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Abstract
Vinyl and diene derivatives of thiolactomycin have been prepared via Horner-Wadsworth-Emmons
olefination from protected 5-formyl-3,5-dimethylthiotetronic acid. Several 4-position protecting
groups and a variety of phosphonates were evaluated, with MOM protection and β-ketophosphonates
yielding the highest ratio of desired product to deformylated product.
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Thiolactomycin (TLM, Figure 1) is an antibacterial natural product with broad-spectrum
activity originally isolated from a species of Nocardia.1 The thiotetronic acid core structure
and 5-position isoprene side chain of TLM are found in several other natural products including
thiotetromycin, U68204, and 834-B1.2 Thiotetronic acids inhibit fatty acid biosynthesis in both
prokaryotes and eukaryotes and may have multiple therapeutic applications.2,3i Thus,
significant synthetic efforts have been directed at TLM and its derivatives.3 The antibiotic
activity of TLM is the result of inhibition of important fatty acid biosynthetic enzymes, the β-
ketoacyl ACP synthases.4 These enzymes catalyze a Claisen condensation between malonyl-
ACP and an acyl-CoA or acyl-ACP primer, elongating the growing fatty acyl chain by two
carbon atoms. We have explored the SAR of the 5-position of TLM against condensing
enzymes from both Escherichia coli (FabB) and Mycobacterium tuberculosis (KasA/B) and
found that the double bonds of the TLM isoprene side chain play a critical role in determining
the biological activity of this molecule.3k We therefore sought a facile synthetic route to diverse
5-vinyl derivatives of TLM.

Previous methods of preparing 5-vinyl derivatives of TLM relied upon formation of the
thiotetronic acid ring after generation of one or both double bonds of the isoprenoid chain.3e,
3i,5 These linear routes offer limited potential for synthesis of large numbers of 5-vinyl TLM
derivatives. Wang and Salvino prepared a 5-methacrolein derivative from 1 via a tandem aldol-
type reaction followed by dehydration.3a This strategy led to the synthesis of racemic TLM
but was very low yielding and allowed for only limited diversity. We have focused on the
discovery of novel synthetic routes for TLM derivatives that conserve the double bond closest
to the thiolactone ring with the opportunity for preparation of small libraries of related
compounds (Figure 1). Herein, we report new routes to 5-vinyl and 5-diene derivatives of TLM
starting from 3,5-dimethylthiotetronic acid (1).

Initially, we attempted to generate 5-vinyl derivatives using an aldol-type reaction of 13a with
a variety of aldehydes, followed by dehydration (Scheme 1). The dianion of 1, generated with
LiHMDS, was reacted with selected aldehydes to obtain secondary alcohols at the 5-position
in moderate to good yield. However, attempted dehydration of the resulting alcohols under a
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variety of conditions failed to give the corresponding 5-vinyl products. Instead, only the
retroaldol-type reaction was observed, regenerating starting material 1.

These results led us to prepare 5-formyl derivatives envisioning an olefination strategy that did
not rely upon this problematic dehydration (Scheme 1). Neither direct formylation of 1 nor
oxidation of the corresponding 5-hydroxymethyl compound were successful (not shown).3k
Oxidation of primary alcohols at the 5-position of tetronic or thiotetronic acids has been
previously reported to have been unsuccessful without first protecting the hydroxyl group at
the 4-position.3b,6 We explored three strategies for protecting the hydroxyl group of 1.
MOMCl and DIPEA were used to obtain 2,3k,7 pyrrolidine under reflux to obtain 3,8 and
Me2SO4 with nBu4NOH to obtain 4.3g,6 Hydroxymethylation of 2–4 using LiHMDS and
paraformaldehyde successfully generated 5–7.8b Oxidation of 5–7 with Dess-Martin
periodinane gave protected aldehydes 8–10.9

A variety of reaction conditions using aldehydes 8–10 were explored to generate the 5-position
double bond. Simple Wittig10 and Tebbe11 reactions with 8 failed to give 5-vinyl products,
and olefination attempts from 8 using phosphoranylidenes also did not afford the desired
compounds, despite literature precedent for the latter reaction from the corresponding tetronic
acid.6 Treatment of compound 8 or 10 with simple alkylphosphonates and nBuLi/HMPA,
failed to produce the desired products (Table 1, entries 1 and 2). Similar results were found
using α-branched alkylphosphonates (not shown). The only products resulting from the above
reactions were the deformylated products 2 and 4.

Horner-Wadsworth-Emmons (HWE) reactions using allylphosphonates were successful in
generating the desired olefins but only in the case of pyrrolidine-protected aldehyde 9 (Table
1, entries 4 and 5).12 Using diethyl allylphosphonate, trans-diene 1113 was formed in 31%
yield whereas the deformylated product 3 was formed in 45% yield (entry 4). The yield for the
reaction with the corresponding α-methyl phosphonate was dramatically lower (4%, entry 5),
and the deformylated product 3 was the major product. Likewise, aldehydes 8 and 10 yielded
only the undesired deformylated product (entry 3 and others not shown).

Both MOM- and pyrrolidino-protected aldehydes 8 and 9 gave the desired olefins with trans
geometry using stabilized β-ketophosphonates and DIPEA/LiCl (Table 1, entries 6, 7, 9, and
1114). Unexpectedly, these products were the major ones formed in these reactions. The best
results were obtained using MOM-protected aldehyde 8 with either diethyl (2-oxopropyl)
phosphonate to give conjugated ketone 14 or dimethyl (2-oxoheptyl)phosphonate to give 16.
α-Branched-β-ketophosphonates15, unfortunately, yielded only deformylation product 2 when
reacted with aldehyde 8 (entries 8 and 10).

The observation that olefination preferentially occurred using stabilized phosphonates led us
to propose a mechanism for deformylation (Figure 2). Production of the β-alkoxyphosphonate
intermediate can result in two potential outcomes: formation of an oxygen-phosphorus bond
leading to the desired olefin product (path a), or regeneration of the carbonyl bond giving rise
to a retro-aldol type reaction (path b). The latter pathway would be predicted to result in the
release of an α-formylphosphonate and protected-3,5-dimethylthiotetronic acid. In the case of
diethyl allylphosphonate, molecular ions for 3 and α-formylallylphosphonate were detected by
LC/MS, and compound 3 was confirmed by NMR. For either phosphonate, we would expect
generation of the aromatic thiophenoxide anion to contribute to the driving force for this side
reaction.16 Alternatively, allylic migration of the diethyl allylphosphonate anion would also
lead to the deformylated product.

To demonstrate the utility of this chemistry in generating derivatives of TLM with a diene at
the 5-position, we investigated the possibility of methylenation of HWE product 14. Wittig
and Tebbe reaction conditions gave the desired products, while Nysted17 and Peterson18
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methylenations did not. The Wittig reaction condition afforded a slightly lower yield than the
Tebbe condition to generate compound 17. The Tebbe reaction condition also gave the desired
product 1819 from conjugated ketone 16. Conjugated ester 15 did not generate the diene
product under the Tebbe reagent condition. MOM-deprotection of diene compounds 17 and
18 was accomplished using polymer-bound TsOH and silica gel in MeOH3k to afford diene
compounds 19 and 20.20

In summary, 5-vinyl derivatives of TLM were prepared via HWE olefination of MOM- and
pyrrolidino-protected aldehydes (8 and 9) with stabilized phosphonates. Due to the pro-
aromatic nature of these aldehydes, deformylation was always observed as the major competing
side reaction. Deformylation was minimized using β-ketophosphonates in the presence of a
mild base. 5-Position dienes were synthesized via methylenation of conjugated ketones,
demonstrating the utility of this method in generating novel thiotetronic acid analogs.
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Figure 1.
Structures of thiolactomycin and vinyl derivatives of 3,5-dimethylthiotetronic acid.
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Figure 2.
Proposed mechanism for olefination versus deformylation.
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Scheme 1.
Synthesis of protected aldehydes of 3,5-dimethylthiotetronic acid. Reagents and conditions:
(a) LiHMDS (2.2 eq), RCH(CH3)CHO; (b) 2: MOMCl, DIPEA, CH2Cl2, rt, 2 h; 3: pyrrolidine,
toluene, reflux, overnight; 4: i) nBu4NOH (aq), rt, 1 h; ii) Me2SO4, CH2Cl2, rt, 1 h; (c) i)
LiHMDS (1.1 eq), THF, 0 °C, 30 min; ii) paraformaldehyde, 0 °C → rt, 1 h; (d) Dess-Martin
periodinane, CH2Cl2, rt, 1 h.
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Scheme 2.
Terminal double bond synthesis of TLM diene derivatives. Reagents and conditions: (a) Tebbe
reagent, THF, −10 ºC → 0 ºC, 3h; (b) silica gel, polymer-bound TsOH, MeOH, rt, overnight.
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Table 1
Products and yields from HWE reactions: Olefination versus deformylation.

Entry R Aldehyde (PG) Base Desired Product
(% yield)

Deformylation Product
(% yield)

1 8 (MOMO-) nBuLi/HMPA -- 2 (only product)

2 10 (CH3O-) nBuLi/HMPA -- 4 (only product)

3 8 (MOMO-) nBuLi/HMPA -- 2 (only product)

4 9 (pyrrolidino-) nBuLi/HMPA 11 (31%) 3 (45%)

5 9 (pyrrolidino-) nBuLi/HMPA 12 (4%) 3 (46%)

6 9 (pyrrolidino-) DIPEA/LiCl 13 (19%) 3 (10%)

7 8 (MOMO-) DIPEA/LiCl 14 (48%) 2 (18%)

8 8 (MOMO-) DIPEA/LiCl -- 2 (only product)

9 8 (MOMO-) DIPEA/LiCl 15 (30%) 2 (21%)

10 8 (MOMO-) DIPEA/LiCl -- 2 (only product)

11a 8 (MOMO-) DIPEA/LiCl 16 (48%) 2 (12%)

a
Dimethyl (2-oxoheptyl)phosphonate was used.
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