probable bubble
configuration, (9, 2, 1). We assume translocation rates are of the
Arrhenius form with a prefactor of 107 s�1 and barrier heights
obtained by adding 6.5 kBT to the mean of initial and final state free
energies involved in the transition (this is the average barrier height
that must be overcome for each translocation). The latter assump-
tion is consistent with the order of magnitude of the maximum
energy required to translocate RNAP by one base pair along the
template: this involves the breaking of the first DNA–DNA base
pair at the edge of the bubble in the direction of motion and
breaking of one base pair of the RNA–DNA hybrid on the opposite
side of the bubble. Our choices for kinetic rates are consistent with
published experimental data on incorporation kinetics (see the
supporting information).

Kinetic Results. Here, we only summarize the principal findings of
our simplified kinetic model and defer the details to the sup-
porting information and future work (D.ÓM., V.R.T., and
A.E.R., unpublished data). The predicted pause sites for tem-
plate D111 are shown in lane 3 of Fig. 2b and correlate well with
the experimental pause sites. The kinetic scheme yields a
sensitivity of 80% with a PPV of 65%, which match the results
(of 80% and 64%, respectively) obtained with SBF. Fig. 2d also
shows agreement between SBF and kinetics, further validating
the conceptual framework of the kinetic model. The other
important feature of our results concerns the effect of the kinetic
folding barriers on the incorporation rate and thus on the
probability of pausing. Fig. 2c compares the probabilities of
incorporating the next NTP as a function of time in the cases with
and without kinetic folding barriers for transcript length 85 on
template D167. Note that in the absence of folding barriers, the
EC at this position results in a paused complex whereas in
the presence of barriers backtracking is strongly inhibited and
the pause sites is eliminated. This emphasizes the role of RNA
folding in restricting the excursions of RNAP away from the
elongation pathway. Also, this behavior is consistent with the
reduction in the number of predicted pause sites when RNA
folding is included in the equilibrium calculations.

Comparison with Previous Attempts at Modeling
Transcriptional Pausing
Recently, Bai et al. (22) modeled transcriptional elongation kinetics
in the absence of RNA folding, in an attempt to identify pause sites
of E. coli RNAP on four different templates. Two features of the
work in ref. 22 are difficult to justify from a physical point of view:
(i) the barrier height between the pretranslocated (0) and post-
translocated (�1) states is assumed to be very small, implying that
the corresponding rate is much faster than all other rates in the
problem; and (ii) all other barrier heights derived from fitting
experimental data are unreasonably high, of the order of 40–50
kBT, comparable with the base-pairing free energy cost for the
formation of a 14-bp bubble!

We implemented the kinetic model of ref. 22 with a Monte Carlo
(MC) Gillespie simulation to check the performance of the algo-
rithm on our 10 templates using the same parameters as in ref. 22,
at appropriate NTP concentrations (see the supporting informa-
tion). Pause sites were defined by identifying those transcript
lengths for which the pause duration and pause probability fall
above thresholds, 	 and Pthresh, respectively. Even when using very
conservative thresholds, 	 � 15 s (the shortest pause duration
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quoted in ref. 22) and Pthresh � 0.95 (Bai I), the resulting PPV is
49%, with a sensitivity, �, of only 29%, to be compared with the
results (32% and 32%, respectively) obtained from the average over
random assignments of pause positions. Choosing conservative
pause duration thresholds of 0.3–0.5 s (only five times the maximum
single nucleotide incorporation time) and a reasonable Pthresh � 0.5
(Bai II) only yielded a PPV of 50% and a � of 24%. We found that
substantially improving the performance of the algorithm above the
random assignment of pauses required choosing the same pause
duration cutoffs (	 � 0.3–0.5 s) and an unreasonably high Pthresh of
0.9 (Bai III), resulting in a PPV of 52% and a � of 70%. The
corresponding values of �1 for the three cutoff choices Bai I, Bai II,
and Bai III are shown in Fig. 2d. We believe that the poor
performance of the model presented by Bai et al. is due to the low
probability of backtracking and small resulting pausing probabili-
ties, features which can be traced back to the unreasonably large
values of translocational barriers.

Discussion
We discussed two algorithms for identifying pause sites during
transcription elongation by E. coli RNAP, both of which led to
statistically significant results: the first is equilibrium-based and
associates pauses with deep local minima in the free energy profile
describing the thermodynamic stability of the EC as a function of
position along the template. The second algorithm is based on a
simplified kinetic model describing the NTP-driven recovery rate of
ECs stalled and allowed to equilibrate in the absence of NTP at
each position along the template. The essential ingredient of both
equilibrium and kinetic models is the presence of sequence-specific
kinetic barriers due to RNA cotranscriptional folding, which
strongly inhibit backtracking of RNAP on all templates. This article
relies on a strict separation of times scales between the slow
unfolding kinetics of RNA secondary structure and the rapid
translocational equilibration of RNAP. In practice, this assumption
cannot be satisfied at each position along the template; and,
moreover, kinetic folding barriers typically involve excited rather
than lowest free energy conformations of the RNA transcript, as
assumed in this work. Improving on these approximations requires

a highly nontrivial, detailed kinetic treatment. It is important to
stress that, in the absence of folding barriers or of another mech-
anism inhibiting backtracking (such as interference with the ribo-
somal translational machinery in bacteria), RNAP would backtrack
considerably. As a result the equilibrium approach (with physically
reasonable cutoffs) would predict a large number of false positives.

The other novel aspect of our equilibrium algorithm is that it
accounts for thermal fluctuations in the size of the transcription
bubble. Even though this affects the precise backtracked position of
a few specific pauses, it only has a small, qualitative effect on the
statistical significance of our results.

We expect that the sequence-specific effects discussed here are
essential in determining pause sites in vivo in both prokaryotes and
eukaryotes, particularly in the context of pausing on stable RNA
genes and untranslatable control elements. Although the current
equilibrium approach involves a single adjustable parameter (the
cutoff on the elongation rate), the quality of predictions may be
enhanced by (i) treating RNA–RNA, DNA–DNA, and RNA–
DNA base-pairing interactions as adjustable parameters, and (ii)
including simple parameterizations of the sequence nonspecific
interactions between RNAP and nucleic acids (ignored in this
work), or of interactions between RNAP and regulatory factors
present under in vivo conditions. In principle, provided that a large
amount of additional data are collected, the free parameters could
be determined (‘‘learned’’) from experiment.

A quantitative, detailed understanding of the effects of cotrans-
criptional folding on transcription elongation kinetics will clearly
require increasing the level of sophistication of both single-
molecule experiments and computational modeling methods. We
are encouraged that both the experimental and theoretical tools
(see, for example, refs. 45–47) are becoming available to address
these important problems in the near future.
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