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ABSTRACT
Genetic analysis of gene expression in a segregating population, which is expression profiled and

genotyped at DNA markers throughout the genome, can reveal regulatory networks of polymorphic genes.
We propose an analysis strategy with several steps: (1) genome-wide QTL analysis of all expression profiles
to identify eQTL confidence regions, followed by fine mapping of identified eQTL; (2) identification of
regulatory candidate genes in each eQTL region; (3) correlation analysis of the expression profiles of the
candidates in any eQTL region with the gene affected by the eQTL to reduce the number of candidates;
(4) drawing directional links from retained regulatory candidate genes to genes affected by the eQTL
and joining links to form networks; and (5) statistical validation and refinement of the inferred network
structure. Here, we apply an initial implementation of this strategy to a segregating yeast population. In
65, 7, and 28% of the identified eQTL regions, a single candidate regulatory gene, no gene, or more
than one gene was retained in step 3, respectively. Overall, 768 putative regulatory links were retained,
331 of which are the strongest candidate links, as they were retained in the expression correlation analysis
and were located within or near an eQTL subregion identified by a multimarker analysis separating
multiple linked QTL. One or several biological processes were statistically significantly overrepresented
in independent network structures or in highly interconnected subnetworks. Most of the transcription
factors found in the inferred network had a putative regulatory link to only one other gene or exhibited
cis-regulation.

THE identification of individual genes and gene net- expression data in a segregating population. The ex-
works underlying complex traits is a fundamental pression profile of each gene is treated as a quantitative

aim of genetics. Quantitative trait locus (QTL) mapping trait (QT), which is potentially affected by multiple QTL
is a method that identifies genomic regions associated [so-called expression QTL (eQTL)].
with a phenotype of interest (Korstanje and Paigen QTL analysis of gene expression profiles identifies
2002). Large-scale gene expression data acquired from genomic regions, which are likely to contain at least
microarray experiments (Schena et al. 1995; Lockhart one causal gene with regulatory effect on the gene,
et al. 1996) provide information about regulatory rela- whose expression profile is affected by the eQTL. If the
tionships between genes. Most approaches to transcrip- causal gene underlying a QTL affecting the expression
tion network inference rely on expression profiling profile of another gene is identified, then a directed
alone, and these microarray experiments are either link from the causal gene to the expression profiled
based on external environmental perturbations (Caus- gene could be established to indicate a regulatory rela-
ton et al. 2001) or single-gene perturbations in the tionship. By joining all identified links, genetic networks
otherwise same, homogeneous genetic background are constructed. This task is difficult, however, because
(Ideker et al. 2001). Recently, a strategy to infer genetic QTL regions are generally large (up to several centi-
networks from multifactorial genetic perturbations was morgans), and hence each region may contain several
proposed and named “genetical genomics” (Jansen and to many putative causal genes. Functional validation of
Nap 2001). This method combines QTL mapping and many candidate causal genes is not feasible, and hence
expression profiling via joint analysis of genotype and computational methods are needed to reduce the num-

ber of candidate genes in each QTL region. This reduc-
tion can be achieved in two steps, first by reducing the
lengths of the initial QTL regions by using existing fine-1Present address: Discovery Research, GlaxoSmithKline Pharmaceuti-
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the expression profiles of the candidate genes in an gene. We computed confidence intervals for the identi-
fied eQTL, determined a set of genes physically locatedeQTL region and the gene affected by this eQTL. A

substantial reduction in the number of causal genes will within each eQTL confidence region using the se-
quenced yeast genome map, and reduced the numberthen allow us to propose a finite set of candidate genetic

networks immediately or to perform a small and feasible of candidate causal genes in each eQTL region by corre-
lation analysis of expression. Directional links were es-number of validation studies prior to network inference.

Our proposed correlation analysis of the expression tablished from the remaining candidate causal gene(s)
in each eQTL region to the gene affected by the QTL,profiles of the candidate genes in an eQTL region and

the gene affected by the QTL rests on the assumption and these links were joined for gene network inference.
that genes belonging to the same pathway or network
tend to have strong correlations between their expres-

METHODS
sion values. This assumption has been used extensively
in cluster analysis (Eisen et al. 1998) and construction Single-marker analysis of gene expression profiles:

We used the gene expression and genotype data fromof coexpression gene networks (Stuart et al. 2003).
Correlation analysis of all expression-profiled genes in the 40 Saccharomyces cerevisiae haplotypes (Brem et al.

2002). The data set contains 6215 gene expression val-a microarray experiment (e.g., Stuart et al. 2003), with-
out QTL analysis, may produce many spurious associa- ues and genotypes at 3312 markers for each haplotype.

In the previous analysis of this data set (Brem et al.tions or may miss many associations under strict control
of type I error or false discovery rates. However, after 2002), a significant QTL was identified for 570 gene

expression profiles using nonparametric, single-markerQTL analysis has identified eQTL regions for the expres-
sion profiles, significant expression correlation of candi- analysis based on the Wilcoxon-Mann-Whitney test and

a significance threshold of P � 5 � 10�5. Only the mostdate gene(s) in a QTL region with the gene affected
by the QTL should tend to indicate real functional re- significant marker across the entire yeast genome was

determined for each of the 570 gene expression profiles.lationships. We note that correlation among gene ex-
pression profiles does not reflect all of the functional It is certainly possible that there are multiple significant

QTL for some of the gene expression profiles. We usedrelationships among genes. A genetic variant in the pro-
tein-coding region of a gene may not affect this gene’s the same nonparametric analysis for an initial genome

scan and the same P-value threshold to detect QTL, butexpression, but the variant may change the expression
levels of other genes. As with other current approaches, we retained the most significant QTL per chromosome.

For the list of all 6215 � 3312 P-values, we estimatedwe can only partially reconstruct a regulatory network.
We applied our approach to data from a yeast study Q -values as described by Storey and Tibshirani (2003),

and the highest Q - value in the set of Q - values corre-(Brem et al. 2002), which is the first, large-scale experi-
ment on genetic dissection of genome-wide expression sponding to all tests with the P-value below the 5 � 10�5

threshold was our estimate of the maximum, long-runprofiling. The authors performed QTL mapping by non-
parametric marker analysis of expression profiles in 40 false discovery rate (FDR). However, the Q -value method

relies on an assumption of “weak dependence,” whichhaplotypes from a cross between a laboratory strain and
a wild strain of yeast. The expression profiles of 570 is likely to be violated here, as we are testing not only

many expression profiles, but also many genome posi-genes were found to be affected by at least one signifi-
cant QTL (the authors retained only the single, most tions. A related criterion, the proportion of false posi-

tives (PFP) (Fernando et al. 2004), does not depend onsignificant eQTL for each profile). For 32% of the 570
genes with an identified eQTL region, their own ge- either the number of tests or the correlation structure

among tests. To estimate the PFP, it is necessary tonome location was within the QTL region, indicating
cis -regulation. Moreover, eight trans -acting loci were estimate the proportion of true null hypotheses, and

several methods are currently available (see Fernandofound to affect the expression of groups of genes with
7 to 94 members representing genes of related function et al. 2004). Here we use the estimate of the proportion

of true null hypotheses that is obtained with the resam-(Brem et al. 2002).
This experiment (Brem et al. 2002) was very successful pling method in the Q - value algorithm. The estimate

of PFP is calculated as PFP(�) � � � N � �/R(�),in identifying QTL regions for gene expression profiles;
however, the authors did not attempt to reconstruct where � is the comparisonwise type I error rate, N is

the total number of tests, � is the estimated proportiongenetic networks via identification of candidate causal
genes within QTL regions. An extended study of the of true null hypotheses, and R(�) is the total number

of rejected null hypotheses at level �.yeast experiment identified two genes responsible for
the trans -acting loci via positional cloning and func- Identification of QTL confidence intervals and lists

of candidate genes: A confidence interval (C.I.) wastional analysis (Yvert et al. 2003). Here, we reanalyzed
the data from the first yeast study (Brem et al. 2002). computed for each retained, significant eQTL via a

bootstrap resampling method (Visscher et al. 1996).We performed QTL mapping, but in contrast with the
previous analysis (Brem et al. 2002) we allowed for multi- Bootstrap samples were created by sampling, with re-

placement, the set of expression values together withple QTL affecting the expression profile of a single
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the set of marker genotypes of any of the 40 haplotypes. markers with the largest t-statistics associated with their
partial regression coefficients. We also determined allMarker analysis was performed on each of 1000 boot-

strap data sets. For each chromosome with a significant pairs of consecutive markers with significant (at the
0.05 level) partial regression coefficients and with pairsQTL affecting a given expression profile in the original

data set, the QTL position with the highest test statistic separated by nonsignificant markers in each QTL re-
gion. We then determined which of the candidate causalwas retained for each of the 1000 bootstrap samples.

The 95% C.I. of the QTL position was then determined genes in any QTL region were located within the subre-
gions flanked by the significant marker pairs. If a candi-by taking the largest and smallest value of the bottom

and top 2.5%, respectively, of the ordered 1000 QTL date gene was found to be located in a subregion, then
this gene was identified as a strong causal candidate.positions.

This bootstrap procedure tends to be conservative Identification of candidate genes via expression cor-
relation tests: For each gene included in the gene listand produce relatively large C.I.s, especially when the

QTL effect is small (Dupuis and Siegmund 1999). Selec- of any eQTL confidence interval, the Spearman correla-
tion coefficient (appendix a) between the expressiontive bootstrap resampling has been advocated to reduce

the length of the confidence interval (Lebreton et al. profile of this gene and the profile of the gene affected
by the eQTL was computed. The value of each correla-1998). Because it is not clear what selection criterion

should be used, we applied two selection strategies, tion coefficient was tested for significant departure from
zero via a t -test (appendix b). The P-value threshold waswhich retained only those bootstrap samples whose most

highly significant QTL on a given chromosome achieved Bonferroni adjusted as 0.05/n, where n is the number of
genes in each confidence interval. The gene with thea P-value �0.001 and 0.00005, respectively.

For each identified eQTL region, a list of genes physi- most significant correlation coefficient was identified
(say gene G1) and first-order partial correlation coeffi-cally located in the C.I. was formed using the yeast

physical genome map (Goffeau et al. 1996). One or cients (appendix c) were computed between each of
the other genes and the gene affected by the eQTL,several of these genes may have causal, regulatory effects

on the expression level of the gene affected by the QTL. conditional on G1. The P-value threshold for the first-
order partial correlations was Bonferroni adjusted asBelow we describe two strategies to reduce the number

of causal candidate genes in the gene list of each eQTL. 0.05/(n � 1), where n � 1 is the number of first-order
partial correlation coefficients tested. If at least one ofMultimarker analysis of gene expression profiles: Un-

necessarily large QTL confidence intervals can also re- these correlations was significant, then the most signifi-
cant gene was retained (say gene G2) and the processsult from the presence of multiple QTL in the same

chromosome affecting the same expression profile. We was continued by computing second-order partial corre-
lations conditional on G1 and G2, etc. In this way, atherefore reanalyzed the identified eQTL regions with

a simple method capable of resolving multiple linked single candidate regulatory gene (G1) was retained for
each eQTL, or in some cases several causal candidateQTL as described previously (Thaller and Hoeschele

2000). We performed sliding three-marker regression, genes (G1, G2, . . .) were retained.
Construction of the network: For any eQTL confi-where a marker (i) is fit together with its flanking mark-

ers (i � 1, i � 1). Significant effect on expression is dence interval, where the list of candidate genes was
reduced to one or few members as described above, atested only for the intermediate marker, whose partial

regression coefficient has a nonzero expected value if directional link was drawn from each of these retained
candidate genes to the gene whose expression profileand only if at least one QTL is located between markers

i � 1 and i or between i � 1 and i (Zeng 1993). Markers was affected by the QTL. The genetic network was con-
structed by combining all links. The network structurei � 1 and i � 1 were chosen such that they did not

perfectly cosegregate with the marker they flanked. This was displayed using the network drawing software Cyto-
scape (Shannon et al. 2003), where a node representsanalysis is performed consecutively for each marker in

the QTL region of interest. If there is a single QTL in a gene, and a directional arrow represents a putative
regulatory relationship. Positive Spearman correlationthe confidence interval, only the two markers flanking

the QTL have a nonzero expected partial correlation values were plotted in red and negative correlations in
blue. If the candidate gene was located within a 1-kbvalue in their respective three-marker analyses. There-

fore, a single pair of consecutive markers with a nonzero, region of a subinterval (identified by sliding three-
marker regression as described), the link was plottedsignificant partial regression coefficient in a QTL region

would indicate a single QTL, while more than one such darker than those links where the candidate gene did
not colocalize with a subinterval. Selected yeast genepair of markers would indicate several QTL. Pairs of

markers with large, significant partial regression coeffi- ontology (GO) (Ashburner et al. 2000) terms were
color plotted on the nodes. The GO biological processcients, separated by nonsignificant markers, would indi-

cate several QTL separated by at least one empty marker terms were mostly manually picked with the help of
“GO term finder” (http://genome-www4.stanford.edu/interval in between.

In this study, for each QTL confidence region pre- cgi-bin/SGD/GO/goTermFinder), with the aim of find-
ing common GO terms within subnetworks and differ-viously identified, we determined the pair of consecutive
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ent GO terms across subnetworks. Some genes were
involved in more than one selected GO term. In that
case, a randomly selected GO term was color plotted.
Genes with an unknown biological process term were
plotted gray. Gene transcription factors (as defined in
yeast gene ontology) were identified in the inferred
network and plotted as squared nodes.

RESULTS

In addition to the previously identified detected 570
QTL (Brem et al. 2002), an additional 11 QTL were
detected at the P � 5 � 10�5 level using single-marker
analysis based on the Wilcoxon-Mann-Whitney test and
by retaining the most significant QTL per chromosome
rather than in the entire genome. Using the Q-value
algorithm of Storey and Tibshirani (2003), we ob-
tained an estimate of the overall proportion of true null
hypotheses among all 6215 � 3312 tests, which was equal
to 0.92. In the set of all tests with P � 5 � 10�5, the
largest Q - value was 0.1171, which is the estimate of the Figure 1.—Plot of the genome location of an expression-

profiled gene (y -axis) vs. the genome location of a DNAmaximum, long-run FDR. We then estimated the PFP
marker significantly affecting the expression profile (x -axis).(Fernando et al. 2004) at the P � 5 � 10�5 level. The
The x - and y -axes represent the entire yeast genome consistingestimated proportion of true null hypotheses, obtained
of 16 chromosomes of unequal length. A diagonal point repre-

with the resampling method of the Q - value algorithm, sents a DNA marker with genome location very close to the
was 0.92. We used this number, together with the total location of the gene, whose expression profile is significantly

affected by this marker. An off-diagonal point indicates annumber of tests equal to 6215 � 3312, and with the
expression-profiled gene, whose genomic location is differenttotal number of rejected null hypotheses at level P �
from the location of a marker significantly affecting the expres-5 � 10�5 equal to 8072, in the estimation equation for
sion.

the PFP. The resulting estimate of the PFP was 0.1173,
which is very similar to the Q - value-based FDR estimate.
FDR, positive FDR, and PFP (Storey and Tibshirani

genome, which means that these genes with common2003; Fernando et al. 2004) are expected to give very
QTL do not represent merely jointly regulated genessimilar results under weak dependence. However, we
in the same chromosomal region.believe that further research that investigates this as-

The length of the QTL confidence intervals, obtainedsumption and assesses, probably by using simulated
by bootstrapping (without selection), varied with a mini-data, the accuracy of various FDR and PFP estimates is
mum distance of 66 bp, a maximum distance ofrequired for the case, where the set of test statistics
1,319,588 bp, and a median distance of 93,476 bp. Therepresents both genome-wide marker typing and expres-
number of genes within an interval ranged from zerosion profiling. On the basis of our current estimates of
to 717, with a median of 49. The number of genes inPFP and FDR, we expect that at most 68 of the 581
a C.I. was highly correlated (coefficient of 0.98) withdetected QTL are false positive findings.
the length of the interval. The average confidence inter-The genomic locations of DNA markers were plotted
vals for the two selective bootstrapping methods wereagainst the genome locations of those genes whose ex-
smaller than the average C.I. from the original bootstrappression profiles they significantly affect (Figure 1). A
analysis; however, the lists of candidate regulatory genesdiagonal (off-diagonal) point represents a DNA marker
retained in the intervals after the correlation test werewith a genome location very close to (different from)
very similar across all three bootstrapping methods (re-the location of a gene, whose expression profile is sig-
sults not shown).nificantly affected by this marker. Hence, a diagonal

The number of candidate genes in each eQTL inter-point represents a putative cis -regulation, while an off-
val was reduced by evaluating the significance of simplediagonal point is a putative trans -regulation. The dense
and partial Spearman correlations between the expres-distribution of diagonal points across the yeast genome
sion profile of each candidate gene and the expressionindicates a large proportion of cis -regulations. As indi-
profile of the gene affected by the eQTL and sequen-cated in the previous study (Brem et al. 2002), groups
tially retaining the most significant candidate gene atof expression-profiled genes shared common QTL re-
each stage, as described in methods. In �65% of thegions. Within a group, the expression-profiled genes

did not exhibit any significant colocation on the yeast eQTL regions, a single gene was retained as the candi-
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marker intervals. Another 49 genes were found to be
located within a 1-kb region outside the marker inter-
vals. The regulatory links associated with these 331 genes
are the strongest candidate links identified in this study.
The gene pairs representing the 331 links, their Spear-
man correlation values, their marker intervals (for 282
links), or distances between causal gene and nearby
marker interval (for 49 genes) are detailed in supple-
mentary material I (http://www.genetics.org/supple
mental/).

Gene regulatory networks were constructed by joining
the directional links from the 768 retained candidate
genes in QTL regions to the genes affected by the corre-
sponding eQTL. Several network motif structures simi-
lar to previously defined structures (Lee et al. 2002;
Milo et al. 2002; Shen-Orr et al. 2002) were found
(Figure 3):Figure 2.—The number of genes retained in each eQTL

confidence interval from expression correlation analysis a. cis -regulation: A gene’s expression profile is affectedranged from 0 to 6. In 65% of the eQTL regions, a single
by an eQTL and this gene is located in the eQTLgene was retained. In another 7% of the regions, no gene
region. A circle link is plotted at the gene’s node.was retained due to lack of significant expression (partial) in

correlation tests. In the remaining regions, more than one b. trans -regulation: The expression profile of BRE4 is
gene was retained. affected by an eQTL, gene GLE1 is located in this

eQTL region, and the expression profiles of these
two genes are significantly negatively correlated.date gene (Figure 2), because no other gene had a
These two genes are involved in transporter activity.significant partial correlation conditional on the first

c. The feedback loop motif represents the case whereretained gene. In one extreme case, the sequential par-
either gene is physically located in the eQTL regiontial correlation tests led to the retention of six genes.
of the other gene. The two gene products (MST27In 7% of the eQTL regions, no significantly correlated
and MST28) in the feedback loop motif were alsocandidate gene was identified. Overall, 768 putative reg-
previously shown to interact on the basis of a yeastulatory links or candidate genes were retained. Among
protein interaction experiment (Uetz et al. 2000).all eQTL regions that reduced to a single candidate

d. The feedforward loop motif represents the case wheregene, 45% represented cis -regulation, while 55% repre-
one gene regulates another, and these two genessented trans -regulation. Among all trans -eQTL regions,
jointly regulate a third gene. This case shows that�50% were reduced to one candidate gene by the corre-
regulation of one gene through another can be bothlation test. These findings indicate that our correlation-
direct and indirect through other genes.based method is effective in reducing the set of candi-

e. The single-input motif represents the case where thedate genes for both cis- and trans -eQTL.
expression profiles of multiple or many genes areDue to concerns that the single-marker, nonparamet-
influenced by the same eQTL region, and the sameric QTL analysis could have produced biased and unnec-
gene was retained as the candidate regulatory geneessarily wide confidence intervals due to the presence
in this interval. Hence this motif depicts a set ofof multiple QTL in the same region, we performed
functionally related genes coordinately regulated bysliding three-marker regression in each of the previously
a single input. Most genes in the single-input motifidentified eQTL regions, as described in methods. This
of Figure 3 are involved in development, in particularmethod is able to identify multiple QTL in the same
in response to pheromone functions.QTL region, with each QTL being indicated by an adja-

f. The multiple-input motif represents the case wherecent pair of significant markers and with significant
a set of genes is regulated jointly by the combinedmarker pairs separated by nonsignificant markers. A
effect of another set of genes. In the multiple-inputtotal of 848 significant marker intervals were identified
motif of Figure 3, YLR247C, MAP1, and NEJ1 eachacross all previously defined 581 eQTL regions. The
regulate a set of genes, but these three sets overlap.lengths of the 848 marker intervals were much shorter
For example, genes HMX1, ERG13, CYB5, PET10, andthan the previously identified eQTL confidence inter-
YJL048C are jointly regulated by MAP1 and NEJ1. Thevals, with a minimum distance of 1 bp, a maximum
multiple-input effects should be independent anddistance of 84,219 bp, and a median distance of 6286
complementary, because they were inferred from sig-bp. Of the 768 retained, causal candidate genes based
nificant partial correlation. We note that many geneson the original QTL C.I.s and the expression correlation

analysis, 282 were found to be located in one of the 848 in such a motif are involved in lipid metabolisms.
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Figure 3.—Different network motifs from single self-cis -regulation to multiple input modules are presented. Directional links
were drawn from retained candidate genes in an eQTL region to the gene whose expression profile was affected by the eQTL.
A link from one gene back to itself indicates cis -regulation, while a link from one gene to another gene represents putative
trans -regulation. Red links depict positive correlations and blue links negative correlations.

The entire set of reconstructed networks included 721 Some of the genes involved in “aerobic respiration,”
“transporter activity,” and “oxidation of organic com-genes and 768 interactions (Figure 4). These structures

ranged from simple self-regulation, pairwise regulation, pounds” are embedded in the protein synthesis network.
Other groups of genes involved in “lipid metabolism,”and interactions among a few genes to highly connected

networks. Our largest network was constructed by link- “development,” and “cytokinesis during cell separation”
were also closely linked within each group and looselying several densely connected subnetworks with a few

connections. The biological processes involving genes connected to the “protein biosynthesis” network. These
findings show coordinated regulation of different bio-in the highly interconnected subnetworks were obtained

from the gene ontology database (Ashburner et al. logical processes. Other processes overrepresented in
the network included “amine metabolism” and “pyrimi-2000) (supplementary material II; http://www.genetics.

org/supplemental/). Overall, one or several biological dine biosynthesis.”
Because the segregating population in this geneticalprocesses were statistically significantly overrepresented

in independent network structures or in highly inter- genomics study was a cross between two strains of yeast,
the bioprocesses represented in the networks should beconnected subnetworks (Figure 4, Table 1). Genes in-

volved in “protein synthesis” (Figure 4, red nodes) were those pathways whose gene constituents carry different
genetic variants resulting in phenotypic differences be-found to be highly interconnected among themselves.
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Figure 4.—Entire network topology. The nodes represent genes and directional links indicate significant expression correlation
between a candidate gene in an eQTL region and the gene affected by the eQTL. Different gene ontology biological processes
are noted in colors as indicated by the inset. The directional link types and colors representing different regulations are also
explained in the inset. Transcription factors are plotted as square nodes. Six putative regulators affecting the expression of
groups of genes are plotted as large oval nodes and are indicated in the graph. A pdf figure with gene names on the nodes,
which can be expanded to view the connection details, is provided in supplementary material III (http://www.genetics.org/
supplemental/).

tween the two strains. Most of the processes represented connected network displayed in Figure 4. Instead, most
of these transcription factors had a putative regulatoryin the inferred network are metabolism pathways, which

should represent the main genetic difference between link to only one other gene or exhibited cis -regulation.
This result is in agreement with the finding that tran-the two yeast strains. The role of transcription factors

was also investigated. Twenty-six transcription factors scription factors showed no enrichment in trans -varia-
tions (Yvert et al. 2003).were found in the inferred network (Figure 4, green

nodes). They did not appear in the center of the inter- In the previous study (Brem et al. 2002), groups of
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TABLE 1

Overrepresented biological processes in subnetworks

Proportion in Proportion in Enrichment
Group a Biological process b group c (%) genome d (%) P-value e

1 Protein biosynthesis 55/123 (44.7) 773/7276 (10.6) 6.05E-22
2 Steroid metabolism 13/54 (24.0) 34/7276 (0.4) 4.69E-19
3 Amino acid biosynthesis 10/24 (41.6) 102/7276 (1.4) 4.80E-13
4 Development 10/19 (52.6) 479/7276 (6.5) 8.11E-08
5 Pyrimidine base biosynthesis 3/12 (25) 13/7276 (0.1) 1.23E-6
6 Response to pheromone during 4/16 (25) 48/7276 (0.6) 3.23E-6

conjugation with cellular fusion
7 Cytokinesis 5/23 (21.7) 78/7276 (1.0) 4.05E-6
8 Sulfur metabolism 3/13 (23.0) 51/7276 (0.7) 9.34E-5
9 Fermentation 2/14 (14.2) 16/7276 (0.2) 4.3E-4

a The list of genes in each group and in corresponding biological processes can be found in supplementary
material IV (http://www.genetics.org/supplemental/).

b Biological processes were based on terms from gene ontology.
c The number of genes involved in the biological process within the inferred group divided by the total

number of genes in the group.
d The total number of genes annotated in the biological process divided by the total number of annotated

genes in the genome.
e The P-value was computed as the probability of obtaining the observed or a larger number of genes in the

group by chance under the hypergeometric distribution.

genes were found to link to eight trans -acting loci. From investigate critical components of a genetical genomics
experiment and analysis, such as: (1) the sample sizethe biological function descriptions, seven genes were

proposed as the possible trans-acting regulators for six required for a segregating population so that an accept-
able false discovery rate is achieved while sufficientgroups of expression-profiled genes (Brem et al. 2002).

In our inferred set of networks, most of the profiled power is maintained for the identification of causal links
in the network; (2) the optimization of a QTL analysisgenes in the eight groups were included. Six of the

seven putative regulators (MATALPHA1, MATALPHA2, producing confidence intervals of minimal length with
desired coverage probabilities, incorporating multipleLEU2, AMN1, HAP1, and URA3) were identified in the

network to regulate the corresponding groups of genes. QTL with epistatic interactions, jointly analyzing multi-
ple correlated expression profiles as well as phenotypes
of interest for which the population segregates, and

DISCUSSION
performing joint linkage and linkage disequilibrium
mapping to reduce the size of confidence intervals inIn this investigation, we reanalyzed a segregating pop-

ulation resulting from a cross between two yeast strains, suitable segregating populations; and (3) the investiga-
tion of statistical methods for further validation andwith gene expression and DNA marker data recorded

for all individuals and the entire yeast genome. The refinement of the inferred network structures.
In this study, simple and partial Spearman rank corre-goal of this study was to investigate an initial genetical

genomics analysis for genetic network reconstruction. lations between the expression profiles of the candidate
genes in each eQTL region and the gene affected by theWe believe that it is necessary to investigate genetical

genomics experiments and computational analyses eQTL were used to determine a short list of candidate
regulatory genes for each eQTL interval. Spearman cor-based on artificial data simulated under nonlinear ki-

netic models of gene regulatory networks with alterna- relations are suitable for quantifying the strength of
monotonic relationships and may be more robust in thetive network topologies (Mendes et al. 2003). The results

of this study [and of a repeat analysis of a larger yeast presence of nonlinear regulatory relationships between
genes, when compared with the Pearson correlationdata set to become available in the near future (Jansen

2003)] should allow us to draw some inferences on the coefficient (an issue also deserving further investigation
based on artificial data). In �65% of the eQTL regions,parameters of the identified network structure, which

can then be incorporated in the simulation [e.g., the a single correlated candidate gene was retained; how-
ever, in 7% of the eQTL regions, no significantly corre-genomic distribution of genes within highly connected

subnetworks, i.e., a quantification of whether genes lated candidate gene was identified. In part, this finding
may have resulted from lack of power or from the factwithin highly connected subnetworks are more likely

than genes in different (sub)networks to be colocated that some regulatory mechanisms do not exhibit expres-
sion correlations. For example, a protein-coding poly-in the genome]. Such an approach would allow us to
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morphism may affect the binding activity of a transcrip- expression can also be considered with large sample
sizes.tion factor to its downstream genes. This polymorphism

may not change the transcription factor’s transcript We thank Leonid Kruglyak for sharing the genotype data at his
level, but would affect the expression of downstream lab’s website, http://www.fhcrc.org/labs/kruglyak/Data/, and for pro-

viding the raw data of the spotted microarray experiments at thegenes. In this case, a gene would be found to be affected
National Center for Biotechnology Information/Gene Expressionby an eQTL representing the genomic location of the
Omnibus website, http://www.ncbi.nlm.nih.gov/geo. This work wastranscription factor, but the expression correlation of
supported by National Science Foundation cooperative agreement

the transcription factor with the profiled gene may be DBI-0211863.
low, and hence no candidate gene would be identified
in the QTL region. To determine the candidate gene
underlying such QTL regions, further functional analy-
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,

APPENDIX A

For simple and partial Spearman correlations, and where rxy , rxz , and ryx are simple (Spearman) correlations
for significance tests on correlations, see, for example, between x and y, x and z, and y and z, respectively.
Sokal and Rohlf (1995) and Shipley (2000). Formulas for higher-order partial correlations are

Rank-based Spearman correlation is straightforward extensions of the above first-order for-
mula. For example, the second-order partial correlation

D � �
n

i�1

[R(x i) � R(yi)]2
between x and y conditional on both z1 and z2 is a func-
tion of first-order coefficients, or

rs � 1 �
6D

n(n � 1)(n � 1)
,

rxy|z 1 z 2
�

rxy|z 1
� rxz 2|z 1

ryz 2|z 1

√(1 � r 2
xz 2|z 1

)(1 � r 2
yz 2|z 1

)
.

where n is the number of observations, R(xi) is the rank
of xi in the group of x, and R(yi) is the rank of yi in the Higher-order partial correlations can be obtained recur-

sively by continuing this process.group of y ; rs is the calculated Spearman correlation.


