
Copyright © 2005 by the Genetics Society of America
DOI: 10.1534/genetics.104.035816

A General Framework for Statistical Linkage Analysis
in Multivalent Tetraploids

Rongling Wu1 and Chang-Xing Ma

Department of Statistics, University of Florida, Gainesville, Florida 32611

Manuscript received September 1, 2004
Accepted for publication February 16, 2005

ABSTRACT
In multivalent polyploids, simultaneous pairings among homologous chromosomes at meiosis result in

a unique cytological phenomenon—double reduction. Double reduction casts an impact on chromosome
evolution in higher plants, but because of its confounded effect on the pattern of gene cosegregation, it
complicates linkage analysis and map construction with polymorphic molecular markers. In this article,
we have proposed a general statistical model for simultaneously estimating the frequencies of double reduction,
the recombination fraction, and optimal parental linkage phases between any types of markers, both fully and
partially informative, or dominant and codominant, for a tetraploid species that undergoes only multivalent
pairing. This model provides an in-depth extension of our earlier linkage model that was built upon
Fisher’s classifications for different gamete formation modes during the polysomic inheritance of a multiva-
lent polyploid. By implementing a two-stage hierarchical EM algorithm, we derived a closed-form solution
for estimating the frequencies of double reduction through the estimation of gamete mode frequencies
and the recombination fraction. We performed different settings of simulation studies to demonstrate
the statistical properties of our model for estimating and testing double reduction and the linkage in
multivalent tetraploids. As shown by a comparative analysis, our model provides a general framework that
covers existing statistical approaches for linkage mapping in polyploids that are predominantly multivalent.
The model will have great implications for understanding the genome structure and organization of
polyploid species.

BECAUSE of their biological and economic impor- Different from bivalent polyploids, multivalent poly-
tance, polyploids have long been a focus of genetic ploids pair their chromosomes among more than two

and evolutionary analyses (Bever and Felber 1992; Soltis homologous copies at meiosis. The consequence of this
and Soltis 2000). One of the most useful tools for these multivalent pairing is the formation of double reduction;
analyses is provided by genetic linkage maps constructed i.e., two sister chromatids of a chromosome sort into the
from molecular markers, which allow not only for com- same gamete (Darlington 1929). Fisher (1947) pro-
parative studies of genome structure and organization posed a conceptual model for characterizing the proba-
across different polyploids (da Silva et al. 1995; Ming bilities of 11 different modes of gamete formation for
et al. 1998), but also for the characterization of specific a quadrivalent polyploid in terms of the recombination
loci affecting quantitatively inherited traits (Meyer et al. fraction between two different loci and their double
1998; Ming et al. 2001). However, compared to diploid reductions. Although Fisher’s model did not have the
species, linkage analysis in polyploids is complicated by capacity to estimate the linkage and double reduction,
their underlying meiotic processes. For bivalent poly- it provides a theoretical foundation for S. S. Wu et al.
ploids in which only two chromosomes pair during meio- (2001) to successfully derive a closed-form solution for
sis, there are higher pairing probabilities between more estimating these parameters within the maximum-likeli-
similar chromosomes than between less similar chromo- hood context. To clearly describe the idea, Wu et al. de-
somes. Whereas many models assume random pairings rived their EM-implemented algorithm on the basis of
(Hackett et al. 1998; Ripol et al. 1999; Luo et al. 2001), fully informative markers that display completely different
we have derived a host of statistical models that integrate alleles between two parents. Because each multilocus ge-
the so-called chromosomal pairing preference (Sybenga notype observed in a full-sib family is formed with a predict-
1994) within a linkage analysis framework (Ma et al. 2002; able mechanism (see S. S. Wu et al. 2001 for a detailed
Wu et al. 2002a). description of this), it can be made possible to derive the

closed-form solution for estimating the recombination
fraction and double reduction.

While fully informative markers represent only a sub-1Corresponding author: Department of Statistics, 533 McCarty Hall C,
University of Florida, Gainesville, FL 32611. E-mail: rwu@stat.ufl.edu set of polymorphic markers in polyploids, it is essential
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to develop a more general model that has power to used to derive the frequencies of the other seven gamete
modes in which marker � has no double reduction.analyze those partially informative markers, such as domi-
Ultimately, Luo et al. was able to derive the formulanant markers or markers with multiple dosages. Luo et
for calculating the coefficient of double reduction atal. (2004) proposed a statistical model that attempts to
marker �.consider different marker types. A key step of Luo et

The above derivation has been strictly based on theal.’s model is the derivation of the frequency of each
assumption that the frequency of double reduction atgamete formation mode as a function of the recombina-
a marker is determined by the frequency of doubletion fraction and double reduction at one marker (see
reduction at its linked marker and the recombinationtheir Table 1). To show Luo et al.’s deriving process,
fraction between these two markers. However, as re-we suppose there are two fully informative markers, �
vealed by cytological and molecular experiments, thisand �, that are linked with recombination fraction r.
assumption that has facilitated Luo et al.’s linkage analy-Assume that marker � is closer to the centromere than
sis is hardly met in practice. The values of double reduc-marker � so that the coefficient of double reduction
tion are observed to range from 0 to almost 30%at marker � is larger than the coefficient of double
(Haynes and Douches 1993) and are likely to be spe-reduction (�) at marker � (Darlington 1929; Fisher
cies, chromosome, and position dependent (Butruille1947). Denote four different alleles by M1, · · · , M4 for
and Boiteux 2000). In a genetic mapping study of culti-marker � and by N1, · · · , N4 for marker �. Thus, we
vated tetraploid alfalfa with microsatellite and AFLPhave a total of 24 allelic configurations or linkage phase
markers, 20 loci that display significant double reduc-assignments between the two markers, one of which is
tion are sporadically distributed throughout the ge-schematically expressed as
nome (Julier et al. 2003). For example, on linkage
group 6 composed of nine loci, only markers MTIC153M1

N1
�M 2

N 2
�M3

N3
�M 4

N4
� or M1M 2M3M 4/N1N2N3N4 , (1)

and MTIC14 have significant double reductions of simi-
lar values (0.15 and 0.16), while the two markers, sepa-
rated by 39 cM, flank three intermediate markers. It

where lines indicate the individual homologous chro- thus can be seen that it is unreasonable to employ a
mosomes on which the two markers are located. This fixed function of the recombination fraction to model
configuration generates 16 chromatids during meiosis, the change of double reduction across different loci.
involving four nonrecombinants, M1N1, M2N2 , M3N3, and In this article, we generalize our multivalent pairing
M4N4, each with frequency (1 � r), and 12 recombinants, model for fully informative markers (S. S. Wu et al.
M1N 2 , · · · , M 4N3 , each with frequency r. All these 2001) to take into account complexities due to the segre-
chromatids are randomly combined to form diploid gation of less informative or dominant marker types. For
gametes. Consider the first four modes of gamete forma- partially informative markers, the same zygote genotype
tion in Luo et al. (2004, Table 1), for which only marker can be formed due to the combination between differ-
� undergoes the double reduction. The first mode in- ent gametes with double reduction or with no double
cludes four gametes, M1M1/N1N1, M 2M 2/N2N2 , M 3M 3/ reduction. A two-stage hierarchical model is derived to
N 3N3 , and M 4M 4/N4N4 , for which there is no recombi- estimate the probabilities of gamete formation modes
nant for each chromatid. If the occurrence of double and therefore double reduction in the upper hierarchy
reduction at marker � is due completely to the double and estimate the recombination fraction in the lower
reduction at marker �, the frequency of this gamete hierarchy within the maximum-likelihood context im-
mode is simply expressed as �(1 � r)2. The third mode plemented with the EM algorithm. We undertake exten-
is composed of 12 gametes each with only one recombi- sive simulation studies to investigate statistical proper-
nant, i.e., M1M1/N1N 2 , M1M1/N1N3 , · · · , M 4M 4/N4N3, ties of our model and demonstrate its analytical and
and the frequency of this mode is expressed as 2�r(1 � biological advantages over existing models.
r), where the coefficient 2 accounts for the combination The derivation of our model centers on tetraploid
between different chromatids. The second and fourth species in which multivalent pairing is only one mecha-
modes each include the gametes that contain two re- nism for chromosomal pairings during meioses. This
combinants, with a total mode frequency of �r 2. The consideration should be relevant for two reasons. First,
second mode contains 12 gametes M1M1/N 2N 2 , M1M1/ many polyploids are multivalent in practice. Second, this
N 3N 3, · · · , M 4M 4/N3N3, whereas the fourth mode con- allows us to investigate better the impacts of the assump-
tains 12 gametes M1M1/N 2N 3 , M1M1/N2N 4 , · · · , M 4M 4/ tion on the estimation of linkage about two-marker ga-
N 3N 2 . It can be seen that the ratio of the second and mete formation modes expressed as a function of the
fourth mode frequencies is 1:2 because the former con- recombination fraction and double reduction at one
tains the same chromatid and the latter contains two marker in multivalent tetraploids. Indeed, our model
different chromatids. This provided a clue for Luo et can be extended to consider any tetraploids in which
al. to derive their probability distributions of the first both bivalent and multivalent pairings occur as pointed

out by Luo et al. (2004). Different from Luo et al.’sfour gamete formation modes. A similar idea can be
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treatment, however, we model these pairings as two with a frequency denoted by fi (i � 1, · · · 9). These 9
observable gamete modes were rearranged by S. S. Wucytogenetically related meiotic processes using Syben-

ga’s (1994) theory (Wu et al. 2004). et al. (2001) in matrix form expressed as

THE GAMETE MODEL

Fully informative markers: Our model focuses on a
tetraploid that undergoes only multivalent pairings. Let

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

a heterozygous multivalent tetraploid line be crossed
with a homozygous line to generate a so-called pseudo-
test backcross population. For such a population, the
genotypes of progeny are consistent with the genotypes
of gametes produced by the heterozygous parent and,
therefore, the derivation of our linkage analysis can be
based on the segregation of gametes. Not only is it
useful for the pseudo-test backcross design, but also this
gamete-based model provides an analytical clue for a

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

more complicated linkage analysis based on progeny
genotypes.

We use M1 , · · · , M4 and N1, · · · , N4 to denote different
alleles for markers � and �, respectively. There are 24
allelic configurations between the two markers, one of
which is shown in display (1). For simplicity, we use 1,
· · · , 4 to denote alleles, M1, · · · , M 4 or N1, · · · , N4 ,
at a marker. The recombination fraction (r) between
these two markers is estimated on the basis of the segre-
gation of recombinant and nonrecombinant gametes
observed in the offspring of the family under a particular

11 22 33 44 12 13 14 23 24 34

11 1⁄4 f 1
1⁄12 f 2

1⁄12 f 2
1⁄12 f 2

1⁄12 f 5
1⁄12 f 5

1⁄12 f 5
1⁄12 f 6

1⁄12 f 6
1⁄12 f 6

22 1⁄12 f 2
1⁄4 f 1

1⁄12 f 2
1⁄12 f 2

1⁄12 f 5
1⁄12 f 6

1⁄12 f 6
1⁄12 f 5

1⁄12 f 5
1⁄12 f 6

33 1⁄12 f 2
1⁄12 f 2

1⁄4 f 1
1⁄12 f 2

1⁄12 f 6
1⁄12 f 5

1⁄12 f 6
1⁄12 f 5

1⁄12 f 6
1⁄12 f 5

44 1⁄12 f 2
1⁄12 f 2

1⁄12 f 2
1⁄4 f 1

1⁄12 f 6
1⁄12 f 6

1⁄12 f 5
1⁄12 f 6

1⁄12 f 5
1⁄12 f 5

h � 12/21 1⁄12 f 3
1⁄12 f 3

1⁄12 f 4
1⁄12 f 4

1⁄6 f 7
1⁄24 f 8

1⁄24 f 8
1⁄24 f 8

1⁄24 f 8
1⁄6 f 9

13/31 1⁄12 f 3
1⁄12 f 4

1⁄12 f 3
1⁄12 f 4

1⁄24 f 8
1⁄6 f 7

1⁄24 f 8
1⁄24 f 8

1⁄6 f 9
1⁄24 f 8

14/41 1⁄12 f 3
1⁄12 f 4

1⁄12 f 4
1⁄12 f 3

1⁄24 f 8
1⁄24 f 8

1⁄6 f 7
1⁄6 f 9

1⁄24 f 8
1⁄24 f 8

23/32 1⁄12 f 4
1⁄12 f 3

1⁄12 f 3
1⁄12 f 4

1⁄24 f 8
1⁄24 f 8

1⁄6 f 9
1⁄6 f 7

1⁄24 f 8
1⁄24 f 8

24/42 1⁄12 f 4
1⁄12 f 3

1⁄12 f 4
1⁄12 f 3

1⁄24 f 8
1⁄6 f 9

1⁄24 f 8
1⁄24 f 8

1⁄6 f 7
1⁄24 f 8

34/43 1⁄12 f 4
1⁄12 f 4

1⁄12 f 3
1⁄12 f 3

1⁄6 f 9
1⁄24 f 8

1⁄24 f 8
1⁄24 f 8

1⁄24 f 8
1⁄6 f 7

,

(2)

where f 1 and f 2 are associated with double reductions
at both markers, f 3 and f 4 with double reductions only
at marker M, f 5 and f 6 with double reductions only at
marker N, and f 7–f 9 with nondouble reductions. From
matrix (2), we see that there are no, one, and two recom-
binant events in the cells (f 1), (f 3, f 5), and (f 2, f 4, f 6, f 9),
respectively. The cells (f 7) and (f 8) are each a mixture
of two different gamete formation mechanisms or con-
figurations (A and B), i.e., f 7 � f 7A � f 7B and f 8 � f8A �
f8B , with relative proportions determined by r. Because
different configurations contain different numbers of
recombination events, the expected number of recom-

linkage phase. However, as seen below, some gametes bination events in each cell, i.e., an observable gamete
genotype, should be the weighted average of the num-can be generated from different unobservable mecha-
ber of recombination events for each configuration.nisms between which there are different numbers of
S. S. Wu et al. (2001) used a matrix form (e) to countrecombinant events. S. S. Wu et al. (2001) implemented
the expected number of recombination events for eachthe EM algorithm to separate these different mecha-
observable gamete genotype expressed asnisms, which makes it possible to estimate the recombi-

nation fraction.
For a phase-known multivalent tetraploid, as shown

in display (1), that undergoes double reduction, a total
of 10 gametes, arrayed by (11, 22, 33, 44, 12, 13, 14, 23,
24, 34), for each of the two markers will be produced.
The first 4 gametes in the gamete array for each marker

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

are those due to double reduction, whereas the re-
maining 6 gametes are derived from nondouble reduc-
tion. The proportion of the double-reduction-derived
gametes to all the gametes is defined as the frequency
of double reduction indexed by � for marker � and by
� for marker �. The frequency of double reduction is
a constant for any given locus, with the value depending
on its distance from the centromere.

When two linked markers are segregating in a multiva-

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

lent tetraploid, a total of 136 diploid gamete formation
mechanisms are generated although only 100 gamete
genotypes are observable. On the basis of the presence/
absence of double reduction and the number of recom-
binant events, Fisher (1947) classified these 136 forma-
tion mechanisms into 11 gamete modes. Of these 11
gamete modes, however, only 9 can be observed, each

11 22 33 44 12 13 14 23 24 34

11 0 2 2 2 1 1 1 2 2 2

22 2 0 2 2 1 2 2 1 1 2

33 2 2 0 2 2 1 2 1 2 1

44 2 2 2 0 2 2 1 2 1 1

e � 12/21 1 1 2 2 2φ 1 � � 1 � � 1 � � 1 � � 2

13/31 1 2 1 2 1 � � 2φ 1 � � 1 � � 2 1 � �

14/41 1 2 2 1 1 � � 1 � � 2φ 2 1 � � 1 � �

23/32 2 1 1 2 1 � � 1 � � 2 2φ 1 � � 1 � �

24/42 2 1 2 1 1 � � 2 1 � � 1 � � 2φ 1 � �

34/43 2 2 1 1 2 1 � � 1 � � 1 � � 1 � � 2φ

,

(3)

where

φ �
r 2

10r 2 � 18r � 9
, (4)

� �
r

3 � 2r
. (5)

On the basis of matrices (2) and (3), we give the expres-
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sions for the frequencies of double reduction (� and which leads to
�) and the recombination fraction r in terms of fi as
follows: p̂ k �

�k(1 � �23
j�kp j)

�k � �23

,

� � f 1 � f 2 � f 3 � f 4 ; (6)
where

� � f 1 � f 2 � f 5 � f 6 ; (7)

�k �
pkLk(f |�, �)

�24
k��1p �k L�k(f |�, �)

.
r �

1
2
[ f 3 � f 5 � 2( f 2 � f 4 � f 6 � f 9) � 2φf 7 � (1 � �)f 8] . (8)

The MLE of pk can be used to determine an optimalIt can be seen that, to estimate the frequencies of
linkage phase.

double reduction and the recombination fraction, we
Partially informative markers: Whereas a fully infor-

need to first estimate the nine gamete mode frequen- mative marker with four distinct alleles 1, 2, 3, 4 pro-
cies. For fully informative markers, every cell in matrix duces 10 observable gametes in a multivalent tetraploid,
(2) is distinguishable. Thus, corresponding to the nine a partially informative markers produces 	10 observ-
observable gamete mode frequencies arrayed by f � able gamete genotypes because some of the four alleles
( f 1, · · · , f 9) shown in matrix (2), there are nine offspring are identical. For example, genotype 1122 produces an
observations n1, · · · , n9 (n � � 9

i�1ni) in a full-sib family. array of 10 gametes (11, 11, 22, 22, 11, 12, 12, 12, 12,
It is straightforward to derive the explicit expressions and 22) that are collapsed into three observable geno-
of the maximum-likelihood estimates (MLEs) for the types 11, 12, and 22. The marker genotype that produces
frequencies of these nine formation modes on the basis these three observable gamete genotypes can also be 1222
of the following likelihood function given the observed or 1112. However, because these three marker genotypes
marker data (� and �), 1222, 1122, and 1112 are phenotypically identical al-

though they produce different frequencies of gamete
L(f|�, �) � � n

n 1 · · · n 9
��

9

i�1

f n ii , (9) genotypes 11, 12, and 22, they will provide different
pieces of information for linkage analysis. R. L. Wu et
al. (2001) provided an algorithm to characterize markerfrom which we have
genotypes on the basis of their segregation patterns in
a progeny.f̂i �

ni

n
.

To clearly describe statistical algorithms for linkage
analysis using partially informative markers, we start withBy substituting the MLEs of f into Equations 6–8, we
a specific example, from which a more general algo-derive a closed-form solution for the EM algorithm to
rithm can be derived. Suppose we have marker geno-estimate �, �, and r . In the E-step, calculate the expected
types 1122 for marker � and 1122 for marker � for anumber of recombination events for each cell in matrix
heterozygous multivalent tetraploid. There are three3 using Equations 4 and 5. In the M-step, use the updated
possible linkage phases between these two markers ex-values from the E-step to estimate the MLEs of the parame-
pressed, in order, asters based on Equations 6–8. The E- and M-steps are iter-

ated until the estimates converge to stable values. 1
1 �11 �22 �22 � , 1

1 �12 �21 �22 � , 1
2 �12 �21 �21 � . (11)For a given data set, we need to estimate these parame-

ters under all possible parental linkage phases and
choose a most likely phase on the basis of the likelihood Each of these two markers has 3 gamete genotypes
values calculated by Equation 9. However, because of (11, 12, and 22), which form 9 joint gamete genotypes
the symmetrical effect, some different linkage phases with observations denoted in matrix form as
may have the same likelihood value. In this case, the
recombination fraction r should be used as a criterion;
the linkage phase corresponding to a small estimate of ⎡

⎢
⎢
⎢
⎣

r is a more correct one.
We take a further step to obtain the MLE of the probabil-

ity with which a linkage phase occurs in the heterozygous

⎤
⎥
⎥
⎥
⎦

tetraploid. Let pk (�24
k�1pk � 1) be the probability of the

kth phase for the tetraploid parent. For observed marker
data with unknown linkage phase, we formulate the
likelihood function on the basis of a polynomial mixture
expressed as

11 12 22

11 n 11
11 n 12

11 n 22
11

12 n 11
12 n 12

12 n 22
12

22 n 11
22 n 12

22 n 22
22

,

with n � n 11
11 � · · · � n 22

22 , where the superscripts and
subscripts denote the gamete phenotypes at markers �
and �, respectively. Under the assumption of the first
linkage phase, the 100 two-marker gamete genotypes
shown in the h matrix (2) are collapsed to 9 observ-
able genotypes with the gamete frequency matrix ex-L � �

24

k�1

pkLk(f |�, �), (10)
pressed as
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informative markers should be determined on the basis
of the likelihood values calculated under each phase.
Meanwhile, the linkage probabilities can be calculated.

⎡
⎢
⎢
⎢
⎢
⎣

The algorithm described above for two particular
markers can be generalized to any partially informative
markers. To do so, we need an automatic procedure
for deriving the collapsed gamete probability matrix

⎤
⎥
⎥
⎥
⎥
⎦

(hP) as shown in matrix (12) as an example. This can
be done by designing a left (dL) and right matrix (dR)
that aims to reduce the gamete frequency matrix (2) for
fully informative markers. Assume the second linkage
phase in display (11), and then we have

hP � dLhdT
R ,

11 11 12 22

hP � 12

1
6
(3 f 1 � f 2 � f 3 � f 5 � f 7)

1
6
(2 f 3 � 2 f 4 � f 8)

1
6
(2 f 2 � f 4 � f 6 � f 9)

1
6
(2 f 5 � 2 f 6 � f 8)

1
6
(4 f 7 � 2 f 8 � 4 f 9)

1
6
(2 f 5 � 2 f 6 � f 8)

22

1
6
(2 f 2 � f 4 � f 6 � f 9)

1
6
(2 f 3 � 2 f 4 � f 8)

1
6
(3 f 1 � f 2 � f 3 � f 5 � f 7)

,

(12)

where each cell is indexed by Fi1…iL , that is, the sum of
the corresponding gamete mode frequencies, fi1, · · · , fiL ,
multiplied by the coefficients specified in the matrix.
For example, F12357 � 3f 1 � f 2 � f 3 � f 5 � f 7 ; the same
is held for the rest.

We derive a two-stage hierarchic model for the EM
algorithm to estimate the MLEs of the gamete mode fre- where
quencies and the recombination fraction. In the E-step at
the upper hierarchy, we calculate the expected propor-
tion of one particular gamete mode il (shown by the dL �

⎡
⎢
⎢
⎢
⎣

1 1 0 0 1 0 0 0 0 0

0 0 0 0 0 1 1 1 1 0

0 0 1 1 0 0 0 0 0 1

⎤
⎥
⎥
⎥
⎦

,
superscript) to all the L possible gamete modes in each
cell of matrix (12), i.e.,

and
F i li 1···i l···iL �

fi l

Fi 1···i l···iL

.

These proportions are used to provide the MLEs of the dR �

⎡
⎢
⎢
⎢
⎣

1 0 1 0 0 1 0 0 0 0

0 0 0 0 1 0 1 1 0 1

0 1 0 1 0 0 0 0 1 0

⎤
⎥
⎥
⎥
⎦

.
gamete mode frequency f i in the M-step on the basis of

f̂ 1 �
1
n

[3F 1
12357(n 1

1 � n 2
2)] , For any particular pair of markers, left and right design

matrices can be determined on the basis of marker
genotypes and linkage phases.f̂ 2 �

1
n

[F 2
12357(n 1

1 � n 2
2) � 2F 2

2469(n 1
2 � n 2

1)] ,

THE ZYGOTE MODELf̂3 �
1
n

[F 3
12357(n 1

1 � n 2
2) � 2F 3

348(n 12
1 � n 12

2 )],
Consider two outbred multivalent tetraploids that are

crossed to generate a full-sib family for the construction
f̂4 �

1
n

[F 4
2469(n 1

2 � n 2
1) � 2F 4

348(n 12
1 � n 12

2 )], of a linkage map. For two fully informative markers at
each of which there are eight different alleles between
the two parents, the zygote genotype for an offspringf̂5 �

1
n

[F 5
12357(n1

1 � n 2
2) � 2F 5

568(n 1
12 � n 2

12)] ,
can be uniquely determined by the genotypes of two
gametes each derived from a different parent. Because

f̂6 �
1
n

[2F 6
568(n 1

12 � n 2
12) � F 6

2469(n 1
2 � n 2

1)], each parent produces (10 
 10) gamete genotypes as
shown in matrix (2), we have a total of 10,000 observable
zygote genotypes that can be expressed in a (10 
 10) �

f̂7 �
1
n

[F 7
12357(n 1

1 � n 2
2) � 4F 7

789n 12
12] , (10 
 10) matrix, where � is the Kronecker product.

All these observed zygote genotypes can be sorted into
nine distinct gamete modes for each of the two parents,f̂8 �

1
n

[F 8
568(n 1

12 � n 2
2) � F 8

348(n 12
1 � n 12

2 ) � 2F 8
789n 12

12] ,
from which we can obtain the MLEs of various gamete
mode frequencies for one parent ( f i) and the second

f̂9 �
1
n

[F 9
2469(n 1

2 � n 2
1) � 4F 9

789n 12
12] . parent (gi). These estimated f̂ i and ĝi values are then

used to estimate the frequencies of double reductions
and the recombination fraction between the two linkedWith the MLEs of these f i’s, the frequencies of double

reduction are then estimated using Equations 6 and 7. markers with the EM algorithm described in the ga-
mete model.At the lower hierarchy, the EM algorithm is imple-

mented to estimate the MLE of the recombination frac- The most challenging aspect for linkage analysis in a
full-sib family is the development of statistical modelstion on the basis of the updated fi values using Equa-

tions 4, 5, and 8. As in the case for fully informative with partially informative markers. This is due to the
fact that the same genotypes will be collapsed at bothmarkers, the most likely linkage phase for two partially
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the gamete and zygote levels. Consider two crossed par- reduction between the two markers is bounded by two
times the recombination fraction in tetraploid. We canents with a combination of parental linkage phases be-

tween two linked markers expressed as also test whether position-dependent double reductions
follow a particular pattern (Butruille and Boiteux
2000).1

1 �11 �22 �22 � 

1
1 �11 �22 �22 � . (13)

It is imperative that our linkage model is examined in
terms of its estimation precision and power. The statistical

We have provided the collapsed matrix (12) for observed behavior of a model can be investigated through two
gamete mode frequencies for one parent under this link- approaches, one based on the calculation of informa-
age phase. Let h (1)

P � (Fi 1···iL)3
3 and h (2)
P � (Gi 1···iL)3
3 be tion amount and the other based on simulation studies.

such collapsed matrices for the two parents, respectively, The information matrix of parameter estimates can be
with Fi 1···i L

and Gi 1···iL defined in matrix (12). Thus, the estimated by calculating the asymptotic (co)variance
frequencies of distinct zygote genotypes between the matrix of the MLEs of the model parameters that in-
two parents are the Kronecker product of these two clude the frequencies of double reduction and recombi-
collapsed matrices, i.e., nation fraction. The standard statistical methods based

on the expectation of the second derivatives of the likeli-HP � h (1)
P � h (2)

P . (14)
hood function can be used to estimate such an asymp-

The above distinct zygote genotype frequencies will fur- totic (co)variance matrix. As the frequencies of double
ther be collapsed according to three marker types. For reduction are estimated from the gamete mode frequen-
the first marker type, an exact correspondence between cies, the sampling variances of the MLEs of these param-
marker phenotypes and marker genotypes exists. As a eters are also estimated through the gamete mode fre-
result of this correspondence, marker genotypes with dif- quencies.
ferent allele dosages, e.g., 1112, 1122, and 1222, are pheno- We performed extensive simulation studies to investi-
typically different. According to this genotype model, we gate the statistical behavior of our model for linkage
will have five phenotypically observable zygote geno- analysis in multivalent tetraploids. We simulate a full-
types 1111, 1112, 1122, 1222, and 2222 for marker cross sib family of different sample sizes (n � 100, 200, and
type 1122 
 1122. For a two-marker cross type shown in 400) by crossing two multivalent tetraploid parents, in
display (13), we will obtain a 5 
 5 matrix for observable a range of double reduction (0.05–0.30) and recombi-
zygote genotype frequencies collapsed from the 9 
 9 nation fraction (0.05 and 0.25). The means of the MLEs
matrix of Equation 14. The second marker type is that of these parameters and their standard errors based on
in which marker genotype is not dependent on allele 1000 simulation replicates under the genotype model
dosage. Such noncorrespondence makes marker geno- are illustrated in Table 1. Our model provides reason-
types 1112, 1122, and 1222 phenotypically identical. able estimates of all the model parameters. The preci-
Using 1, 12, and 2 to denote three possible zygote phe- sion of the MLEs, as assessed by the standard errors,
notypes for a marker, this so-called phenotype model has increases for all the parameters with increased sample
a 3 
 3 collapsed zygote genotype frequency matrix. sizes and with increased degrees of linkage. Different
The last marker type is dominant markers for any of degrees of double reduction can be precisely estimated.
which there are only two phenotypes for a marker. Thus, The percentage of correctly determining a parental link-
the dominant model has a 2 
 2 zygote genotype fre- age phase is high, increasing with sample size and the
quency matrix collapsed from matrix (14). The detailed degree of linkage.
structures of zygote genotype frequency matrix under As expected, the estimation precision of the model
the genotype, phenotype, and dominant models will be parameters is a function of marker type. As compared
provided upon request. With these known structures, it to fully informative markers (S. S. Wu et al. 2001), the
is not difficult to derive the EM algorithm to estimate recombination fraction between partially informative
observed gamete mode frequencies for two parents ( fi markers is more difficult to estimate for the same sample
and gi). size and linkage degree. Of the three parent cross types

simulated in this study, 1122/1122 
 1111/1111 is the
most informative, providing the best estimates of the re-

RESULTS
combination fraction (Table 1). Parent cross type 1122/
1122 
 1122/1122 is better in estimating a stronger link-After the model parameters are estimated under a

most likely linkage phase, we need to make statistical age (r � 0.05) than 1122/1112 
 1122/1112, but the
inverse seems true in estimating a looser linkage (r �hypothesis tests for the frequencies of double reduction

(�̂ and �̂) and the recombination fraction (r̂) between 0.25). For parent cross type 1122/1112 
 1122/1112,
double reduction can be better estimated for markertwo linked markers. In each case, traditional log-likeli-

hoodratio test statistics can be appropriately formulated 1122 than for 1112.
The same simulation scheme was also used to test ourand calculated under two alternative hypotheses. S. S. Wu

et al. (2001) mentioned that the difference of double statistical methods under the phenotype and dominant
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TABLE 1

The MLEs of the frequencies of double reduction (�, �) and the recombination fraction (r) and
their standard errors (in parentheses) estimated from the genotype model for a simulated

full-sib family with a sample size of n � 100, 200, and 400

n � � r �̂ �̂ r̂ %1 %2 %3

Parental cross type 1122/1122 
 1111/1111
100 0.05 0.1 0.05 0.047 (0.0259) 0.098 (0.0283) 0.057 (0.0251) 95.4 0 4.6
200 0.05 0.1 0.05 0.048 (0.0244) 0.099 (0.0264) 0.056 (0.0183) 97.8 0 2.2
400 0.05 0.1 0.05 0.047 (0.0184) 0.098 (0.0198) 0.054 (0.0132) 99.4 0 0.6
100 0.10 0.3 0.25 0.111 (0.0598) 0.307 (0.0654) 0.271 (0.0682) 87.6 3.8 8.6
200 0.10 0.3 0.25 0.104 (0.0458) 0.300 (0.0492) 0.264 (0.0498) 88.0 4.4 7.6
400 0.10 0.3 0.25 0.103 (0.0343) 0.303 (0.0365) 0.261 (0.0669) 86.8 3.2 10.0

Parental cross type 1122/1122 
 1122/1122
100 0.05 0.1 0.05 0.049 (0.0276) 0.102 (0.0405) 0.068 (0.0397) 81.0 0 19.0
200 0.05 0.1 0.05 0.048 (0.0217) 0.096 (0.0312) 0.064 (0.0308) 88.6 0 11.0
400 0.05 0.1 0.05 0.049 (0.0155) 0.095 (0.0240) 0.060 (0.0219) 94.7 0 5.3
100 0.10 0.3 0.25 0.115 (0.0598) 0.305 (0.0721) 0.273 (0.0620) 88.0 2.6 9.4
200 0.10 0.3 0.25 0.102 (0.0472) 0.298 (0.0552) 0.268 (0.0729) 87.2 3.4 9.4
400 0.10 0.3 0.25 0.105 (0.0365) 0.302 (0.0422) 0.260 (0.0311) 85.2 2.5 12.3

Parental cross type 1122/1122 
 1122/1122
100 0.05 0.1 0.05 0.049 (0.0297) 0.101 (0.0325) 0.056 (0.0200) 96.3 0 3.7
200 0.05 0.1 0.05 0.048 (0.0228) 0.100 (0.0252) 0.055 (0.0141) 98.7 0 1.3
400 0.05 0.1 0.05 0.048 (0.0186) 0.099 (0.0193) 0.053 (0.0096) 99.5 0 0.5
100 0.10 0.3 0.25 0.108 (0.0603) 0.277 (0.0891) 0.279 (0.1076) 75.3 0 24.7
200 0.10 0.3 0.25 0.105 (0.0416) 0.288 (0.0661) 0.275 (0.0732) 80.6 0 19.4
400 0.10 0.3 0.25 0.101 (0.0310) 0.292 (0.0439) 0.272 (0.0565) 88.2 0.1 11.7

%1, %2, and %3 are the percentages of the simulation replicates that correctly determine, cannot determine,
and incorrectly determine the linkage phase for a given parent cross type, respectively, among 1000 simulation
replicates.

models (results not shown). Compared to the genotype to simulate a second data set based on our model. This
data set was analyzed simultaneously by our and Luo etmodel, these two models have markers that are less

informative. But our model is still able to provide reli- al.’s models, with the results shown in Table 2. Our
model provides precise estimates of all the parametersable estimates of all the model parameters for these
for the case on which our model was derived. But themarkers, although the estimation precision is reduced
estimates from Luo et al.’s model were biased for theespecially for loosely linked markers and smaller sample
three parameters. The estimation of r from their modelsizes.
has a larger sampling error than our estimation. ForComparison with Luo et al.’s (2004) model: Luo et al.
the two markers with a looser linkage (r � 0.25) andproposed a simplified model for characterizing nine
larger double reduction, Luo et al.’s model providedgamete mode frequencies (see their Table 1). To dem-
highly biased and imprecise estimates for the recombi-onstrate the advantage of our model over Luo et al.’s
nation fraction and double reduction (Table 2). Formodel, we performed an additional simulation study
example, Luo et al.’s model estimated r � 0.25 as r̂ �based on the simulation scheme by these authors. They
0.347 with a sampling error of 0.112, whereas these twoused a parameter, �, to specify the relative proportion
estimated values from our model were 0.256 and 0.036.of bivalent and quadrivalent pairings. When � is zero,
Our reciprocal-simulation studies suggest that our modelall chromosomal pairings are quadrivalent. On the basis
has broader adaptation to different situations than Luo etof � � 0, � � 0.10, and r � 0.10, we used the Luo et
al.’s model. In practice, Luo et al.’s model can be viewedal. model to simulate 200 full-sib progeny from two
as a special case of our model, although a biological justifi-tetraploid parents, 1220/1222 and 2355/1130. Table 2
cation of their model is unclear.describes the means and standard errors of the MLEs

from our model, compared with those from Luo et al.’s
model. The consistency of the results between the two

DISCUSSIONmodels suggests that our model can deal well with the
case on which Luo et al. derived their model. Double reduction is an important cytological charac-

teristic of polyploids that undergo multivalent chromo-We used the same values of parameters (�, �, and r)
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TABLE 2

Results from a reciprocal analysis

Analytical model � � r �̂ �̂ r̂ log L %1 %2 %3

Data simulated by the Luo et al. model
Wu-Ma 0.10 0.14 0.10 0.101 (0.028) 0.139 (0.027) 0.105 (0.028) �687 100 0 0
Luo et al. 0.10 0.14 0.10 0.100 (0.026) 0.139 (0.020) 0.103 (0.029) �688 100 0 0

Data simulated by the Wu-Ma model
Wu-Ma 0.10 0.14 0.10 0.097 (0.031) 0.141 (0.028) 0.100 (0.025) �742 100 0 0
Luo et al. 0.10 0.14 0.10 0.089 (0.026) 0.134 (0.021) 0.113 (0.034) �765 100 0 0
Wu-Ma 0.10 0.30 0.25 0.096 (0.023) 0.295 (0.034) 0.256 (0.036) �683 100 0 0
Luo et al. 0.10 0.30 0.25 0.109 (0.035) 0.209 (0.092) 0.347 (0.112) �691 97 0 3

The data simulated by our (Wu-Ma) and Luo et al.’s models are analyzed by the two models, respectively. The marker cross
type for a full-sib family of size n � 200 is the one used by Luo et al., expressed as 1220/1222 
 3455/1130. log L is the mean
of the log-likelihood values obtained from 200 simulations. See Table 1 for explanations of the other parameters.

somal pairings during meiosis. Double reduction may mete segregation patterns. With clear analytical lines,
our model is readily expanded to a full-sib family derivedplay a significant role in plant evolution and the mainte-

nance of genetic polymorphism in natural populations. from two heterozygous parents in the second step. Ex-
tensive simulation studies were carried out to investigateMoreover, coupled with the crossing-over events be-

tween different chromosomes, double reduction affects the statistical behaviors of our model. It is robust in that
the frequencies of double reduction and the recombina-the patterns of gene cosegregation and therefore link-

age analysis. S. S. Wu et al. (2001) have, for the first time, tion fraction can be reasonably estimated in a range of
sample sizes and parameter values. The model, incorpo-devised a maximum-likelihood approach, implemented

with the EM algorithm, to integrate double reduction rated within a mixture-likelihood function based on a
multinomial distribution, has power to estimate the proba-into linkage analysis in tetraploids. Wu et al.’s model made

use of 11 different classifications of two-locus gamete for- bilities of any possible parental linkage phases between
two given markers and further determine the most likelymations, derived by Fisher (1947), during tetraploid mei-

osis and has proven to be powerful for simultaneous esti- one for the estimation of their linkage.
Although our presentation was based on a particularmation of the frequencies of double reduction and the

recombination fraction between different loci. parent cross type, the model has been extended to several
practically important situations. These, implemented in aTo clearly present their ideas, S. S. Wu et al.’s (2001)

model was derived on the basis of fully informative mark- more complete computer package, include an unknown
dosage of alleles, the existence of null alleles, ambiguousers in which alleles are all different among homologous

chromosomes between two parents used for a cross. For parent cross type, and the mixture of bivalent and mul-
tivalent pairings. This package allows for the test ofa polyploid genome project, although fully informative

markers are the important target for extracting the in- various hypotheses regarding the degree of double re-
duction and the recombination fraction and has theformation for genetic polymorphisms, some other less

informative markers are also widely used in part because capacity to calculate the sampling errors of the MLEs
of the model parameters through the asymptotic (co)-their inclusion can reflect a more comprehensive pic-

ture of the structure and organization of the polyploid variance of their MLEs.
We have focused the model derivation on a tetraploidgenome and they are economically cheaper to obtain.

In this article, a more general model has been developed that undergoes only multivalent pairing. Because many
species belong to such multivalent tetraploids, this modelfor linkage analysis between any type of partially infor-

mative markers in a multivalent tetraploid. This new will find its immediate application in practice. However,
there are also some species that display both bivalentmodel preserves the advantages of the earlier model by

S. S. Wu et al. (2001), but will be more broadly useful and multivalent pairings. Luo et al. (2004) attempted
to model the mixed bivalent and multivalent pairings byin practice.

To better describe our model, we have taken two subse- defining an additional proportion parameter �. While
statistically reasonable, their approach seems not to bequent steps toward a complete understanding of linkage

analysis in multivalent tetraploids. Our work in the first founded on solid cytological mechanisms for meiosis
in a polyploid. They treated bivalent and multivalentstep is based on a simpler pseudo-test backcross design

in which one parent is heterozygous whereas the other pairings as two totally different meiotic processes. This
may not always be correct if the degree of multivalentis null. Thus, our modeling process of gene cosegrega-

tion in the progeny can take advantage of simpler ga- pairings depends on the relative relatedness among dif-
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