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ABSTRACT
This article presents an efficient importance-sampling method for computing the likelihood of the

effective size of a population under the coalescent model of Berthier et al . Previous computational ap-
proaches, using Markov chain Monte Carlo, required many minutes to several hours to analyze small data
sets. The approach presented here is orders of magnitude faster and can provide an approximation to
the likelihood curve, even for large data sets, in a matter of seconds. Additionally, confidence intervals on
the estimated likelihood curve provide a useful estimate of the Monte Carlo error. Simulations show the
importance sampling to be stable across a wide range of scenarios and show that the Ne estimator itself
performs well. Further simulations show that the 95% confidence intervals around the Ne estimate are
accurate. User-friendly software implementing the algorithm for Mac, Windows, and Unix/Linux is avail-
able for download. Applications of this computational framework to other problems are discussed.

THE effective size Ne of a population is an important Wang (2001) developed a faster method for approxi-
mating the likelihood and conducted numerous simula-parameter determining the rate at which genetic

drift and inbreeding occur in the population, as well as tions demonstrating the superiority of the likelihood-
based method over moment-based estimators.the population’s capacity to respond to natural selection

Berthier et al. (2002) introduced a likelihood methodand to purge itself of deleterious mutations. It is con-
for two temporally spaced samples based on a differentsequently a parameter of great interest. However, it is
underlying model—they derive the likelihood using thedifficult to estimate Ne using demographic data alone,
coalescent (Kingman 1982; Hudson 1990). This pro-especially for organisms with high fecundity and high
vides a computational advantage when a large numberjuvenile mortality. For this reason, a variety of methods
of generations separate the samples. Additionally, it ishave been developed for estimating Ne from genetic
easier to understand how this model applies to a con-data, including the “temporal methods” in which a pop-
tinuously reproducing population rather than the likeli-ulation’s effective size is estimated using data on the
hood models based on the discrete-generation Wright-change of allele frequencies observed in two or more
Fisher population. Beaumont (2003) extended Berthiertemporally spaced genetic samples.
et al .’s (2002) model to multiple samples in time andThe first temporal methods used moment-based esti-
developed several computational improvements. He alsomators (Krimbas and Tsakas 1971; Nei and Tajima 1981;
provided a general formula for using importance sam-Pollak 1983; Waples 1989; Jorde and Ryman 1995).
pling within Markov chain Monte Carlo (MCMC) inThese estimators suffer from upward bias when low-
difficult problems. Unfortunately, the approaches offrequency alleles are present. Williamson and Slatkin
both Berthier et al . (2002) and Beaumont (2003) are(1999) introduced a likelihood-based estimator of Ne
computationally intensive, requiring computation on theby modeling the genetic samples as observations of the
order of hours to analyze a small data set of 30 individualshidden Markov chain that arises from the Wright-Fisher
per sample with 10–20 loci (Berthier et al. 2002). Fur-population model. They showed the likelihood-based
ther, since the posterior density curves for Ne are ob-estimator to be less biased than the moment-based esti-
tained by performing density estimation on values of Nemators, but their formulation allowed only for the analy-
generated from a Markov chain, it is difficult to assesssis of loci with two alleles. Anderson et al . (2000) ex-
their accuracy.tended that work to loci with more than two alleles,

The purpose of this article is to present a more effi-using a computationally intensive Monte Carlo likeli-
cient Monte Carlo approximation of the two-samplehood scheme. Using the same hidden Markov model,
likelihood of Berthier et al . (2002). This new method
is an importance sampling approach that is upward of
1000 times faster than the MCMC method. Excellent
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is not based on MCMC, assessing the accuracy of the sidering the genealogy of the n0 gene copies sampled at
time 0 and assuming that the genealogy follows theMonte Carlo estimate is easy and robust. In the following

I review the likelihood introduced by Berthier et al . neutral coalescent process for a population of size Ne

between time T and time 0.(2002). Then I present the new importance sampling
method for computing the likelihood. Finally, I conduct At time 0 the n 0 gene copies represent n 0 separate

lineages; however, if we were to trace each of those lin-simulations to verify that the estimates obtained are
comparable to those in Berthier et al . (2002), to ex- eages back in time, some lineages may merge (“co-

alesce”) so that the number of lineages extant in theplore the accuracy of the importance sampling method,
to assess the behavior of the estimator in the presence population at time T and ancestral to the n 0 gene copies

will be a number smaller than or equal to n 0 . We let n fof many alleles, to show that the confidence intervals
for estimates of Ne using the genealogical model are denote the (unknown) number of lineages extant at

time T that are ancestral to the n 0 sampled genes. Ifreliable, and to determine how much effect random
mutations have on the estimate of Ne . the effective size of the population is small, coalescences

will occur rapidly and n f will typically be smaller than
it would be if Ne were large. The probability that n 0PROBABILITY MODEL
lineages at time 0 are the descendants of n f lineages at
time T in a population of effective size Ne can be com-I first consider the probability model for a single

locus. The extension to multiple loci is straightforward puted analytically (Tavaré 1984) as described below.
The n f extant lineages at time T can be consideredand is described later. The data are two genetic samples,

one of n 0 codominant gene copies (n 0/2 diploid individ- n f gene copies that existed in the population at time T
and that represent all of the ancestors at time T of theuals) assumed sampled without replacement from the

population at time 0, and another sample of nT codomi- n 0 genes sampled at time 0. We denote the (unknown)
numbers of different allelic types carried among thosenant gene copies assumed sampled with replacement

from the population T generations before time 0, at time n f ancestors by af � (a f,1 , . . . , a f,K). It is assumed that
no mutation occurs between time T and time 0. AsT. The sample at time 0 is assumed to be sampled with-

out replacement because we will be modeling the sam- discussed later, this assumption means the method is
suitable for samples that are taken a moderate numberple using the neutral coalescent, which assumes that

the sample consists of n 0 distinct gene copies sampled of generations apart. It follows from this that only allelic
types appearing in the sample at time 0 appear amongfrom the population. In contrast, the sample at time T

is assumed to be sampled with replacement because that the n f ancestors (i.e ., a 0,k � 0 implies a f,k � 0 for all k �
1, . . . , K). It also follows that each allelic type observedallows us to model it as a multinomial sample, which,

as described below, leads to further simplifications. In in the n 0 genes at time 0 must occur at least once among
the n f ancestors (i.e. , a 0,k � 0 ⇒ a f,k � 0, k � 1, . . . ,practice, samples are typically drawn without replace-

ment because distinct individuals are seldom multiply K), which implies that K (0) � n f � n 0. Just as the sample
of nT gene copies was assumed to be sampled with re-sampled, and, if they are, then the duplicates are identi-

fied by allelic identity at multiple loci, and one of the placement from the population at time T, the n f gene
copies are assumed to be a separate, independent sam-individuals is removed. The model of sampling with

replacement, however, is a good approximation of sam- ple, with replacement, of n f gene copies from the popu-
lation at time T. The unknown frequencies of the Kpling without replacement as long as the actual size

(and not necessarily the effective size) of the population alleles in the population at time T are denoted by p �
(p 1 , . . . , pK). My notation differs here from that offrom which the sample is taken is much larger than the

sample itself. Berthier et al . (2002) who used x to denote the allele
frequencies. The vector p is a nuisance parameter thatThe number of distinct allelic types observed in the

samples at times 0 and T is denoted by K , and the may be integrated out by assuming a prior distribution
for it. The prior is taken to be a K � 1-dimensionalobserved counts of different allelic types in the samples

are denoted a0 � (a 0,1 , . . . , a 0,K) and aT � (aT,1 , . . . , Dirichlet distribution with parameter � � (�1 , . . . , �K).
Such a distribution arises as the equilibrium distributionaT,K), respectively. We denote by K (0) and K (T ) the num-

ber of distinct allelic types found in the sample at time of allele frequencies under a K -allele model with revers-
ible mutation (Wright 1937). Often each �k is set equal0 or in the sample at time T, respectively. What con-

stitutes an allelic type will depend on the genetic marker to 1, giving a uniform prior for p , although, especially
for large K , another sensible prior would be �k � 1/K ,system being used. For example, if one is using micro-

satellites, then alleles correspond to different numbers k � 1, . . . , K (Kass and Wasserman 1995).
The above sampling scheme implies a set of condi-of repeats observable on a gel; with allozymes the alleles

correspond to proteins with different electrophoretic tional probability densities involving the parameters
and variables a0 , aT, n f , af , p , n 0 , nT , T, Ne , and �. Thesemobilities; with single-nucleotide polymorphisms the al-

leles correspond to different nucleotide bases, etc. The conditional densities are derived as follows. Both aT

and af are independent multinomial samples from aprobability model of Berthier et al. (2002) arises by con-
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population with allele frequencies p . Thus, P(aT |nT ,
p) � MultK(nT , p) and P(af |n f , p) � MultK(n f , p), where
MultK(n , p) denotes the probability mass function of a
multinomial random variable of n trials with K catego-
ries having cell probabilities p . Conditional on af , the
counts of different alleles a0 among the n 0 descendants
sampled at time 0 follow a distribution having the form
of a Dirichlet-compound multinomial distribution (John-
son et al . 1997) defined by a product of binomial coeffi-
cients,

P(a0 |af , n f , n 0) � �n 0 �1
n f �1 �

�1

�
K

k�1
�a 0,k �1
a f,k �1 � (1)

Figure 1.—A directed graph showing the relationship offor values of a0 satisfying a 0,k � a f,k , k � 1, . . . , K , and
the observed and latent variables in the probability model

where the binomial coefficient ��1
�1� is defined as 1 (to arising from the genealogical perspective. Each node repre-

sents a variable in the model. Solid nodes represent observedeasily deal with values of k for which a 0,k � a f,k � 0).
quantities, the shaded node represents a variable whose valueThis follows from the fact that forward in time, the
is assumed to provide a prior distribution, and open nodesbifurcations of a neutral coalescent starting with labeled
represent unobserved variables or, in the case of Ne , the un-

lineages can be interpreted as steps in a Pólya-Eggen- known parameter of interest.
berger urn scheme (Hoppe 1984) in which each round
of sampling involves taking a ball from the urn and

The factorization of the probability model above is de-placing it in a separate sample, and then returning two
picted in the acyclic directed graph of Figure 1.balls of like color to the urn. Under this interpretation,

The likelihood of Ne is obtained by integrating thethe n f lineages at time T are like n f balls in an urn, each
nuisance parameter p and the unknown, latent variablesone colored according to the allelic type it carries, so
af and nf out of the joint density:af counts the numbers of balls of K different colors in

an urn before the onset of Pólya-Eggenberger sampling. L(Ne) � �
p
�
nf

�
af

P(a0 |af , n f , n 0)P(n f |n 0 , Ne , T )
Then, a0 represents the number of balls of each color
in the urn after n0 � n f rounds of sampling. This is equiv-

� P(af |p , n f)P(aT |nT , p)P(p |�)dp . (4)alent to collecting a sample in n 0 � n f rounds of sam-
pling in which the number of different colors of balls is The sum over af in (4) has a great many terms in it,
given by the vector a0 � af , which follows the probability especially if n 0 , n f , and K are large, so an approximation
given in (1). to that sum is desirable. The next section will explain

The probability that n 0 lineages at time 0 have n f ex- how that sum can be efficiently approximated using an
tant ancestral lineages T generations in the past in a importance-sampling algorithm.
neutral coalescent process, given an effective popu- Before describing my own importance-sampling algo-
lation size of Ne , can be computed following Tavaré rithm, I briefly describe the computational approach
(1984). Letting t � T/(2Ne) we have taken by Berthier et al . (2002) and Beaumont (2003).

They use the Metropolis-Hastings algorithm to define
a Markov chain of values of Ne (and of p in Berthier
et al. 2002), having a limiting distribution proportional
(or almost proportional) toP(n f � j |n 0 , T, Ne) �

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

�
n0

k�j

(�1)k�j(2k � 1)j(k�1)n 0[k ]

j !(k � j )!n 0(k )

exp{�k(k � 1)t /2},

2 � j � n 0

1 � �
n0

k�2

(�1)k�j(2k � 1)j(k�1)

j !(k � j )!
exp{�k(k � 1)t /2},

j � 1,
P(a0 |p , n 0 , Ne , T )P(aT |p , nT)P(Ne) (5)

(2)
in the case of in Berthier et al . (2002) and

where i[k ] � i(i � 1) · · · (i � k � 1) and i(k ) � i(i � P(a0 |n 0 , Ne , T )P(Ne) (6)
1) · · · (i � k � 1) are notations for the falling and

in the case of Beaumont (2003), where P(Ne) is a priorrising factorial functions, respectively.
distribution assumed for Ne . Samples from the MarkovWith the component conditional densities specified
chain are used to make a density estimate of the poste-as above, the joint probability density of all the variables
rior density for Ne . Note that the first two terms of (5)may be written
are what would remain of the integrand in (4) after the

P(aT , a0 , af, p , n f |�, T, n 0 , n T , Ne) � P(a0 |af , n 0)P(aT |n T , p) sum over n f and af was performed. Similarly, the first
term in (6) is what would remain of the integrand in

� P(af |p , n f)P(n f |n0 , Ne , T )
(4) after integrating out p and then summing over n f

and af . Thus, the MCMC method requires approximat-� P(p |�). (3)
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ing the two sums in (4) for every step in the Markov P(af |n f , aT , �, n T) �
	(n T � �•)n f !

	(n f � n T � �•)
�
K

k�1

	(a f,k � a T,k � �k)

	(a T,k � �k)a f,k !
,

chain to approximate (5) or (6) for use in a Metropolis-
Hastings ratio. Berthier et al . (2002) and Beaumont (10)
(2003) do this approximation by Monte Carlo, using

where �• denotes �K
k�1�k . C(aT , �) is a constant involv-P(af , n f |a0 , Ne , T ) as an importance sampling distribu-

ing multinomial coefficients and the coefficients of thetion. As Beaumont (2003) notes, this importance sam-
Dirichlet distribution:pling distribution could be improved by accounting for

the dependence (which is apparent in Equation 4 and
in the directed graph of Figure 1) of af on p . That im- C(aT , �) �

	(nT � �•)

� K
k�1	(aT,k � �k)	� 	(�•)

� K
k�1	(�k)

�
nT !

� K
k�1aT,k !

� .
provement and others are demonstrated in the next
section. (11)

By rearranging the sums in (9) to obtain
EFFICIENT APPROXIMATION OF THE LIKELIHOOD

L(Ne) �
1

C(aT , �)�nf

P(n f |n 0 , Ne , T )�
af

P(a0 |af , n f , n 0)The computation of (4) presented here is made effi-
cient by: (i) avoiding the use of MCMC altogether; (ii)

� P(af |n f , aT , nT , �), (12)integrating over p in (4) analytically ; (iii) recognizing
that the difficult steps in calculating (4) involve neither

it can be seen that the difficult part in evaluating L(Ne)Ne nor T, so that a number of quantities may be com-
is just the sum over af . It is also clear that once the sumputed only once for any a0 and aT and then used to quickly
over af has been computed for every value of n f fromcalculate L(Ne) for any value of Ne ; and (iv) choosing
K (0) to n 0 , then computing the likelihood for any valuea suitable importance-sampling distribution.
of Ne is achieved by a small sum over the possible valuesAs in Beaumont (2003), analytical integration of the
of n f . Hence, the primary task here is to develop a goodnuisance variable p proceeds from Mosimann’s (1962)
approximation forresult that if a has a multinomial distribution with cell

probabilities p , and p has a Dirichlet distribution, then, P(a0 |n f , aT , n T , �) � �
af

P(a0 |af , n f , n 0)P(af |n f , aT , n T , �).
marginally, a will follow the Dirichlet-compound multi- (13)
nomial distribution. Starting from (4), reversing the

This is undertaken by Monte Carlo, made efficient byorder of integration and summation yields line (7) in
importance sampling. The importance-sampling for-the equation below. Because P(aT |nT , p) is a multinom-
mulation follows from the fact that (13) may be rewrit-ial distribution (which follows from the assumption that
ten asthe sample at time T is drawn with replacement), the

product of P(aT |nT , p) and P(p |�) is proportional to
P(a0 |n f , aT , n T , �) � �

af

P(a0 |af , n f , n 0)P(af |n f , aT , n T , �)

P *(af)
P *(af),P(p |aT , nT , �)—the Dirichlet-distributed posterior prob-

(14)ability density of p conditional on aT and the prior �.
Recognizing this yields (8). Then using the fact that

where P *(af) is a probability mass function for af havingP(p |aT, nT , �) is a Dirichlet density and the fact that af the property that for any value of af for which P *(af) �follows a multinomial distribution (again, this is a con-
0, the product P(a0 |af , n f , n 0)P(af |n f , aT, nT , �) is alsosequence of the assumption that the allelic types of the
equal to zero. Equation 14 suggests that P(a0 |n f , aT , nT ,n f lineages are a sample with replacement from the pop-
�) may be approximated by simulating m values of af ,ulation at time T ), we apply Mosimann’s (1962) result
(af

(1) , . . . , af
(m)) from P *(af), and computingto obtain (9):

L(Ne) � �
nf

�
af

P(a0 |af , n f , n 0)P(n f |n 0 , Ne , T )�
p

P(af |p , n f) P(a0 |n f , aT , n T , �) 
 1
m �

m

i�1

P(a0 |a (i)
f , n f , n 0)P(a (i)

f |n f , aT , n T , �)

P *(a (i)
f )

.

(15)
� P(aT |n T , p)P(p |�)dp (7) The variance of this Monte Carlo estimate of Ne is re-

duced to the extent that P *(af) can be made propor-� �
nf

�
af

P(a0 |af , n f , n 0)P(n f |n 0 , Ne , T )�
p

P(af |p , n f)
tional to P(a0 |af , n f , n 0)P(af |n f , aT, nT, �) (Hammersley
and Handscomb 1964).

�
P(p |aT , n T , �)

C(aT , �)
dp (8) Our goal is thus to find a P *(af) that is approximately

proportional to P(a0 |af , n f , n 0)P(af |n f , aT, nT, �). Such
an approximation may be obtained by sequentially simu-�

1
C(aT , �)�nf

�
af

P(a0 |af , n f , n 0)P(n f |n 0 , Ne , T )
lating the components of af . The reasoning for this is
as follows: P(a0 |af , n f , n 0)P(af |n f , aT, nT , �) is the prod-

� P(af |n f , aT , n T , �). (9) uct of two Dirichlet-compound multinomial probability
mass functions, and the marginal distribution of anyP(af |n f , aT, nT , �) is a Dirichlet-compound multinomial

distribution with parameters aT � �, so that component of a Dirichlet-compound multinomial ran-
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dom vector follows a beta-binomial distribution with The calculations described above are implemented in
the computer program CoNe , which may be downloadedparameters that are easily computed (see Johnson et al .

1997, p. 81). We are thus able to compute the marginal from santacruz.nmfs.noaa.gov/staff/eric_anderson/. CoNe
computes a Monte Carlo estimate of the likelihood curvedistribution of a f,1 , the first component of af , from a dis-

tribution exactly proportional to P(a0 |af , n f , n 0)P(af |n f , and summarizes the Monte Carlo error with upper and
lower 95% confidence intervals on the estimate of theaT, nT, �), as desired. That marginal distribution is pro-

portional to the product of two beta-binomial probabil- likelihood curve. It also reports the maximum-likeli-
hood estimate (MLE), N̂e , and a 95% confidence inter-ity mass functions, and normalizing it can be done

quickly because a f,1 may assume no more than n f values. val around N̂e . The endpoints of the confidence interval
around N̂e are the values of Ne for which the naturalWe may then simulate a value, a f,1

(i), from that dis-
tribution. After simulating a f,1

(i), the alleles corresponding logarithm of the likelihood is 1.96 units smaller than log
L(N̂e). Given any prior distribution for Ne , the posteriorto k � 1 are conceptually “discarded” from the data set

(thus reducing n 0 to n 0 � a 0,1 , n f to n f � a f,1 , and nT distribution may be computed from the likelihood, if
desired.to nT � aT,1) and a similar scheme is pursued to simulate

a f,2 . Then the alleles corresponding to k � 2 are dis-
carded and a f,3 is simulated, and so forth.

SIMULATIONS AND RESULTS
Mathematically, the probability mass function,

P *(af), is defined to be It is not my goal here to undertake an exhaustive set
of simulations comparing the genealogical method to

P *(af � (a f,1 , . . . . , a f,K )) � �
K�1

k�1

1
zk �� a 0,k � 1

a f,k � 1 �� n 0,�k � a 0,k � 1
n f,�k � a f,k � 1 � other methods for estimating Ne . Such a study has been

completed recently (Tallmon et al . 2004). Instead, I
conduct four sets of simulations to (i) confirm that the�

	(a f,k � a T,k � �k)

	(a T,k � �k)a f,k !
estimator presented here estimates the same thing as
Berthier et al .’s (2002) estimator, (ii) assess the reliabil-

�
	(n f,�k � a f,k � n T,�k � a T,k � �•,�k � �k)

	(n T,�k � a T,k � �•,�k � �k)(n f,�k � a f,k)! � ,

ity of the estimate of the Monte Carlo error, (iii) assess
the method’s behavior in the presence of many alleles,I(a 0,k � 0) � a f,k � a 0,k , k � 1, . . . , K ,
(iv) demonstrate that the 95% confidence interval on

where I(a0,k � 0) is 1 if a0,k � 0 and 0 otherwise, and n0,�k , N̂e computed by CoNe is accurate, and (v) assess the
n f,�k , nT,�k , and �•,�k are defined to be n0 � �j
ka0,j , n f � effect of mutations on the estimation of Ne with CoNe .
�j
ka f,j , nT � �j
kaT,j , and �• � �j
k �j , respectively. The Comparison to previous results: First, I investigated
value z k is a normalizing constant equal to, for each k , the difference in running times between CoNe and the
the sum of the part within square brackets between the program TM3 presented by Berthier et al. (2002). (The
values of I(a0,k � 0) and min{a0,k , n f,�k � �j�kI(a0,j � 0)}, program TMVP presented in Beaumont (2003) is sup-
inclusive. posed to be somewhat faster, but it gave spurious results

While this P *(af) is not exactly proportional to P(a0 |af , on the data set used to test running times.) To do this
n f , n0)P(af |n f , aT , nT, �), it is close enough that the Monte comparison I used the data file supplied as an example
Carlo estimate, using (14), is quite good, even with m data set in the distribution of TM3. It includes simulated
as small as 100. Further, by judicious use of recurrence data of 10 loci sampled from 50 diploids on two occa-
relations for binomial coefficients and the gamma func- sions separated by a scaled time of t � 0.05. I analyzed
tion, and by storage of frequently used quantities, values it assuming that the number of generations between
of af

(i) may be simulated from P *(af) rapidly. samples was 10. Accordingly, the correct Ne is 100. The
Once the Monte Carlo approximations to P(a0 |n f , aT , analysis of the data by CoNe using m � 250 importance-

nT , �) are computed for all possible values of n f , they sampling repetitions required user and system time of
may be used in (12), to compute the likelihood for any 2.0 sec on a 2-GHz Macintosh G5 processor and had a
value of Ne . In practice, the likelihood curve is com- maximum memory usage of 1.6 Mb. The likelihood
puted by evaluating (12) over a fine grid of values of curve was estimated with negligible Monte Carlo error
Ne . The maximum-likelihood estimate N̂e can then be (Figure 2, thick solid line).
found by parabolic interpolation of the point on the I then analyzed the same data set on the same com-
grid with highest likelihood and its two neighbors. puter using TM3 with the default settings. After 20, 200,

When data are available on multiple loci that are not and 2000 sec, I took the output and estimated the log-
in linkage disequilibrium, the overall likelihood is the likelihood curve using the density function in the com-
product over loci of the likelihoods for each locus. The puter package R (Ikaha and Gentleman 1996). Each
variance of the Monte Carlo estimator can be computed of these curves is plotted in Figure 2. It is apparent that
by standard methods, providing a direct estimate of the after running 1000 times as long as CoNe , TM3 has ob-
Monte Carlo error. For multiple loci, the calculation of tained a good estimate for N̂e , but it has not estimated
the Monte Carlo variance follows that in the Appendix the whole likelihood curve very well. The maximum

memory usage for each run of TM3 was 179 kb.of Anderson et al . (2000).
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In the simulations described above, 30,000 data sets
were analyzed by CoNe . Of those, the data set yielding
the highest Monte Carlo variance was simulated using
allele frequency scenario A, with 20 loci and true Ne �
10 and T � 1. The likelihood curve for Ne given this
data set and computed using m � 1000 Monte Carlo
samples is shown as the solid line in Figure 3a. The
dashed lines on either side of the likelihood curve are
the 95% confidence intervals on the Monte Carlo esti-
mate of L(Ne). The distance between the two dashed
lines measures how much uncertainty is in the Monte
Carlo estimate of L(Ne). This figure is provided as an
example of how efficient this Monte Carlo scheme is.Figure 2.—Comparison of estimated log L(Ne) between
The curve in Figure 3a was achieved in 
6 sec on aCoNe and TM3. The thick solid line shows the estimated log-
2 GHz G5 processor, and, although it represents the worstlikelihood curve produced by CoNe in 2 sec. Results from runs

of TM3 that required 20, 200, and 2000 sec are shown by the Monte Carlo estimate in 30,000 data sets, the approxi-
dotted, dashed, and light solid line, respectively. mation is still good. By increasing the number of Monte

Carlo samples to m � 50,000, an excellent approxi-
mation is achieved (Figure 3b) in only 4 min 3 sec.Second, I repeated the simulation experiment per-

It should be apparent that the lower and upper con-formed by Berthier et al . (2002), in which samples of L
fidence intervals on the Monte Carlo estimate (Figure 3,loci (L � 5, 10, or 20) from 30 or 60 diploid individuals,
dashed lines) provide a convenient summary of theseparated by one or five generations, were drawn from
accuracy of the approximation. This is a more usefulsimulated populations of effective size 10, 20, or 50, with
measure of uncertainty than is available when MCMCa variety of different initial allele frequencies (scenarios
and density estimation are used to estimate the likeli-A–C, see Table 1 legend). (For brevity I omit the simula-
hood curve.tion of allele frequency scenario F from Berthier et al .

A series of simulations was undertaken to determine2002.) For each combination of parameters, 2000 simu-
how reliable the Monte Carlo confidence intervals are.lated data sets were analyzed with CoNe using 1000
This was done by analyzing 70 separate data sets [twoMonte Carlo samples (i.e ., m � 1000), and the median
samples, separated by 20 generations, of 100 individualsmaximum-likelihood estimate, the square root of the
typed at 12 loci with seven alleles having frequenciesmean squared error, and a summary of the confidence
drawn from a uniform Dirichlet (1, . . . , 1) distribution]intervals obtained were recorded. The results of these
from simulated populations of 1000 individuals. Forsimulations are shown in italics in Table 1. The results
each data set an estimate of the likelihood curve wasfrom Berthier et al .’s (2002) simulations are shown
computed with CoNe using m � 100,000 replicates. Thisfor comparison in regular type in adjacent columns.
estimate was taken to be close to the exact likelihood.The two methods are clearly comparable, although CoNe
Then the same data set was reanalyzed 500 more times,is much faster. The difference in results between the
each time with only m � 100 replicates, and it was re-two methods is accounted for by the fact that this study
corded whether the “exact” likelihood curve estimatedsampled 10 times as many simulated data sets, and the
with m � 100,000 fell within the Monte Carlo confidencedistribution of estimated values of Ne is heavy tailed to
intervals given by analyzing the data with m � 100. Eventhe right.
with as few as m � 100 replicates, the average widthMonte Carlo error: When estimating parameters, un-
of the Monte Carlo confidence intervals over all thecertainty is often expressed in terms of a confidence
simulations was 0.07 units of log-likelihood. Sixty per-interval or a “credible set.” When the likelihood curve
cent of the time, the exact likelihood curve fell entirelyitself is estimated by Monte Carlo, there is another
within the confidence intervals at all points within 4 log-source of uncertainty due to the Monte Carlo variance
likelihood units of the maximum. When confidencein the estimate of the likelihood, and that uncertainty
intervals failed to contain the exact likelihood, the aver-may also be expressed by a confidence interval. It is this
age distance between the exact likelihood and the edgeuncertainty due to Monte Carlo variance that is the
of the confidence interval was only 0.013. Thus, whiletopic of this section, and the confidence intervals on
the confidence intervals for the estimate of L(Ne) arethe likelihood L(Ne), referred to here, should not be
not strictly 95% confidence intervals, they do provideconfused with confidence intervals on the estimate N̂e

a very good measure of the uncertainty in the Monteitself (discussed later). Ninety-five percent confidence
Carlo estimation. Regardless, in all simulated data setsintervals for the Monte Carlo estimate of L(Ne) may be
I have analyzed, the Monte Carlo error can be reducedcomputed by adding (for the upper limit) and sub-
to negligible levels with never more than a few minutestracting (for the lower limit) 1.96 times the Monte Carlo

standard error of the estimate. of computation and typically in a matter of seconds.
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TABLE 1

Comparison of results from CoNe and from Berthier et al .’s (2002) method

L n 0/2 AF N̂e(SE) N̂e(SE) √MSE √MSE C.I.’s C.I.’s

N e � 10, T � 1
5 30 A 8.9 (1.0) 8.4 (2.5) 44.5 34.3 2.0–500.0 2.9–463
5 60 A 7.9 (0.5) 7.3 (0.3) 24.6 4.2 2.1–122.5 2.8–57.7

10 30 A 8.6 (0.1) 7.8 (0.3) 5.5 4.3 3.4–84.5 3.6–130.6
10 30 C 9.1 (2.3) 12.7 (6.6) 104.1 93.5 1.0–500.0 2.1–475.3
20 30 A 8.6 (0.1) 7.8 (.1) 2.9 2.6 4.0–29.4 4.4–21.2

N e � 20, T � 5
5 30 C 19.4 (2.9) 19.3 (8.1) 135.0 119.9 1.5–500.0 3.6–478.2
5 60 A 18.0 (0.2) 17.3 (0.5) 7.1 6.3 5.9–65.5 7.8–57.0
5 30 B 20.4 (0.2) 19.4 (0.6) 10.2 9.3 7.4–105.6 8.9–124.9
5 60 B 19.3 (0.2) 18.3 (0.5) 8.2 6.8 7.4–75.6 8.4–62.0
5 30 A 19.0 (0.2) 18.1 (0.5) 9.3 7.7 5.9–105.8 6.3–105.6

10 30 A 18.7 (0.1) 18.4 (0.4) 5.2 5.4 7.9–53.1 9.7–53.9
20 30 A 18.8 (0.1) 17.7 (0.3) 3.7 3.9 10.1–37.5 10.6–35.3

N e � 50, T � 5
10 60 A 49.5 (0.4) 47.4 (1.0) 16.0 17.3 21.5–159.3 23.3–136.7
10 30 A 51.9 (0.6) 49.9 (2.1) 29.5 30.0 18.7–408.7 20.4–435.5
20 30 A 51.9 (0.3) 49.5 (1.3) 15.4 18.4 24.9–161.6 26.4–183.0

Columns in italics are results from CoNe . Columns in regular type are results from Berthier et al . (2002),
taken from their Table 1. L is the number of loci, n 0/2 is the number of diploid individuals sampled, AF is
the allele frequency scenario [A � 5 alleles at frequencies (0.2, 0.59, 0.1, 0.07, 0.04); B � 5 alleles at uniform
allele frequencies; C � 2 alleles at frequencies (0.885, 0.115)]. N̂ e is the median maximum-likelihood value
for N e and SE is the standard error of the mean MLE of N e . √MSE is the square root of the mean squared
error. For CoNe , C.I.’s are summaries of the 95% confidence intervals for N e computed as the �1.96 log-
likelihood unit limits. For Berthier et al .’s (2002) results, C.I.’s are summaries of the 90% credible intervals.
The lower number is the 5th percentile of the lower interval limits and the higher number is the 95th percentile
of the upper interval limits.

Behavior with many alleles: Some computational meth- by the number of alleles. At all numbers of alleles, the
estimator had a slight upward bias, with the mean maxi-ods for estimating Ne become unstable or converge slowly

when applied to data sets with many alleles (cf. Ander- mum-likelihood estimate of Ne being �103—only slightly
greater than the true value of 100 (Figure 4a). With ason et al . 2000). Therefore, I investigated the perfor-

mance of the importance-sampling method and of the scaled time of 0.01 (corresponding to 2 generations
in a population of size 100), the importance-samplingcoalescent-based Ne estimation procedure, with loci hav-

ing many alleles. CoNe was applied to simulated data of procedure was once again stable. However, the estima-
tor itself shows an upward bias, particularly as the num-100 individuals genotyped at 10 loci, each with K alleles

and a uniform initial allele frequency. K was set equal ber of alleles increases beyond 20. Additionally, with
very large numbers of alleles (75 and 100), on average,to 5, 8, 13, 20, 30, 50, 75, or 100 in each simulation for

all 10 of the loci. These simulations were done using a the 95% confidence interval around the maximum-like-
lihood estimate of Ne does not overlap the true valuecoalescent method. In one set of simulations the genetic

drift between samples was set to that of 20 generations of 100 (Figure 4b).
It is important to note that such pathological datain a population of size 100 [i.e ., a scaled time of t �

T/(2Ne) � 0.1] and in another set of simulations it was sets would rarely, if ever, be encountered from natural
populations having an Ne low enough that it might beset to that of 2 generations in a population of size 100

(t � 0.01). For each combination of number of alleles reliably estimated. The appearance of so many alleles
in such a population would suggest either that the allelesand amount of genetic drift, 250 data sets were simu-

lated and analyzed. For all data sets the importance- were under some sort of balancing selection or that the
mutation rate at the locus was quite high, violating thesampling procedure remained stable. Even with as many

as 100 alleles, the likelihood curve was reliably estimated assumptions of the Ne estimation method.
Accuracy of confidence intervals for Ne : CoNe reportswith as few as m � 1000 Monte Carlo replicates. For the

scaled time of 0.1 (corresponding to 20 generations a 95% confidence interval around the MLE, N̂e . The true
value of Ne ought to be contained in that confidencein a population of size 100), the performance of the

coalescent-based estimator of Ne was not greatly affected interval in 95% of data sets (simulated under the model)
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Figure 4.—Summary of simulations using loci with different
numbers of alleles. Points on solid lines show mean maximum-
likelihood estimates from 250 simulated data sets as a function

Figure 3.—The worst Monte Carlo error from 30,000 data of number of alleles. See text for full explanation of simula-
sets. (a and b) Solid lines are the estimated likelihood curves tions. Points on dashed lines show mean of upper and lower
and dashed lines are the 95% confidence intervals around 95% confidence intervals for Ne . Vertical bars are two times
the estimated likelihood curves. The data set analyzed here the standard error of the mean in all cases. The thin dotted
had the widest confidence intervals of all 30,000 data sets line shows the true value of Ne � 100. (a) Scaled time � 0.1,
analyzed for Table 1. It had 20 loci with five alleles. (a) Results corresponding to 20 generations of drift with Ne � 100. (b)
for a CoNe run with m � 1000 Monte Carlo replicates, requiring Scaled time � 0.01, corresponding to 2 generations of drift

6 sec on a 2-GHz G5 processor. (b) Results for m � 50,000 with Ne � 100. Note the upward bias in b.
Monte Carlo replicates, requiring 4 min 3 sec on the same
processor. The dashed lines are difficult to see in b since the
confidence interval around the likelihood curve is very narrow.

or 100, separated by 1, 3, 5, or 10 generations. TheClearly the Monte Carlo error is minimal, and it is easily
reduced by using more Monte Carlo replicates. individuals were genotyped at 5 or 15 loci, which were

initialized with eight alleles having frequencies drawn
from a uniform Dirichlet distribution. Over all the simu-

analyzed by CoNe . Tallmon et al . (2004) report that lation conditions, TMVP’s credible intervals failed to
the credible intervals (these are like confidence inter- contain the true value of Ne 24.4% of the time. In one
vals, but are computed from a Bayesian perspective) com- instance, with Ne � 20, n � 60, T � 3, and with 15
puted by a related program, TMVP (Beaumont 2003), loci, TMVP’s credible intervals failed to contain the true
are grossly inaccurate. TMVP is based on the same like- Ne �78% of the time.
lihood model as CoNe , but it approximates the likeli- Since CoNe is based on the same likelihood model as
hood by MCMC instead of using the efficient importance TMVP, I performed simulations like those of Tallmon
sampling algorithm presented here. In Tallmon et al .’s et al . (2004) to investigate whether CoNe’s confidence in-
(2004) simulations, data sets of n � 20 or 60 diploid in- tervals suffer similar degrees of inaccuracy. For each set

of simulation parameters, I applied CoNe to 1000 simu-dividuals were drawn from populations of Ne � 20, 50,



963Computation for Estimating Ne

TABLE 2

Proportion of 95% confidence intervals that do not contain true N e

N e � 20 N e � 50 N e � 100

Conditions T L U Tot N̂ ↑
e L U Tot N̂ ↑

e L U Tot N̂ ↑
e

5 loci
n � 20 1 0.0 2.1 2.1 8.9 0.0 1.0 1.0 37.8

3 4.5 1.5 6.0 0.1 0.5 1.2 1.7 7.2
5 3.9 1.0 4.9 0.0 4.5 1.1 5.6 0.7

10 2.9 3.0 5.9 0.0 7.2 1.0 8.2 0.0

n � 60 1 1.6 4.2 5.8 0.1 0.0 1.3 1.3 6.2 0.0 1.2 1.2 26.8
3 1.9 4.6 6.5 0.0 3.8 2.1 5.9 0.1 2.7 1.4 4.2 1.6
5 1.6 4.5 6.1 0.0 3.8 2.8 6.6 0.0 4.2 1.9 6.1 0.4

10 1.1 4.8 5.9 0.0 3.3 3.3 6.6 0.0 4.1 2.2 6.3 0.0

15 loci
n � 20 1 6.9 0.6 7.5 1.4 0.0 0.3 0.3 29.6

3 5.6 1.2 6.8 0.0 10.8 0.3 11.1 0.8
5 4.6 1.1 5.7 0.0 9.4 0.7 10.1 0.0

10 3.6 2.1 5.7 0.0 9.0 0.8 9.8 0.0

n � 60 1 1.4 7.2 8.6 0.0 3.2 1.3 4.5 0.9 0.0 1.1 1.1 12.9
3 0.3 7.6 7.9 0.0 3.8 2.8 6.6 0.0 5.4 1.1 6.5 0.0
5 0.5 7.0 7.5 0.0 3.1 2.7 5.8 0.0 4.9 0.9 5.8 0.0

10 0.8 7.6 8.4 0.0 2.2 2.6 4.8 0.0 4.8 2.2 7.0 0.0

L(U) is the proportion of lower (upper) endpoints of 95% confidence intervals that are greater (less) than
the true N e of 20, 50, or 100. “Tot” is the proportion of all confidence intervals that do not contain the true
N e. N̂ ↑

e is the proportion of simulated data sets for which the maximum-likelihood estimate of N e was �400
(and for which the confidence interval was not considered). Values are from 1000 simulated data sets of n
diploids sampled T generations apart. Following Tallmon et al. (2004) simulations of n � 20 when N e � 100
were not done.

lated data sets, recording how often the true Ne was not erations in populations of plants or animals. In such
situations, the assumption of no mutation is quite rea-contained within CoNe’s 95% confidence intervals for

Ne (Table 2). sonable. However, increasingly the ability to extract and
amplify genetic markers from archived samples, as wellCoNe’s confidence intervals appear to be more accu-

rate than TMVP’s credible intervals as reported by Tall- as the investigation of short-lived organisms like bacteria
and viruses, makes it more likely that two samples willmon et al . (2004). Over all simulation conditions, true

Ne was contained in the 95% confidence interval 94.3% be separated by enough time that the assumption of no
mutation may be violated. An apparent mutation canof the time, just as expected. The worst performance of

CoNe’s 95% confidence intervals was on the data simu- be caused by any heritable alteration that changes the
observed allelic state of an allelic type. Depending onlated with Ne � 50, n � 20, T � 3, using 15 loci, when

11.1% of the time the true Ne was not contained in the the type of marker system used these alterations could
be point mutations, insertions, deletions, recombinations,confidence interval.

It is not clear why Tallmon et al. (2004) found TMVP’s or gene conversions, etc. I undertook a short simulation
to determine under what conditions (of mutation ratecredible intervals to perform so poorly when evaluated

from a frequentist perspective on simulated data. It is and time between samples) mutation can appreciably
affect the inference of Ne with a program like CoNe . Ipossible that the Markov chain of Ne values produced

by TMVP was not run long enough to achieve a good initialized a simulated Wright-Fisher population of Ne �
1000 diploids at time T with allele frequencies drawnestimate of the posterior density near the tails of the

posterior distribution. At any rate, the confidence inter- from a uniform Dirichlet distribution with eight alleles
and simulated the population forward in time until timevals around Ne computed by CoNe seem to be reliable,

and it is straightforward to assess how well the Monte 0, under both an infinite-alleles model (IAM) of muta-
tion and a symmetric K -allele model (KAM) of muta-Carlo estimate of the likelihood has converged.

The effect of mutations: Methods for estimating Ne tion, with mutation rate u per gamete per generation.
Samples of size 100 were drawn at times T and 0, andfrom temporally spaced samples have traditionally been

applied to samples separated by a small number of gen- CoNe was used to estimate Ne and the scaled time t �
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Figure 5.—The effect of mutation on
estimates of t � T/(2Ne) under the infi-
nite-alleles model (A) and the K - allele
model (B). In A and B the x - axis plots
the mean from 300 simulated data sets
of the estimate of t , when the true value
of t was 0.05, 0.1, 0.2, 0.3, or 0.5 and the
mutation rate is zero. The y-axis shows
the mean estimated t from 300 data sets
simulated with mutation at a rate u as
indicated by the text to the right of each
line. If mutation is causing no bias in
the estimate, then the points will fall
along the y � x line, which is indicated
by the dotted line. Higher values of the

mutation rate and higher values of the true t between sampling episodes increase the amount of bias that mutation causes. A
downward bias in the estimate of t means an upward bias in the estimate of Ne .

T/(2Ne). This was done for all combinations of u � {0, As a practical example, suppose you have sampled
microsatellites in a fish population. Assume that the10�3, 10�4, 10�5, 10�6} and T � {100, 200, 400, 600, 1000}
mutation rate at each locus is u � 10�4 and that thegenerations. For each T and u and mutation model
KAM provides a reasonable approximation over these(IAM or KAM) 300 data sets were simulated and ana-
timescales to the mode of mutation of microsatellites.lyzed. The mean estimated Ne and the mean estimated
If the estimate of the scaled time between samples isscaled time t for each condition were recorded.
0.1, then, if your samples are separated by no more thanMutation biases the estimate of Ne upward. This makes
200 generations, it is unlikely that mutations are biasingsense—it tends to counteract the effects of drift (i.e .,
your estimate.the fixation and loss of alleles), so it makes it appear

that the population is larger than it is. In investigating
the effect of mutation it is more convenient to express

DISCUSSIONits effect on the estimates of the scaled time t � T/(2Ne).
Obviously mutation biases the estimate of the scaled I have presented a computational method for fast and
time t between samples downward. Figure 5 plots the precise approximation of the likelihood for Ne under a
results of the simulations. coalescent model. This method is an importance sam-

On Figure 5’s x -axis are the mean estimates of t � pling algorithm implemented in the computer program
T/(2Ne) for each of the five values of T with no muta- CoNe . Previous approaches used MCMC and were con-
tion (u � 0). On Figure 5’s y -axis are the mean estimates siderably slower. The performance of my importance-
of t under either the IAM or the KAM models for the sampling algorithm demonstrates that, although MCMC
different values of u. It is clear from the figure that is broadly applicable and is typically easy to implement,
the effect of mutation becomes more pronounced as t a much faster solution may be available if the problem
increases. This is expected—as more time elapses be- can be decomposed in such a manner as to avoid MCMC.
tween the samples, there is more opportunity for muta- In addition to being faster, it is often also easier to assess
tions to occur. However, it is also clear that the mutation the Monte Carlo error if one is using independently
rate must be quite high for it to have a substantial effect, simulated samples (as in CoNe) rather than correlated
especially at values of t 
 0.2. samples from a Markov chain (as in MCMC).

Because mutations will have an effect only if they oc- The program CoNe is based upon the same underly-
cur on lineages ancestral to the sample at time 0, and ing model as the programs TM3 (Berthier et al . 2002)
because the probability that such mutations will occur and TMVP, in the case with only two samples (Beaumont
depends on the scaled mutation rate � � 4Neu and only 2003). Thus, the coalescent-based estimator implemented
weakly on sample size, some rough generalizations may in CoNe is expected to perform similarly to TM3 and
be drawn from the above results. When � 
 4 � 1000 � TMVP. In this article, I used computer simulations to
10�5 � 0.04 the effect of mutation for all t 
 0.5 is not show that estimates made by CoNe and TM3 are similar.
overwhelming. Further, for the KAM, scaled mutation Some approximations to the likelihood for Ne be-
rates of � 
 4 � 1000 � 10�4 � 0.4 are unlikely to bias come unstable when the data include many alleles (e.g .,
estimates of Ne for t � 0.1. Conversely, if you are using Anderson et al . 2000). This is not the case with CoNe .
markers that mutate according to an IAM, then even I subjected CoNe to a number of tests involving samples
with � � 0.4 your estimates of t may be substantially with very large numbers of alleles. The importance-sam-
biased downward and hence your estimates of Ne biased pling algorithm always performed well in approximating

the likelihood. The maximum-likelihood estimator, how-upward.



965Computation for Estimating Ne

ever, seems to be upwardly biased for Ne when the amount sumption of no mutation between the samples, it is pos-
sible to treat the different allelic types separately, with-of genetic drift is small, i.e ., when T/(2Ne) is on the

order of 0.01. This upward bias is exacerbated when out considering the number of mutational steps be-
tween alleles. This simplification makes it unnecessarymore alleles at low frequency are present. Interestingly,

this bias is of a different nature than the bias shown by to consider different topologies of coalescent trees. In
effect, the formulation of (1) follows from an implicitmoment-based estimators of Ne applied to data with low-

frequency alleles. Moment-based estimators show more sum over all possible topologies—without having to ac-
tually perform that sum. Thus, although the importance-bias when drift is relatively strong and the low-frequency

alleles have been lost from the population (Waples sampling algorithm presented here offers dramatic im-
provements for calculations involving the coalescent1989). With CoNe the situation is exactly the opposite—

the bias is very small (
3%) when t � T/(2Ne) � 0.1 without mutation, it is not a solution that applies equally
well to other difficult problems such as computing thebut the bias is more severe with t � 0.01.

I have shown how to compute the likelihood for Ne likelihood for � � 4Neu from a single sample of se-
quences (Griffiths and Tavaré 1994a; Kuhner et al .in what is essentially a frequentist analysis. However, two

points must be made. First, should one desire a Bayesian 1995; Stephens and Donnelly 2000) or computing the
likelihood of recombination rates from a single sampleposterior distribution for Ne , it can easily be computed

from the likelihood. Second, the likelihood is an inte- of sequences (Griffiths and Marjoram 1996) or of mi-
gration rates from a single sample of sequences or micro-grated likelihood: a prior for the allele frequencies at

time T must be assumed. I have used a Dirichlet prior satellites (Beerli and Felsenstein 1999). In those cases,
not only is it necessary to explicitly sum over differentwith parameter � . This corresponds to the equilibrium

frequencies of a K -allele model with reversible mutation genealogical trees and their branch lengths, but also it
is necessary to sum over the unknown ancestral state ofor to the equilibrium distribution for allele frequencies

under drift and recurrent migration from a large popu- the progenitor of all alleles in the sample and over loca-
tions in the tree where mutations might have occurred.lation (Wright 1937). In simulations (not shown) I

found that changing the value of � from (1, . . . , 1) to The program CoNe is intended to provide estimates
of contemporary Ne of well-circumscribed populations.(1/K , . . . , 1/K) had little effect on the inference of

Ne . It is accordingly unlikely that the use of other dif- The Ne that is estimated is the effective size of the popula-
tion that prevailed over the time interval between thefuse priors would greatly influence the estimates of Ne .

The importance-sampling algorithm presented here samples. This contrasts with the methods that estimate
� � 4Neu from a single sample. The Ne referred to thereis quite efficient for the case where only two temporally

spaced samples are taken; however, it is worth asking if is the effective size of the population over the entire
coalescent history of the sample, which typically repre-the importance sampling could be extended to multiple

samples in time (Beaumont 2003). Such a task could sents far more time than just the interval between two
samples taken from the population. Recently, a methodbe challenging. The algorithm presented here works

well because it is possible to compute the probability of that allows the separate estimation of Ne and u (rather
than estimation only of the composite parameter �)the observed data given that there were nf lineages at

time T for all n0 � K 0 � 1 possible values of nf . Those from temporally spaced samples of sequences was de-
veloped by Drummond et al . (2002). Their program,probabilities are then used in (13) to compute the likeli-

hood for Ne . Naively taking the same approach with Bayesian Evolutionary Analysis Sampling Trees
(BEAST), has been used in a number of instances involv-more than two samples could lead to computational

demands that are exponential in the number of samples, ing genetic sequences sampled at short time intervals
from rapidly mutating and short-lived organisms likebut it might be possible to make the problem linear in

the number of samples by using an algorithm like that viruses or sampled at long time intervals (by obtaining
DNA from subfossil material) from longer-lived organ-described in Baum (1971). Unfortunately, the condi-

tional probabilities that would have to be calculated and isms (reviewed in Drummond et al. 2003). BEAST is de-
signed for use with temporally spaced samples of se-normalized for each sampling episode would require

considerably more (on the order of n times more, where quences , and the temporally spaced element of the
samples is useful to the program only if the samples aren is the sample size) computation than they do with

only two samples, and there is no guarantee that the separated by enough time that mutations are expected
to have accumulated in the lineages. This is very differ-resulting importance-sampling distribution would be as

effective as it is in the two-sample case. Extending this ent from CoNe , which uses codominant allelic count
data (which may come from sequences, microsatellites,importance sampling approach to more than two sam-

ples remains an open problem. SNPs, etc.) and performs best when enough time has
elapsed between the samples for a substantial amountIt is important to point out that, although the like-

lihood for Ne used here is based on the coalescent, the of drift to have occurred, but not so much time that
many mutations have occurred between the two sam-calculation of the likelihood is easier than in many other

coalescent-based inference problems. By making the as- pling episodes.



966 E. C. Anderson

In the absence of mutation the importance-sampling This would permit a way of dealing with the possibility
algorithm presented here applies directly to the general that the admixture contains ancestry from another, un-
problem of computing the likelihood of the number of sampled population.
coalescences that have occurred during the time be- The genealogical perspective provides a powerful
tween two sampling episodes. Accordingly, there are a framework for formulating likelihoods in a number of
number of related inference problems to which the problems; however, its use in estimating Ne and ad-
algorithm could be applied. First, estimating NeT

, the mixture proportions has not been rapidly adopted, in
part because of the computational burden of currentlyeffective size of the population at time T, and a growth

rate r of the population until the sample at time zero available methods. The algorithm presented in this
would be straightforward. This is because (4) can be article reduces that computational burden and should
expressed as a likelihood for the scaled time t , and any make genealogical approaches even more practical in
pair of NeT

and r implies a single scaled time t by the the future.
results of Griffiths and Tavaré (1994b) for rates of I thank Dave Tallmon, Mark Beaumont, Montgomery Slatkin, and
coalescence in populations of varying size; hence (4) Carlos Garza for helpful discussions on this article; Kevin Dunham
implies a likelihood for pairs (NeT

, r). Also, with some for help with testing and releasing the software; and the editor and
two anonymous referees for their insightful comments. This article de-modifications, the method could be used to estimate
veloped out of work initiated while E.C.A. was supported by Nationalthe number of lineages founding small, colonized popu-
Institutes of Health grant GM-40282 to M. Slatkin.lations. Such a problem, like the estimation of effective

size, is similar to the problem of estimating the degree
of inbreeding accumulated in a population between two
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