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ABSTRACT
Using multiple diallelic markers, variance component models are proposed for high-resolution combined

linkage and association mapping of quantitative trait loci (QTL) based on nuclear families. The objective
is to build a model that may fully use marker information for fine association mapping of QTL in the
presence of prior linkage. The measures of linkage disequilibrium and the genetic effects are incorporated
in the mean coefficients and are decomposed into orthogonal additive and dominance effects. The
linkage information is modeled in variance-covariance matrices. Hence, the proposed methods model
both association and linkage in a unified model. On the basis of marker information, a multipoint interval
mapping method is provided to estimate the proportion of allele sharing identical by descent (IBD) and
the probability of sharing two alleles IBD at a putative QTL for a sib-pair. To test the association between
the trait locus and the markers, both likelihood-ratio tests and F-tests can be constructed on the basis of
the proposed models. In addition, analytical formulas of noncentrality parameter approximations of the
F-test statistics are provided. Type I error rates of the proposed test statistics are calculated to show their
robustness. After comparing with the association between-family and association within-family (AbAw)
approach by Abecasis and Fulker et al., it is found that the method proposed in this article is more powerful
and advantageous based on simulation study and power calculation. By power and sample size comparison,
it is shown that models that use more markers may have higher power than models that use fewer markers.
The multiple-marker analysis can be more advantageous and has higher power in fine mapping QTL. As
an application, the Genetic Analysis Workshop 12 German asthma data are analyzed using the proposed
methods.

IN linkage disequilibrium (LD) mapping or associa- using two markers are proposed for high-resolution link-
tion study, one may use one marker a time. However, age and association mapping of quantitative trait loci

the resolution of the single-marker analysis strategy can (QTL) based on population and pedigree data (Zhao
be low. In addition, utilizing different markers may lead et al. 2001; Fan and Xiong 2002, 2003; Fan and Jung
to different results, since the power to detect allelic 2003; Fan et al. 2005). The genetic effects are orthogo-
association depends on specific properties of the mark- nally decomposed into summation of additive and domi-
ers. This complicates the interpretation of an analysis. nance effects. In Abecasis et al. (2000a,b, 2001), Car-
It is interesting and important to build models that don (2000), Fulker et al. (1999), and Sham et al. (2000),
use multiple markers simultaneously for high-resolution an association between-family and association within-
mapping of genetic traits. A unified analysis using multi- family (AbAw) approach is proposed to decompose the
ple markers gives a unique result and may lead to greater genetic association into effects of between pairs and
resolution. Moreover, large numbers of single-nucleotide within pairs. The models of our previous work differ
polymorphisms (SNPs) are available, and high-throughout from the AbAw approach in the following senses: (1)
genotyping approaches are emerging (International The AbAw approach uses only one marker in analysis,
SNP Map Working Group 2001). This encouraging but we use two diallelic markers, and (2) the way of
development facilitates high-resolution fine mapping of modeling mean coefficients is different. Fan and Jung
genetic traits. It is natural and necessary to develop high- (2003) compare our method with the AbAw approach
resolution multiple-marker-based methods to dissect ge- and find that our method is advantageous for sib-pair
netic traits. data. In addition, Fan et al. (2005) confirm that our

In our previous work, variance component models approach is more powerful than the AbAw approach
for large pedigrees. One may note that it is not clear
how to extend the AbAw approach to use more than one
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This article extends our previous work and investi- column vector at the j th marker locus Mj . Here y f is the
trait value of the father, and G f j is the genotype of thegates variance component models in high-resolution

linkage and association mapping of QTL using multiple father at the j th marker. Likewise, the other notations
of the mother and the i th child are defined accordinglydiallelic markers. The models jointly take linkage and
with subscripts m and i, respectively. The superscript �linkage disequilibrium information into account. The
denotes the transpose of a vector or a matrix. Underlinkage information is modeled in the variance-covari-
the assumption of multivariate normality, we considerance matrix, and the linkage disequilibrium informa-
the mixed-effect modeltion is modeled in mean coefficients of trait values such

as the AbAw approach. By modeling the linkage infor-
yi � � � wi� � �

k

j�1

x i j �j � �
k

j�1

zi j �j � Bi � ei (1)mation in the variance-covariance matrix, we may take
advantage of much research on variance component
models (Haseman and Elston 1972; Amos et al. 1989; (Searle et al. 1992; Pinheiro and Bates 2000), where
Goldgar and Oniki 1992; Amos 1994; Fulker et al. � is the overall mean of fixed effect, wi is a row vector
1995; Almasy and Blangero 1998; George et al. 1999; of covariates such as sex and age, � is a column vector
Pratt et al. 2000). In the mean time, the linkage disequi- of fixed-effect regression coefficients of wi , Bi is the
librium information is incorporated into the mean coef- familial effect of random effects, and ei is the error term.
ficients via indicator variables of marker genotypes, whose Assume that ei is normal N(0, � 2

e), and Bi is normal N(0,
validity can be justified intuitively (Fan and Xiong 2002, � 2

s � � 2
Ga), where � 2

e is error variance, � 2
s is the variance

pp. 608–609). of shared environment effect, and � 2
Ga is the variance

Using the models developed in this article, test statis- of additive polygenic effect. Moreover, Bi and ei are
tics can be developed for high-resolution association independent. For j � 1, · · · , k, �j and �j are fixed-
mapping of QTL. The procedure is to perform appro- effect regression coefficients of the dummy variables xi j

priate linkage analysis on the basis of a sparse genetic and zi j , respectively. Here xi j and zi j are indicator vari-
map for prior linkage evidence. Then association study ables and are defined as follows:
can be carried out on the basis of a dense genetic map
for high-resolution mapping of QTL in the presence of

xi j �

⎧
⎭
⎫
⎩

2Pm j
if Gi j � MjMj

Pm j
	 PM j

if Gi j � Mjmj

	2PMj
if Gi j � mjmj

(2)
prior linkage information. Likelihood-ratio tests (LRT)
can be carried out in high-resolution association studies.
For large-sample data, likelihood-ratio criteria are accu-
rate. On the basis of general theory of linear models,
F-test statistics can be built to test the association be- zi j �

⎧
⎭
⎫
⎩

	P 2
m j

if Gi j � MjMj

Pm j
PM j

if Gi j � Mjmj

	P 2
M j

if Gi j � mjmj .tween trait locus and markers in the presence of prior
linkage evidence (Graybill 1976). The analytical for-

Following the traditional quantitative genetics, the vari-mulas for the noncentrality parameter approximations
ance-covariance matrix of model (1) is a (l � 2) 
 (l �are derived for the F-test statistics. The merits of the
2) square matrix and is given byproposed method are investigated by power and sample

size comparison. Using the simulation program LDSI-
MUL kindly provided by G. R. Abecasis, simulation study
is performed to explore the power and type I error rates
of the proposed test statistics. The proposed methods � �

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 �s �0 �0 … �0

�s 1 �0 �0 … �0

�0 �0 1 �12 … �1l

�0 �0 �21 1 … �2l

� � � � … �
�0 �0 �l1 �l 2 … 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

� 2,
are compared with the AbAw approach (Abecasis et al.
2000a). Moreover, the method is applied to analyze the
Genetic Analysis Workshop (GAW) 12 German asthma
data (Wjst et al. 1999; Meyers et al. 2001).

where �2 � � 2
g � �2

s � � 2
Ga � � 2

e. Here � 2
g is variance

explained by the putative QTL Q. The genetic variance
� 2

g � � 2
ga � � 2

gd is decomposed into additive and domi-MODEL
nance components. �s � � 2

s/�2 is the correlation be-
Assume that k diallelic markers Mj , j � 1, · · · , k, tween the parents. Let � 2

H � � 2
s � � 2

Ga/2 be the variance
are typed in a region of one chromosome. Suppose a of familial effects that include shared environment vari-
quantitative trait locus Q is located in the region, which ance � 2

s and half of the additive polygenic variance. �0 �
has two alleles Q 1 and Q 2 with frequencies q1 and q2 , (� 2

ga/2 � � 2
H)/�2 is correlation between parents and

respectively. For marker Mj , there are two alleles Mj children; �i j � �j i � (
i j Q � 2
ga � �i j Q � 2

gd � � 2
H)/� 2 is the

with frequency PM j
and mj with frequency Pm j

, respectively. correlation between the i th child and the j th child,
where 
i j Q is the proportion of alleles shared identicalFor a nuclear family of l children and two parents, let

y � (y f , ym, y 1 , · · · , yl)� be their quantitative trait column by descent (IBD) at putative QTL Q by the i th child
and the j th child, and �i j Q is the probability that bothvector and Gj � (G f j , Gm j , G1j , · · · , Gl j)� be their genotype
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alleles at the putative QTL Q shared by the i th child
and the j th child are IBD (Cotterman 1940; Pratt et
al. 2000; Zhu and Elston 2000; Lange 2002). On the VD �

⎛
⎜
⎜
⎜
⎝

P 2
M 1

P 2
m 1

D 2
M 1 M 2

… D 2
M 1 M k

D 2
M 1 M 2

P 2
M 2

P 2
m 2

… D 2
M 2 M k

� � … �
D 2

M 1 M k
D 2

M 2 M k
… P 2

M k
P 2

m k

⎞
⎟
⎟
⎟
⎠

. (4)
basis of the above discussion, the log-likelihood function
of the mixed-effect model (1) is given by

In appendix a, the coefficients of model (1) are derived
L � 	

l � 2
2

log(2
) 	
1
2

log|�| 	
1
2
(y 	 X�)� �	1(y 	 X�), as

(3) ⎛
⎜
⎜
⎝

�1

�
�k

⎞
⎟
⎟
⎠

� V 	1
A

⎛
⎜
⎜
⎝

2DM 1Q

�
2DM k Q

⎞
⎟
⎟
⎠
�Q and

⎛
⎜
⎜
⎝

�1

�
�k

⎞
⎟
⎟
⎠

� V	1
D

⎛
⎜
⎜
⎝

D 2
M 1Q

�
D 2

M k Q

⎞
⎟
⎟
⎠
�Q . (5)where � � (�, ��, �1, · · · , �k , �1, · · · , �k)� is a vector

of regression coefficients, and X is the model matrix,
accordingly.

Equations (5) show that the parameters of LD (i.e.,One may wonder why we use model (1) to describe
DM i Q and DM i M j

) and gene effect (i.e., �Q and �Q) arethe phenotypes. Here we provide an intuitive rationale.
Suppose that QTL Q coincides with one marker, e.g., contained in the mean coefficients. Model (1) simulta-
marker M1, and trait allele Q1 coincides with marker neously takes care of the LD and the effects of the
allele M1 and allele Q2 coincides with allele m 1. Let �i j putative trait locus Q. The gene substitution effect �Q

is contained only in �i ; and the dominance effect �Q isbe the effect of genotype QiQ j , i, j � 1, 2. Denote geno-
contained only in �i , i � 1, · · · , k. Therefore, modeltypic value a � �11 	 (�11 � �22)/2 and d � �12 	 (�11 �
(1) orthogonally decomposes genetic effect into sum-�22)/2. The average effect of gene substitution is �Q �
mation of additive and dominance effects.a � (q2 	 q1)d, i.e., the difference between the average

Assume that all markers Mi and Mj are in linkageeffects of the trait locus alleles, and dominance devia-
equilibrium (i.e., DM i M j

� 0, i, j � 1, · · · , k, i � j). Thetion is �Q � 2d in view of traditional quantitative genetics
(Falconer and Mackay 1996). Fan and Xiong (2002) coefficients of additive and dominance effects are given

by �1 � (DM 1 Q/PM 1
Pm 1

)�Q , · · · , �k � (DM k Q/PM k
Pm k

)�Q ,show that yi can be expressed as yi � �0 � xi 1�Q � z i 1�Q �
Bi � ei , where �0 is overall population mean of the and �1 � (D2

M 1 Q/P 2
M 1

P 2
m 1

)�Q , · · · , �k � (D2
M k Q/

quantitative trait. Hence, marker M1 may fully describe P 2
M k

P 2
m k

)�Q . That means markers M1, · · · , Mk indepen-
the trait values if it coincides with the QTL Q. In practice, dently contribute to the analysis of the trait values. Usu-
the information of QTL Q is unknown. Instead, model ally, the markers Mi can be in LD, especially when they
(1) is proposed to describe trait value y i using marker are located in a narrow chromosome region. Equations
information. Two marker models were used in previous (5) correctly use the LD information of markers Mi in
work (Fan and Xiong 2002, 2003; Fan and Jung 2003; the analysis.

Linkage analysis can be performed by considering aFan et al. 2005). Model (1) uses multiple markers and
reduced variance component model,is a natural generalization of model of our previous

work. The objective is to use marker information fully for yi � � � wi � � Bi � ei , (6)
fine high-resolution mapping of QTL. In the following,

by using the traditional method of variance componentwe show that model (1) and log-likelihood (3) can be
models (Amos et al. 1989; Amos 1994; Almasy andused in joint linkage and association mapping of QTL.
Blangero 1998). This initial study can identify prior
linkage evidence of the trait values to a specific chromo-
some region on the basis of a sparse genetic map. Sup-PROPERTY OF REGRESSION COEFFICIENTS
pose that prior linkage evidence is provided by an initialAND ASSOCIATION TESTS
linkage study. On the basis of a dense genetic map,

Denote the measure of LD between trait locus Q and high-resolution association mapping of the QTL can be
marker Mi by DM i Q � P(MiQ1) 	 PM i

q1, i � 1, · · · , k carried out by fitting the full model (1). First, assume
that linkage is confirmed in a chromosome region byand the measure of LD between marker Mi and marker

Mj by DM i M j
� P(MiMj) 	 PM i

PM j
, i � j, i, j � 1, · · · , k. the significant presence of both the gene substitution

and dominance effects, i.e., �Q � 0 and �Q � 0. OnLet the additive and dominance variance-covariance ma-
the basis of Equations 5, the existence of LD betweentrices of the indicator variables defined in (2) be (appen-
markers Mi (i � 1, · · · , k) and trait locus Q can bedix a)
tested by Had : �1 � · · · � �k � �1 � · · · � �k � 0.
Second, assume that linkage is supported by the signifi-
cant presence of the gene substitution effect, but not
the dominance effect, i.e., �Q � 0 and �Q � 0. TheVA � 2

⎛
⎜
⎜
⎜
⎝

PM 1
Pm 1

DM 1 M 2
… DM 1 M k

DM 1 M 2
PM 2

Pm 2
… DM 2M k

� � … �
DM 1 M k

DM 2 M k
… PM k

Pm k

⎞
⎟
⎟
⎟
⎟
⎠

,
existence of LD can be tested by Ha: �1 � · · · � �k �
0. Third, assume that linkage is supported by the signifi-
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cant presence of the dominance effect, but not the gene where 
i j M l
is the proportion of alleles shared IBD at

substitution effect, i.e., �Q � 0 and �Q � 0. The existence the marker Ml for l � 1, · · · , k. The coefficients �
 ,
of LD can be tested by Hd: �1 � · · · � �k � 0. �
 M 1

, · · · , �
 M k
are derived in appendix b as follows:

Evidence of association can be evaluated by the LRT
procedure. For instance, let Lad be the log-likelihood
under the alternative hypothesis of Had and L0 be the

⎛
⎜
⎜
⎜
⎝

�
 M 1

�
 M 2

�
�
 M k

⎞
⎟
⎟
⎟
⎠

�

⎛
⎜
⎜
⎜
⎝

1 (1 	 2�M 1 M 2
)2 … (1 	 2�M 1 M k

)2

(1 	 2�M 1 M 2
)2 1 … (1 	 2�M 2 M k

)2

� � � �
(1 	 2�M 1 M k

)2 (1 	 2�M 2 M k
)2 … 1

⎞
⎟
⎟
⎟
⎠

	1

log-likelihood under the null hypothesis Had. Then, the
likelihood-ratio test statistic 2[Lad 	 L0] is asymptotically
distributed as � 2. The degrees of freedom for this test
are determined as follows. Under the null hypothesis
Had, there are only k measures of LD, DM 1 Q , · · · , DM k Q , 


⎛
⎜
⎜
⎜
⎝

(1 	 2�M 1 Q )2

(1 	 2�M 2 Q )2

�
(1 	 2�M k Q )2

⎞
⎟
⎟
⎟
⎠

.
of which only k 	 1 are independent since �k

i�1DM i Q � 0.
Thus, the number of coefficients �i , �i , i � 1, · · · , k ,

And �
 is estimated as �
 � 1 	 �
 M 1
	 �
 M 2

	 · · · 	which is significantly different from 0, should be �k 	
1 in a data analysis. This number is the degrees of free- �
 M k

. If marker Ml coincides with QTL Q, it can be shown
dom of the likelihood-ratio test statistic 2[Lad 	 L0]. that �
 M l

� 1 and �
 � 0, �
 M i
� 0, i � l. Hence

The likelihood-ratio test is accurate and robust for large 
̂i j Q � 
 i j Ml
. To estimate �i j Q of the probability of sharing

sample data based on the statistical theory. two alleles IBD for a sib-pair, consider
Theoretically, it is not easy to evaluate the power of

�̂i j Q � E(�i j Q|IM 1
, IM 2

, · · · , IM k
)the likelihood-ratio test statistics. The reason is that it

is very hard to calculate the approximations of non-
� � � �M 1


i j M 1
� · · · � �M k


i j M k
� rM 1

�i j M 1
� · · · � rM k

�i j M k
,

centrality parameters of the likelihood-ratio test statis-
(8)tics. Sham et al. (2000) performed power analysis of the

AbAw approach by deriving the approximations of the where � i j M l
is the probability of sharing two alleles IBD

noncentrality parameters of the likelihood-ratio test sta- at marker Ml for l � 1, · · · , k. The coefficients
tistics, which is rather complicated in our opinion. In (rM 1

, · · · , rM k
)� are derived in appendix c as follows:

addition to the likelihood-ratio test statistics, we develop
an F -test procedure based on linear model theory in
this article (Graybill 1976). Utilizing the formulas of

⎛
⎜
⎜
⎜
⎝

rM 1

rM 2

�
rM k

⎞
⎟
⎟
⎟
⎠

�

⎛
⎜
⎜
⎜
⎝

1 (1 	 2�M 1 M 2
)4 … (1 	 2�M 1 M k

)4

(1 	 2�M 1 M 2
)4 1 … (1 	 2�M 2 M k

)4

� � � �
(1 	 2�M 1 M k

)4 (1 	 2�M 2 M k
)4 … 1

⎞
⎟
⎟
⎟
⎠

	1

noncentrality parameters in chapter 6 of Graybill
(1976), the approximations of the noncentrality param-
eters of the F -tests are calculated readily. Moreover, we
show that the type I error rates and power of the F -test are




⎛
⎜
⎜
⎜
⎝

(1 	 2�M 1 Q )4

(1 	 2�M 2 Q )4

�
(1 	 2�M k Q )4

⎞
⎟
⎟
⎟
⎠

.very close to those of the likelihood-ratio test statistics
(Tables 2 and 3), which are actually guaranteed by the
construction of the F -test for large samples (Graybill

The remaining coefficients are given in appendix c by1976, pp. 187–188). Therefore, both the likelihood-ratio
test procedure and the F -test procedure are useful. Be-
fore introducing the F -test procedure, we discuss the

⎛
⎜
⎜
⎜
⎝

�M 1

�M 2

�
�M k

⎞
⎟
⎟
⎟
⎠

�

⎛
⎜
⎜
⎜
⎝

�
M 1

�
M 2

�
�
M k

⎞
⎟
⎟
⎟
⎠

	

⎛
⎜
⎜
⎜
⎝

rM 1

rM 2

�
rM k

⎞
⎟
⎟
⎟
⎠

.parameter estimations first.

PARAMETER ESTIMATIONS The � in Equation 8 is � � 1 	 �M 1
	 · · · 	 �M k

	

rM 1
	 · · · 	 rM k

. Again, if marker Ml coincides with QTLIBD estimations: Denote the recombination fraction
Q , it can be shown that �̂i j Q � �i j M l

.between the trait locus Q and marker Mi by �M i Q , i � 1,
Estimations of model coefficients and variance-covar-· · · , k. Likewise, the recombination fraction between

iance matrix: As an example, assume that the data aremarkers Mi and Mj is defined by �M i M j
. Following Fulker

composed of three subsamples: n individuals of a popu-et al. (1995) and Almasy and Blangero (1998), we
lation; m trio families, each having both parents and apropose a multipoint interval mapping method to esti-
single child; and s nuclear families, each having bothmate the proportion 
i j Q of allele sharing IBD at a puta-
parents and two offspring. Furthermore, we assume thattive QTL Q for a sib-pair i and j by
n, m, and s are sufficiently large, so that large sample
theory applies. We may include data of nuclear families
̂i j Q � E(
i j Q|IM 1

, IM 2
, · · · , IM k

)
with both parents and more than two offspring. The

� �
 � �
 M 1

i j M 1

� �
 M 2

i j M 2

� · · · � �
 Mk

i j M k

, principle of the following paragraphs can be extended
to such families if the number of families is large enough(7)
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to apply the large sample theory. To estimate the param-
F �

(H�̂)�[H(X��̂	1X)	1H �]	1(H�̂)
y�(�̂	1 	 �̂	1X(X��̂	1X)	1X��̂	1)y

(N 	 2k 	 1)
qeters, one may take the method of interval mapping

proposed by Fulker et al. (1995) and Almasy and
with a noncentral F(q, N 	 (2k � 1), �) distributionBlangero (1998). That is to say, for each location of
under the alternative hypothesis, where � is the non-the QTL on the chromosome with fixed recombination
centrality parameter given by � � (H�)�[H(X ��	1X)	1

fractions, the IBD estimations are performed first. Then
H �]	1(H�).one may estimate parameters of � and � as follows.

Combined analysis of population and family data:Consider the overall log-likelihood L � �I
i�1 Li , I �

Again, assume that the data are composed of three sub-n � m � s, where Li is the log-likelihood of trait vector
samples: n individuals of a population; m trio families,or value yi of the i th family or individual. Let �i be the
each having both parents and a single child; and s nu-variance-covariance matrix of trait vector or value yi and
clear families, each having both parents and two off-Xi be its model matrix. Denote the total trait values by
spring. To calculate the approximations of the non-y � (y�

1, · · · , y�
I )�, the total variance-covariance matrix

centrality parameters, assume that the sample sizes n,by � � diag(�1, · · · , �I), and the model matrix by X �
m, and s are large enough that the large-sample theory(X �

1, · · · , X �
I )�. Let N � n � 3m � 4s be the total number

applies. We show in appendix d the approximationof individuals. On the basis of the log-likelihood L �
�I

i �1 Li , parameters of � and � can be estimated by
X ��	1X � �

n�m�s

i �1

X �
i �	1

i Xi � diag(a 1 , a 2VA , a 3VD)/� 2,Newton-Raphson or Fisher scoring algorithms (Jenn-
rich and Schluchter 1986). Let �̂ � diag(�̂1, · · · , (9)
�̂I) be the maximum-likelihood estimates of �. Then

where a1, a2, and a3 are constants given by Equationsthe estimate of � is
(D7) in appendix d.

�̂ � [X ��̂ 	1X]	1X � �̂ 	1y � [�I
i �1X �

i �̂ 	1
i X i ]	1� I

i �1X �
i �̂ 	1

i yi . The additive variance � 2
ga � 2q1q2 �2

Q and the domi-
nance variance � 2

gd � (q1q2)2�2
Q are expressed in termsFor each location of the QTL on the chromosome,

of the average effect of gene substitution �Q and thethe likelihood-ratio test or F -test statistics can then be
dominance deviation �Q . Let Ik and I2k be k and 2k dimen-calculated using the estimates �̂ and �̂. The location
sion identity matrices. Moreover, let Ok
l be a k 
 l zerothat gives the best result can be treated as the location
matrix. To test hypothesis Ha: �1 � · · · � �k � 0, theof the QTL. In practice, some of the parameters (e.g.,
test matrix H � (Ok
1, Ik , Ok
k). Let us denote the testthe variance parameter � 2

gd) may not be estimable and
statistic as Fk,a. The noncentrality parameter is approxi-identifiable due to the redundancy. For specific types
mated byof data, one needs to specify the model carefully.

�k,a � a2

� 2
(�1, · · · , �k )VA
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�
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F -TESTS AND NONCENTRALITY PARAMETER
APPROXIMATIONS

On the basis of linear regression model theory, one
may construct F -test statistics of genetic effects and LD �

a2�
2
ga

� 2q1q2

(DM 1 Q , · · · , DM k Q )(VA/2)	1

⎛
⎜
⎜
⎝

DM 1 Q

�
DM k Q

⎞
⎟
⎟
⎠

.

coefficients (Graybill 1976). Moreover, the non-
centrality parameters of the F -test statistics can be calcu-

To test hypothesis Hd: �1 � · · · � �k � 0, the test matrixlated readily. To evaluate the power of the F -test statis-
H � (Ok
1, Ok
k , Ik). Let us denote the test statistic astics, it is necessary to calculate the approximations of the
Fk,d. The noncentrality parameter is approximated bynoncentrality parameters. The procedure is as follows.

First, one may construct an F -test statistic for each of
three hypotheses: �k,d � a3

� 2
(�1 , · · · , �k)VD
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Had: �1 � · · · � �k � �1 � · · · � �k � 0;
Ha: �1 � · · · � �k � 0;
Hd: �1 � · · · � �k � 0. �

a3�
2
gd

� 2q 2
1q 2

2

(D 2
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The noncentrality parameter of each F -test statistic
can be calculated using the theory in Graybill (1976, To test hypothesis Had : �1 � · · · � �k � �1 � · · · �

�k � 0, the test matrix H � (O2k
1, I2k). Let us denoteChap. 6). Assume that there are no covariates. Then
the coefficients of model (1) can be written as � � (�, the test statistic as Fk,ad. The noncentrality parameter is

�k,ad � �a � �d ; i.e., �k,ad is decomposed into the summa-�1, · · · , �k, �1, · · · , �k)�. For each hypothesis, there is
a q 
 (2k � 1) matrix H, such that the hypothesis can tion of additive and dominant noncentrality parameters.

Nuclear family data: To make a comparison with thebe written as H� � 0, where q is the rank of H. On
the basis of Graybill (1976), the F -test statistic for results of Abecasis et al. (2000a, Table 4), we consider

I families, each having both parents and l offspring. Lethypothesis H� � 0 is
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TABLE 1

The parameters of the simulated genetic cases

Test case � 2
ga � 2

Ga � 2
e � 2 �M 1Q � PM1

q1 DM 1Q

Null 0 0 100 100 Not applied 0 0.5 Not applied Not applied
Familiality 0 50 50 100 Not applied 0 0.5 Not applied Not applied
Linkage 30 0 70 100 0 0 0.5 0.5 0
Composite 20 30 50 100 0 0 0.5 0.5 0

The total variance is fixed at � 2 � � 2
ga � � 2

Ga � � 2
e � 100 and � 2

gd � � 2
s � 0. Admixture: no major gene

effect or familial effect � 2
g � � 2

H � 0, but with population admixture (see text for explanation).

N � I(l � 2) be the total number of individuals. The mean of subpopulation A is fixed at 10 and the variance
is fixed at 100, and the marker allele frequency PM 1

isother notations are defined in a similar way as above.
Suppose that variance-covariance matrices of the I fami- taken as 0.7 in subpopulation A. The trait mean of
lies are the same, i.e., �1 � · · · � �I . Denote �	1

i � subpopulation B is fixed at 0 and the variance is fixed
(1/� 2)(�h j)(l�2)
(l�2). If the sample size N is large at 100, and the marker allele frequency PM 1

is taken as
enough, we show in appendix e that 0.3 in subpopulation B. Therefore, the total variance

in the mixing population is �2 � 125. The admixtureX ��	1X/I � �
I

i �1

X �
i �	1

i Xi/I � diag(�
h,j

�h j , b1VA, b2VD)/� 2,
contributed to (10 	 0)2/[4 
 125] � 0.20 of the total
variance.(10)

To calculate the type I error rates, 1000 data sets are
where b1 and b2 are constants given by Equations (E1) simulated for each test case. Each data set contains a
in appendix e. The approximation of the noncentrality certain number of related pedigrees. For instance, 120
parameter of statistic Fk,a is

trio families are generated for test case Null if the total
number of offspring is 120 and the number of offspring
in each family is 1; but only 15 families are generated�k,a � b1I� 2

ga

� 2q1q2

(DM 1 Q, · · · , DM k Q)(VA/2)	1

⎛
⎜
⎜
⎝

DM 1 Q

�
DM k Q

⎞
⎟
⎟
⎠

.
if the number of offspring in each family is 8 and the
total number of offspring is 120. Using the data sets,
we fit the model

TYPE I ERROR RATES y i � � � x i 1�1 � Bi � e i ,

To evaluate the type I error rates of the proposed where Bi is normal N(0, � 2
Ga), yi is normal N(� � xi 1�1,

method, simulation program LDSIMUL kindly pro- � 2), and � 2 � � 2
ga � � 2

Ga � � 2
e. The null hypothesis is

vided by G. R. Abecasis is used to generate data sets. H1,a : �1 � 0. Since the QTL Q is in linkage equilibrium
Nuclear families are generated in simulation. Five test with marker M1, an empirical test statistic that is larger
cases are considered in type I error rate calculation, than the cutting point at a 0.05 significance level is
which are taken from Abecasis et al. (2000a, Table 2). treated as a false positive. On the basis of either the
Table 1 presents parameters of four test cases. Trait likelihood-ratio test or the F -test, type I error rates are
values are constructed by a normal distribution with calculated as the proportions of the 1000 simulation
mean 0 and total variance �2 � 100 except for test case data sets that give a significant result at the 0.05 signifi-
of Admixture. Here �2 � � 2

ga � �2
Ga � � 2

e is the summation cance level based on F1,a and the likelihood-ratio test
of the additive major gene effect � 2

ga , the variance of statistic, respectively. Table 2 presents type I error rates
polygenic effect � 2

Ga , and the error variance � 2
e. In each of likelihood-ratio tests and F -test statistics. The results

model except the Admixture, a diallelic marker M1 is show that the type I error rates are around the 0.05
simulated with allele frequency PM 1

� 0.5. In the test nominal significance level in almost all cases. Hence,
cases of Null, Familiality, and Admixture, no major gene the proposed model is robust. In addition, the type I
effect is assumed, i.e., � 2

ga � 0. In the test cases of Linkage error rates of F -tests are similar to those of the likeli-
and Composite, major gene effect is assumed, and marker hood-ratio tests. In an association study, false positives
M1 coincides with the QTL Q, i.e., recombination frac- due to population stratifications are usually a big issue.
tion �M 1 Q � 0; in the meantime, linkage equilibrium From the results of Table 2, the type I error rates in
is assumed between QTL Q and the marker M1, i.e., the Admixture case are reasonable.
DM 1 Q � 0. In the test case of Admixture, population ad- Table 2, bottom, shows a notable variability in the

range of type I errors when the number of offspring ismixture is generated by mixing families equally drawn
8 and the sample sizes are small. For example, the typefrom one of two subpopulations A and B. In both sub-
I error rates of the F -test F̂1,a are 6.7% for test case ofpopulations A and B, no major gene effect or familial

effect is assumed, i.e., � 2
ga � � 2

Ga � 0. However, the trait Composite when the total number of offspring is 120.
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TABLE 2

Type I error rates (%) of test cases of Table 1 at a 0.05 significance level

Error rates when total no. of offspring is

120 240 480
No. of offspring
in each family Test case LRT F̂ 1,a LRT F̂ 1,a LRT F̂ 1,a

1 Null 5.0 4.9 5.1 5.1 5.8 5.8
Familiality 5.4 5.3 5.2 5.2 5.3 5.3
Admixture 3.9 3.8 5.2 5.2 5.3 5.3

2 Null 4.6 4.5 4.8 4.7 4.5 4.5
Familiality 4.2 4.1 3.6 3.6 4.7 4.8
Admixture 5.0 4.8 5.5 5.5 4.9 5.1
Linkage 5.5 5.4 5.0 4.3 5.0 5.1
Composite 5.6 5.8 5.8 5.9 5.6 5.7

4 Null 4.9 5.0 4.3 4.3 3.6 3.6
Familiality 5.2 5.3 4.2 4.3 4.8 4.8
Admixture 5.5 5.6 5.4 5.8 4.2 4.2
Linkage 5.3 5.5 5.4 5.4 4.9 5.0
Composite 5.3 5.5 5.3 5.3 4.1 4.2

8 Null 4.2 4.4 5.0 5.1 4.7 4.7
Familiality 4.7 5.3 5.1 5.5 4.4 4.4
Admixture 3.5 4.4 5.5 6.0 4.4 4.6
Linkage 6.1 6.8 4.3 4.6 4.6 4.8
Composite 5.8 6.7 5.5 5.9 3.7 3.9

The parameters are the same as those of Abecasis et al. (2000a, Table 2).

This is most likely due to the small sample size and addition, D � � DM 1 Q/Dmax and Dmax � min(PM 1
, q1) 	

multivariate normality. When the total number of off- PM 1
q1. In the AbAw columns in Table 3, the results are

spring is 120, there are only 15 pedigrees, each con- taken from Abecasis et al. (2000a, Table 4). In the (F1,a ,
sisting of two parents and 8 offspring; and the variance- F̂1,a , LRT)� columns, the power (%) of F1,a is calculated
covariance matrix � is a big 10 
 10 square matrix. on the basis of approximation of noncentrality parame-
Hence, the parameter estimations are hardly accurate, ter �1,a of test statistic F1,a at a 0.001 significance level;
which makes the deviation from the nominal level the power (%) of F̂1,a and the LRT are calculated as the
greater. When the sample size increases (i.e., the total proportions of 1000 or 20,000 simulation data sets that
number of offspring is 240 or 480), the type I error give a significant result at the 0.001 significance level
rates are close to the nominal level of 0.05. The results based on F1,a and the likelihood-ratio test statistic, respec-
of Table 2 are based on 1000 simulated data sets, which tively. For each simulated data set, a certain number
may not be always reliable. To further investigate the nuclear families are simulated via LDSIMUL. For in-
issue, we perform a calculation in the next section based stance, for one sib per family, 480 trio families are simu-
on 20,000 simulated data sets for another Composite test lated in each simulated data set.
case in Table 3. The results of Table 3 confirm that the The results of Table 3 clearly show that the proposed
type I error rates are close to the nominal level for large- F -tests F1,a and likelihood-ratio tests are much more pow-
sample data. erful than the AbAw approach. When D� � DM 1 Q/Dmax �

25%, it is possible to achieve considerable power. When
D � � DM 1 Q/Dmax � 50%, the statistic F1,a is powerful forPOWER CALCULATION AND COMPARISON
a sample with a total number of 480 sibs. In addition,

Comparison with the AbAw approach: Denote the the results of Table 3 show that the empirical power of
heritability by h 2, which is defined as h 2 � � 2

ga/� 2 (Fal- F̂1,a is similar to that of the likelihood-ratio test. This
coner and Mackay 1996). To compare the method implies that in a large sample the two tests provide
proposed in this article with the AbAw approach of similar power (Graybill 1976). The AbAw approach
Abecasis et al. (2000a), we present a power comparison presented in Abecasis et al. (2000a) utilized only the
in Table 3. The parameters are the same as those of trait values of sibships in the model and discarded the
Abecasis et al. (2000a, Table 4): q1 � PM 1

� 0.5, h 2 � trait values of parents. This is, obviously, not an efficient
way. The proposed methods, on the other hand, incor-0.1, �2 � 100, � 2

ga � 10, � 2
H � � 2

Ga/2 � 30, � 2
e � 30. In
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TABLE 3

Power comparison with results of Abecasis et al. (2000a, Table 4)

No. of families/sample size N

One sib per Two sibs per Three sibs per Four sibs per Five sibs per Six sibs per Eight sibs per
family: family: family: family: family: family: family:

480/1440 240/960 160/800 120/720 96/672 80/640 60/600

No. of F1,a , F1,a , F1,a , F1,a , F1,a , F1,a , F1,a ,
simulated F̂1,a , F̂1,a , F̂1,a , F̂1,a , F̂1,a , F̂1,a , F̂1,a ,

D� % data sets AbAw LRT AbAw LRT AbAw LRT AbAw LRT AbAW LRT AbAw LRT AbAw LRT

0 0.2 0.1 0.0 0.1 0.1 0.1 0.1 0.1 0.2 0.1 0.1 0.1 0.0 0.1
1,000 0.1 0.1 0.1 0.0 0.1 0.1 0.0
1,000 0.1 0.1 0.1 0.0 0.1 0.1 0.0

20,000a 0.105 0.10 0.105 0.09 0.105 0.095 0.09
20,000 b 0.105 0.10 0.105 0.09 0.085 0.085 0.09

25 2.1 33.1 1.8 15.4 2.0 10.6 2.6 8.5 3.0 7.4 2.1 6.7 2.1 5.8
1,000 33.0 14.8 11.2 7.3 8.2 5.3 4.3
1,000 32.9 14.7 10.9 7.2 7.4 4.9 3.8

50 19.5 99.2 22.9 89.4 24.8 78.6 26.7 70.7 26.7 65.2 27.2 61.2 23.9 56.0
1,000 99.4 90.5 76.7 69.9 63.7 55.5 47.5
1,000 99.4 90.4 76.4 69.0 62.8 54.1 45.0

75 69.3 100 72.6 100 74.2 99.8 76.9 99.3 76.0 98.7 76.5 98.1 75.4 96.9
1,000 100 100 99.9 99.2 98.9 97.3 94.6
1,000 100 100 99.9 99.2 98.8 97.2 93.8

100 97.4 100 97.7 100 98.3 100 98.4 100 98.2 100 98.4 100 98.5 100
1,000 100 100 100 100 100 100 100
1,000 100 100 100 100 100 100 100

In the AbAw columns, the power (%) is taken from Abecasis et al. (2000a, Table 4). In columns 4, 6, 8, 10, 12, 14, and 16
the power (%) of F1,a is calculated on the basis of the theoretical approximation of noncentrality parameter �1,a of test statistic
F1,a at a 0.001 significance level; the empirical power (%) of F̂1,a and LRT are calculated as the proportions of 1000 or 20,000
simulated data sets that give significant results at the 0.001 significance level on the basis of F1,a and the likelihood-ratio test
statistic, respectively. The parameters are the same as those of Abecasis et al. (2000a, Table 4): q1 � PM1

� 0.5, h2 � 0.1, � 2 � 100,
� 2

ga � 10, � 2
H � � 2

Ga /2 � 30, � 2
e � 30. In addition, D � � DM1Q /Dmax and Dmax � min(PM1

, q1 ) 	 PM1
q1 .

a Results of the row are calculated on the basis of F̂1,a .
b Results of the row are calculated on the basis of LRT.

porate both parental and sibship phenotypes into the In Table 3, there is a trend that the power of (F1,a ,
F̂1,a , LRT)� to detect association decreases with the in-models. This considerably increases the power as shown

in Table 3. creasing sibship sizes. This is partly because the sample
size N decreases although the total number of offspringIn Table 3, the first row of results corresponds to the

case when D� is zero, i.e., a situation when the null is the same, 480: For 480 trio families of one sib per
family, the total number of individuals is N � 1440; forhypothesis of no association is true. Hence, the power

results for all these tests are simply the type I error rates. 60 families of eight sibs per family, the total number of
individuals is N � 600. For the AbAw approach pre-It can be seen that the type I error rates are close to

the nominal level 0.001 � 0.1% when the number of sented in Abecasis et al. (2000a), the total number of
offspring that are used in the model is the same, 480.simulated data sets is 20,000. This is consistent with the

conclusion of Table 2; i.e., the proposed model is robust. Since our models use phenotypes of both parents and
offspring, the sample sizes N are different. On the otherTo make a comparison with the results of Abecasis et

al. (2000a, Table 4), the results of F̂1,a and the LRT of hand, for the same total number of typed individuals
N, families of large sibship sizes contain less LD informa-1000 simulated data sets are also presented. In most

cases, the entries are equal to the nominal level 0.001 � tion than families of small sibship sizes. The readers
may note that this result is consistent with findings in0.1%; i.e., one of the 1000 data sets leads to a significant

result, but some entries are 0 since none of the 1000 Fan and Xiong (2003). In Fan and Xiong (2003, p.
131, Figure 3), the population-based method is showndata sets leads to a significant result.
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Figure 2.—Power of test statistics F4,a , F3,a , F2,a , F4,d , F3,d , andFigure 1.—Power curves of test statistics F4,a , F3,a , F2,a , F4,d ,
F2,d against the heritability h 2 at a 0.01 significance level, whenF3,d , and F2,d against the measure of LD between M1 and Q at
q1 � 0.5, PM i

� 0.5, PM i
� 0.5, DM i Q � 0.1, DM i M j

� 0.05, i, j �a 0.01 significance level, when q1 � 0.5, PM i
� 0.5, i � 1, 2,

1, 2, 3, 4, i � j, 
12 Q � 0.5, �12 Q � 0.25, � 2
Ga � 0.1 and sample3, 4, DM i Q � 0.08, i � 2, 3, 4, DM i M j

� 0.05, i � j, 
12 Q � 0.5,
size n � 40, m � 30, s � 20 for (A) a dominant mode of�12 Q � 0.25, heritability h 2 � 0.15, polygenic effect variance
inheritance a � d � 1.0 and (B) a recessive mode of inheri-� 2

Ga � 0.10 and sample size n � 40, m � 30, s � 20 for (A) a
tance a � 1.0, d � 	0.5, respectively.dominant mode of inheritance a � d � 1.0 and (B) a recessive

mode of inheritance a � 1.0, d � 	0.5, respectively.

cance level for a dominant mode of inheritance (a �
d � 1.0) and a recessive mode of inheritance (a � 1.0,

to be more powerful than the family-based method for d � 	0.5), respectively. In addition to the merits shown
the same number of individuals. in Figure 1, the power of the test statistics F4,a , F3,a , F2,aComparisons of sample size and power of LD map- is high when heritability h 2 is �0.10 for both modes of
ping: Power and sample size calculations are performed inheritance.
to investigate the merits of the proposed method. Figure Figure 3 shows the power of test statistics F4,a , F3,a , F2,a ,
1 shows the power curves of the test statistics F4,a , F3,a , and F1,a against the trait allele frequency q1 (Figure 3A)
F2,a , F4,d , F3,d , and F2,d against the linkage disequilibrium or marker allele frequency PM 1

(Figure 3B) at a 0.01
coefficient DM 1Q at a 0.01 significance level for a domi-

significance level for an additive mode of inheritance
nant mode of inheritance (a � d � 1.0) and a recessive a � 1.0, d � 0.0, respectively. The other parameters are
mode of inheritance (a � 1.0, d � 	0.5). The related given in the Figure 3 legend. From Figure 3A, it can be
parameters are given in the Figure 1 legend. Generally, seen that the power of Fk,a increases as the trait allele
the power of F4,a using four markers in the model is frequency q1 increases. Figure 3B shows that the power
higher than that of F3,a using three markers, which in of F4,a and F3,a is almost constant; in addition, the power
turn is higher than that of F2,a using two markers. Hence, of F2,a increases slowly, and the power of F1,a increases
multiple-marker analysis is advantageous. The power of as the marker allele frequency PM 1

increases. In general,
Fk,d is usually minimal unless the LD between locus Q the power of F4,a and F3,a depends heavily on the trait
and marker M1 is very strong for the dominant mode allele frequency q1, but not on the marker allele fre-
of inheritance. Note the power curves of Figure 1 are quency PM 1

. At first glance, it is strange that the power
not symmetric with respect to DM 1 Q . This is due to

of F4,a and F3,a does not depend very much on the marker
DM i Q � 0.08, i � 2, 3, 4, DM i M j

� 0.05, i � j, and so the
allele frequency PM 1

. The mystery is that the LD mea-
power curves do not have to reach a minimum value sures DM i Q � 0.125, i � 2, 3, 4 are already high. That is
when DM 1 Q is zero. Instead, they are shifted to the right, why the contribution of marker M1 matters not very
so that the minimum is at a point when DM 1 Q � 0. Figure much to the power of F2,a , F3,a , and F4,a . This adds one
2 provides the power of the test statistics F4,a , F3,a , F2,a , more piece of information to the advantage of multiple-

marker analysis. That is, as long as some markers areF4,d , F3,d , and F2,d against heritability h 2 at a 0.01 signifi-
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Figure 4.—Power of test statistics F4,a , F4,ad , F3,a , F3,ad , F2,a ,Figure 3.—Power of test statistics F4,a , F3,a , F2,a , and F1,a

and F2,ad against location of QTL Q at a 0.01 significance level.against the trait allele frequency q1 (A) or marker allele fre-
The parameters are given by, q1 � 0.5, PM i

� 0.5, DM i Q (0) �quency PM 1
(B) at a 0.01 significance level for an additive

0.15, DM i M j
� 0.05, i, j � 1, · · · , 4, i � j, 
12 Q � 0.5, �12 Q �mode of inheritance a � 1.0, d � 0.0, when PM 1

� 0.5 or q1 �

0.25, familial effect variance � 2
Ga � 0.10, heritability h 2 � 0.150.5, respectively. The other parameters are given by h 2 � 0.15,

and sample size n � 100, m � 50, s � 30, mutation age T �PM i
� 0.5, DM i Q � [min(PM i

, q1 ) 	 PM i
q1 ]/2, DM 1 M i

� [min
60 for (A) a dominant mode of inheritance a � d � 1.0(PM 1

, PM i
) 	 PM 1

PM i
]/2, i � 2, 3, 4, DM i M j

� 0.05, i, j � 2, 3,
and (B) a recessive mode of inheritance a � 1.0, d � 	0.5,4, i � j, 
12 Q � 0.5, �12 Q � 0.25, � 2

Ga � 0.1 and sample size
respectively. Marker M1 locates at position 0 cM, marker M2n � 40, m � 30, s � 20.
locates at position 1 cM, marker M3 locates at position 2 cM,
and marker M4 locates at position 3 cM. The location of QTL
Q is along the horizontal axis; i.e., it moves from 0 to 3 cM.

in strong linkage disequilibrium with the trait locus, the
power to detect the association is high.

Assume that the LD is due to historical mutations T dominant mode of inheritance (a � d � 1) and a reces-
generations ago at QTL Q. At the initial generation sive mode of inheritance (a � 1.0, d � 	0.5), respec-
when the mutation occurred, the LD coefficient is tively. The powers of F4,a and F4,ad with four markers in
DM i Q(0) � P(MiQ)(0) 	 q1PM i

, where P(MiQ)(0) is the the model are generally high across the location of QTL
Q, since at least one marker is close to the QTL Q. Thefrequency of haplotype MiQ. The LD coefficient is re-
power of F3,a and F3,ad using three markers in the modelduced by a factor 1 	 �M i Q in each subsequent genera-
is similar to that of four markers, except that QTL Qtion. The LD between marker Mi and Q is DM i Q(T) �
locates far above marker M3 , i.e., �M 1 Q � 2.3cM. TheDM iQ(0)(1 	 �M i Q)T at the current generation. Assume
power of F2,a and F2,ad using two markers in the modelthat the marker M1 locates at position 0 cM, marker M2 is high when the QTL is close to markers M1 and M2.locates at position 1 cM, marker M3 locates at position
However, once the QTL is far above marker M2 (i.e.,2 cM, and marker M4 locates at position 3 cM. Under
�M 1 Q � 1.3cM ), the power of F2,a and F2,ad using twothe assumption of no interference, we may calculate the
markers in the model decreases very quickly. Figure 4recombination fraction �M i M j

� [1 	 exp(	2�M i M j
)]/2

implies that multiple-marker LD analysis has high powerby Haldane’s map function, where �M i M j
is the map

in fine mapping of QTL. Moreover, the power of test
distance between marker Mi and marker Mj . Similarly, statistic Fk,a , which tests only the additive effect, is higher
the recombination fraction �M i Q can be calculated by than that of Fk,ad , which tests both the additive and domi-
the distance �M i Q between QTL Q and marker Mi , i � nance effects through the proposed model. The reason

is that the degrees of freedom of test statistics increases1, · · · , 4. Suppose that the QTL Q is located along the
horizontal axis; i.e., it moves from 0 to 3 cM. Figure 4 if the dominance effect is added to the test statistics.

Figure 5 shows the power curves of test statistic F4,adshows the power curves of the test statistics F4,a , F4,ad , F3,a ,
F3,ad , F2,a , and F2,ad against the location of QTL Q for a against the position of markers M1 , · · · , M4 for different
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F4,a and F3,a is �500 and that of F2,a is �700 if heritability
h 2 is �0.1. The required number of families of test
statistics F1,a is very large for both favorable and less
favorable cases.

AN EXAMPLE

The proposed method is applied to the Genetic Analy-
sis Workshop 12 German asthma data (Meyers et al.
2001). The data consist of 97 nuclear families, including
415 persons. Seventy-four families have two children,
19 have three children, and 4 have four children. Wjst
et al. (1999) perform linkage analysis for total serum
IgE by a nonparametric statistic of MAPMAKER/SIBS
2.1. Three markers on chromosome 1 are shown to be
linked with immunoglobulin E (IGE) level, i.e., marker
D1S207 at position 118.1 cM, marker D1S221 at position
146.7 cM, and marker D1S502 at position 151.2 cM. In
Fan and Jung (2003), we analyze the data using sibships
and confirm the result of Wjst et al. (1999). By the
method proposed in this article, we analyze the data
again. The dominance variance of log(IGE) is signifi-
cantly �0 at position 149.85 cM (P-value, 0.00075; com-Figure 5.—Power of test statistic F4,ad for mutation age T �

30, T � 40, T � 50, T � 60, T � 70 against position of markers pared with the P-value of 0.01 in Fan and Jung 2003).
Mi , i � 1, · · · , 4 at a 0.01 significance level. The QTL Q On this basis, we collapse alleles 6, 8, and 10 as allele
locates at position 10 cM. The four markers flank the trait M1 at marker D1S207 and others as allele m1. At marker
locus Q ; two markers are on each side of the QTL with equal

D1S221, alleles 5, 6, and 7 are collapsed as allele M2distance to each other as follows: M 2 � 5 � M1/2, M 3 � 15 	
and other alleles as allele m2. At marker D1S502, weM1 /2, M 4 � 20 	 M1. q1 � 0.5, PM i

� 0.5, DM i Q (0) � 0.15,
collapse alleles 7, 8, and 12 as allele M3 and others asDM i M j

� 0.05, i, j � 1, · · · , 4, i � j, heritability h 2 � 0.15,
allele m3. Then, we find that coefficient �2 is significantlypolygenic effect variance � 2

Ga � 0.1 and sample size n � 40,
m � 30, s � 20 for (A) a dominant mode of inheritance a � different from 0 at position 149.85 cM, with a P-value
d � 1.0 and (B) a recessive mode of inheritance a � 1.0, d � of 0.034 by likelihood-ratio test (compared with the P-
	0.5, respectively. value of 0.0475 in Fan and Jung 2003) and a P-value

0.034 by F -test (compared with the P-value 0.0484 in
Fan and Jung 2003). The estimation is �̂2 � 0.76. Hence,

mutation age at a 0.01 significance level. The trait locus
we are able to confirm the result of Wjst et al. (1999) and

Q locates at position 10 cM. The four markers flank the
find that marker D1S221 is associated with log(IGE).

trait locus Q ; two markers are on each side of the QTL
Compared with the results of Fan and Jung (2003),

with equal distance to each other as follows: M2 � 5 �
the evidence in the above paragraph is stronger since

M1/2, M3 � 15 	 M1/2, M4 � 20 	 M1. Here Mi also
the P-values are smaller. There are two reasons for this.

denotes the location in centimorgans of marker Mi . As
In this article, all family members are used in the analysis

the mutation ages, the power decreases and the power
(compared with only sibships used in Fan and Jung

can be high only when the markers are close to the trait
2003). This article used three markers in the analysis

locus.
(compared with only two markers used in Fan and Jung

Figure 6 shows the required number of trio families
2003). Hence, the proposed model improves the perfor-

or families with both parents and two offspring for the
mance of the previous method.

test statistics F4,a , F3,a , F2,a , and F1,a against heritability h 2

at a significance level 0.01 and power 0.8. For a favorable
case (Figure 6, A and C), the parameters are given by DISCUSSION
q1 � PMi

� 0.5, DM i M j
� 0.05, and DM i Q � 0.1 for i, j �

On the basis of multiple diallelic markers, this article
1, · · · , 4, i � j. For a less favorable case (Figure 6, B proposes variance component models for high-resolu-
and D), the parameters are given by q1 � 0.2, PM i

� tion joint linkage and association mapping of QTL. The
0.8, DM i M j

� 0.0, and DM i Q � 0.03 for i, j � 1, · · · , 4, models extend our previous work using two diallelic
markers in analysis and incorporate genetic-marker in-i � j. For the favorable case, the required number of

families of test statistics F4,a and F3,a is �200 and that of formation into the models (Fan and Xiong 2002, 2003;
Fan and Jung 2003; Fan et al. 2005). By analytical analy-F2,a is �600 if heritability h 2 is �0.1. For the less favorable

case, the required number of families of test statistics sis, it is shown that linkage disequilibrium measures and
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Figure 6.—Sample size of test statistics F1,a ,
F2,a , F3,a , and F4,a against heritability h 2 at a 0.01
significance level and 0.80 power for a domi-
nant mode of inheritance a � d � 1.0. For a
favorable case (A and C), q1 � 0.5, PM i

� 0.5,
DM i M j

� 0.05, DM i Q � 0.1, i, j � 1, 2, 3, 4, i � j ;
for a less favorable case (B and D), q1 � 0.2,
PM i

� 0.8, DM i M j
� 0.0, DM i Q � 0.03, i, j � 1,

2, 3, 4, i � j. In addition, the polygenic effect
variance � 2

Ga � 0.1.

genetic effects are incorporated in the mean coeffi- may have higher power than models that use less mark-
ers. Multiple-marker analysis can be more advantageouscients. On the basis of marker information, a multipoint

interval mapping method is provided to estimate the and has higher power in fine mapping QTL.
In an association study, population stratification canproportion of allele-sharing IBD and probability of shar-

ing two alleles IBD at a putative QTL for a sib-pair. have a huge impact on a study, which leads to high false
positives (Ewens and Spielman 1995). Zhao and XiongIt is shown that recombination fractions, i.e., linkage

information, are contained in variance-covariance ma- (2002) proposed unbiased quantitative population asso-
ciation tests to investigate the issue. In this article, wetrices. Therefore, the proposed methods model both

association and linkage in a unified model. perform type I error calculations. We allow for the very
extreme form of population admixture, in which eachIn the literature, there is plenty of research for linkage

mapping of QTL (Amos 1994; Fulker et al. 1995; family is drawn from a different stratum (Abecasis et
al. 2000a). Type I error rates of the proposed test statis-Almasy and Blangero 1998). The linkage evidence

can be detected by fitting model (6) as the first step on tics are calculated to investigate the behaviors of the
test statistics under the null distribution. Five test casesthe basis of a sparse genetic map. In this article, we put

more effort into high-resolution linkage disequilibrium including population admixture are considered to in-
vestigate the type I error rates. The results show themapping of QTL in the presence of prior linkage evi-

dence. To test the association between the trait locus proposed models and methods have correct type I error
rates for most cases and are robust.and the markers, both likelihood-ratio tests and F -tests

can be constructed on the basis of the proposed models. In a QTL mapping study, a strategy may be taken as
follows. First, linkage analysis can be carried out usingIn addition, analytical formulas of noncentrality param-

eter approximations of the F -test statistics are provided. a sparse genetic map. Then, an association study can
be performed using a dense genetic map for high-reso-After comparing it with the AbAw approach, it is found

that the method proposed in this article is more power- lution mapping of the trait. The basic idea is to take
advantage of linkage analysis for prior linkage informa-ful and advantageous on the basis of simulation study

and power calculation. By power and sample size com- tion. In the meantime, one can take advantage of the
high-resolution association study for fine mapping aparison, it is shown that models that use more markers
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genetic trait. It is well known that linkage analysis is explored for association mapping of QTL using haplo-
type data. It is important to extend the research to utilizerobust; i.e., the false-positive rates are not high. How-

ever, the resolution of linkage analysis can be low. On both population and pedigree data based on multiallelic
markers/haplotypes.the other hand, the resolution of the association study is

high. But the association study is prone to false positives One potential problem of using multiple markers in
analysis is that the degrees of freedom of test statisticscaused by population stratifications. Using the method

proposed in this article, it is more likely to avoid high can be large, which may lead to low power. Moreover,
false-positive rates by performing an association study the number of LD measures can be large. Thus, selec-
in the presence of prior linkage. The low resolution of tion of appropriate markers for analysis is one issue that
a prior linkage analysis can be remedied by the follow- needs careful consideration. The optimal number of
up high-resolution association study. markers needed depends on a specific trait in a study.

In recent years, there has been great interest in link- Also, it depends on the LD measures among the QTL
age disequilibrium mapping of QTL (Allison 1997; and the markers. In data analysis, the markers that show
Rabinowitz 1997; Zhang and Zhao 2001). Various significance in the model can be included in the final
methods of joint analysis of linkage and association are analysis. On the one hand, it would not be a good
proposed by researchers (Almasy et al. 1999; George strategy to use many diallelic markers in the model.
et al. 1999; Martin et al. 2000). On the basis of variance More markers will lead to higher degrees of freedom
component models, a combined linkage and association in test statistics. The number of markers that show sig-
AbAw approach has been developed to decompose asso- nificance is unlikely to be too large. Usually, using three
ciation effects into within- and between-family compo- or four relevant markers in an analysis would be worth-
nents (Fulker et al. 1999; Abecasis et al. 2000a,b, 2001; while, since it may have higher power than a two- or
Cardon 2000; Sham et al. 2000). However, most re- one-marker analysis. In the meantime, the degrees of
search is limited to using one diallelic marker a time freedom of test statistics and number of LD measures
to model the association of QTL. This article proposes would not be too big using three or four markers in
use of multiple markers to model the association and an analysis. The second problem is the existence of a
linkage. The genetic effects are orthogonally decom- dominance trait effect. If the dominance effect is pres-
posed into additive and dominance effects. The method ent, one may lose power by excluding it from analysis
has the advantage of high-resolution dissection of ge- (Fan and Xiong 2002). However, one may get low power
netic traits in an era in which dense marker maps are by testing hypothesis �1 � · · · � �k � �1 � · · · �
available (International SNP Map Working Group �k � 0, if the dominance effect is not significantly present
2001; Kong et al. 2002). It is hoped that the current to influence the trait values, due to the increase of
research may stimulate more interest in building models degrees of freedom of test statistics.
for joint linkage disequilibrium and linkage mapping So far, only one trait locus Q is assumed to be located
of QTL. in the chromosome region. Suppose that there are mul-

In a genetics study, the first-hand data are usually tiple QTL in the region. The mixed-effect model (1)
genotyping information. The methods developed in this can still be used in QTL mapping. In addition, suppose
article can be directly used in analyzing quantitative that the trait value is influenced by unlinked trait loci
and genotyping data of nuclear families by combining in different regions. Then model (3) needs to be gener-
linkage and association information together. In the alized to use markers from different regions in analysis
meantime, one may argue the use of haplotype data (Hoh and Ott 2003). If multiple-trait loci are present,
in an analysis that can be constructed on the basis of other issues such as epistasis need more in-depth investi-
genotyping data. The question is an important issue as gation. For IBD estimation, we follow the method pro-
the haplotype map project will soon be completed and posed by Fulker et al. (1995) and Almasy and Blang-
haplotype data will be readily available (International ero (1998). If there is LD between the trait and markers,
HapMap Consortium 2003; HapMap project, http:// LD among markers would also be expected and needs
www.hapmap.org). The proposed method deals with to be incorporated in estimating IBD. However, it is not
diallelic markers. When the markers are not diallelic as clear how to achieve this. This is a very interesting and
is the case in the analyzed data, we collapse alleles into important research area for future study. Better IBD
two groups to form two allele types. The hidden ques- estimates would lead to a fitted variance-covariance
tion is whether this collapsing has any consequence in structure that is a better approximation of the true vari-
type I error because the collapsing is not unique, which ance-covariance structure. This would improve the per-
leads to the selection issue. It is important to develop formance of the proposed models.
appropriate models and handy algorithms in linkage

We thank G. Gibson for kindness and patience in handling thisand association mapping of complex diseases using hap-
article; and we thank two anonymous reviewers for very detailed and

lotype/multiallelic marker data. It would be interesting thoughtful critiques, which improved the article greatly. We are grate-
to see a comparison of the two approaches. In Jung et ful to G. R. Abecasis for kindly providing the simulation program

LDSIMUL to generate simulated data sets. R. Fan was supportedal. (2004), a population-based regression approach is



894 J. Jung, R. Fan and L. Jin

identity-by-descent method with parametric multipoint linkagepartially by a research fellowship from the Alexander von Humboldt
analysis for mapping quantitative traits. Am. J. Hum. Genet. 50:Foundation, Germany, by an international research travel assistance
598–606.grant, Texas A&M University, and by the National Science Foundation

Graybill, F. A., 1976 Theory and Application of the Linear Model. Wads-Grant DMS-0505025.
worth & Brooks/Cole Advanced Books & Software, Pacific Grove,
CA.

Harville, D. A., 1997 Matrix Algebra From a Statistician’s Perspective.
Springer, Berlin/Heidelberg, Germany/New York.

LITERATURE CITED Haseman, J. K., and R. C. Elston, 1972 The investigation of linkage
between a quantitative trait and a marker locus. Behav. Genet.Abecasis, G. R., L. R. Cardon and W. O. C. Cookson, 2000a A
2: 3–19.general test of association for quantitative traits in nuclear fami-

Hoh, J., and J. Ott, 2003 Mathematical multi-locus approaches tolies. Am. J. Hum. Genet. 66: 279–292.
localizing complex human trait genes. Nat. Rev. Genet. 4: 701–Abecasis, G. R., W. O. C. Cookson and L. R. Cardon, 2000b
709.Pedigree tests of linkage disequilibrium. Eur. J. Hum. Genet. 8:

International HapMap Consortium, 2003 The international545–551.
HapMap project. Nature 426: 789–796.Abecasis, G. R., W. O. C. Cookson and L. R. Cardon, 2001 The

International SNP Map Working Group, 2001 A map of humanpower to detect linkage disequilibrium with quantitative traits in
genome sequence variation containing 1.42 million single nucleo-selected samples. Am. J. Hum. Genet. 68: 1463–1474.
tide polymorphisms. Nature 409: 928–933.Allison, D. B., 1997 Transmission-disequilibrium tests for quantita-

Jennrich, R. I., and M. D. Schluchter, 1986 Unbalanced repeated-tive traits. Am. J. Hum. Genet. 60: 676–690.
measures models with structured covariance matrices. BiometricsAlmasy, L., and J. Blangero, 1998 Multipoint quantitative trait
42: 805–820.linkage analysis in general pedigrees. Am. J. Hum. Genet. 62:

Jung, J., R. Fan and L. Jin, 2004 Haplotype association mapping of1198–1211.
quantitative trait loci, a population based approach. Abstracts ofAlmasy, L., J. T. Williams, T. D. Dyer and J. Blangero, 1999 Quan-
the 54th Annual Meeting of the American Society of Humantitative trait locus detection using combined linkage/disequilib-
Genetics, Toronto, Abstract 1970.rium analysis. Genet. Epidemiol. 17 (Suppl. 1): S31–S36.

Kong, A., D. F. Gudbjartsson, J. Sainz, G. M. Jonsdottir, S. A.Amos, C. I., 1994 Robust variance-components approach for as-
Gudjonsson et al., 2002 A high resolution recombination mapsessing linkage in pedigrees. Am. J. Hum. Genet. 54: 534–543.
of the human genome. Nat. Genet. 31: 241–247.Amos, C. I., R. C. Elston, A. F. Wilson and J. E. Bailey-Wilson,

Lange, K., 2002 Mathematical and Statistical Methods for Genetic Analy-1989 A more powerful robust sib-pair test of linkage for quanti-
sis, Ed. 2. Springer, Berlin/Heidelberg, Germany/New York.tative traits. Genet. Epidemiol. 6: 435–449.

Martin, E. R., S. A. Monks, L. L. Warren and N. L. Kaplan, 2000Cardon, L. R., 2000 A sib-pair regression model of linkage disequi-
A test for linkage and association in general pedigrees: the pedi-librium for quantitative traits. Hum. Hered. 50: 350–358.
gree disequilibrium test. Am. J. Hum. Genet. 67: 146–154.Cotterman, C. W., 1940 A calculus for statistico-genetics. Ph.D.

Meyers, D. A., M. Wjst and C. Ober, 2001 Description of threeThesis, Ohio State University, Columbus, OH.
data sets: collaborative study on the genetics of asthma (CSGA),Elston, R. C., and B. J. B. Keats, 1985 Genetic analysis workshop
the German affected sib pair study, and the Hutterites of SouthIII: sib pair analyses to determine linkage groups and to order Dakota. Genet. Epidemiol. 21 (Suppl. 1): S4–S8.loci. Genet. Epidemiol. 2: 211–213. Pinheiro, J. C., and D. M. Bates, 2000 Mixed-Effects in S and S-plus.Ewens, W. J., and R. S. Spielman, 1995 The transmission/disequilib- Springer, New York.rium test: history, subdivision, and admixture. Am. J. Hum. Genet. Pratt, S. C., M. Daly and L. Kruglyak, 2000 Exact multipoint57: 455–464. quantitative-trait linkage analysis in pedigrees by variance compo-

Falconer, D. S., and T. F. C. Mackay, 1996 Introduction to Quantita- nents. Am. J. Hum. Genet. 66: 1153–1157.
tive Genetics, Ed. 4. Longman, London. Rabinowitz, D., 1997 A transmission disequilibrium test for quanti-

Fan, R., and J. Jung, 2003 High resolution joint linkage disequilib- tative trait loci. Hum. Hered. 47: 342–350.
rium and linkage mapping of quantitative trait loci based on Searle, S. R., G. Casella and C. E. McCulloch, 1992 Variance
sibship data. Hum. Hered. 56: 166–187. Components. John Wiley & Sons, New York.

Fan, R., and M. Xiong, 2002 High resolution mapping of quantita- Sham, P. C., S. S. Cherny, S. Purcell and J. K. Hewitt, 2000 Power
tive trait loci by linkage disequilibrium analysis. Eur. J. Hum. of linkage versus association analysis of quantitative traits, by use
Genet. 10: 607–615. of variance-components models, for sibship data. Am. J. Hum.

Fan, R., and M. Xiong, 2003 Combined high resolution linkage Genet. 66: 1616–1630.
and association mapping of quantitative trait loci. Eur. J. Hum. Wjst, M., G. Fischer, T. Immervoll, M. Jung, K. Saar et al., 1999
Genet. 11: 125–137. A genome-wide search for linkage to asthma. Genomics 58: 1–8.

Fan, R., C. Spinka, L. Jin and J. Jung, 2005 Pedigree linkage disequi- Zhang, S. L., and H. Y. Zhao, 2001 Quantitative similarity-based
librium mapping of quantitative trait loci. Eur. J. Hum. Genet. association tests using population samples. Am. J. Hum. Genet.
13: 216–231. 69: 601–614.

Fulker, D. W., S. S. Cherny and L. R. Cardon, 1995 Multiple Zhao, J., and M. Xiong, 2002 Unbiased quantitative population
interval mapping of quantitative trait loci, using sib-pairs. Am. J. association test. Am. J. Hum. Genet. 71 (Suppl.): 568.
Hum. Genet. 56: 1224–1233. Zhao, J., W. Li and M. Xiong, 2001 Population based linkage dis-

Fulker, D. W., S. S. Cherny, P. C. Sham and J. K. Hewitt, 1999 equilibrium mapping of QTL: an application to simulated data
Combined linkage and association sib-pair analysis for quantita- in an isolated population. Genet. Epidemiol. 21 (S1): S655–S659.
tive traits. Am. J. Hum. Genet. 64: 259–267. Zhu, X. F., and R. C. Elston, 2000 Power comparison of regression

George, V., H. K. Tiwari, X. F. Zhu and R. C. Elston, 1999 A test methods to test quantitative traits for association and linkage.
of transmission/disequilibrium for quantitative traits in pedigree Genet. Epidemiol. 18: 322–330.
data, by multiple regression. Am. J. Hum. Genet. 65: 236–245.

Goldgar, D. E., and R. S. Oniki, 1992 Comparison of a multipoint Communicating editor: G. Gibson



895Combined Linkage and Association Mapping of QTL

APPENDIX A

Taking variance-covariance among xi j , z i j , yi of the mixed-effect model (1) leads to the following variance-covariance
equations:

Cov

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎝

(xi 1 , xi 1) (xi 2 , xi 1) … (xi k , xi 1) (zi 1 , xi 1) … (z i k , xi 1)
(xi 1 , xi 2) (xi 2 , xi 2) … (xi k , xi 2) (zi 1 , xi 2) … (z i k, xi 2)

� � … … � … �
(xi 1 , xi k) (xi 2 , xi k) … (xi k, xi k) (zi 1 , xi k) … (z i k, xi k)
(xi 1 , z i 1) (xi 2 , z i 1) … (xi k, z i 1) (z i 1 , z i 1) … (z i k, zi 1)

� � … � � … �
(xi 1 , z i k) (xi 2 , z i k) … (xi k, z i k) (zi 1 , z i k) … (z i k, z i k)
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. (A1)

In a similar way to that in Fan and Xiong (2002, Appendix A), the following expectations, variance, and covariances
can be derived accordingly: Exi j � 0, Ezi j � 0, E(x2

i j) � Cov(xi j , xi j) � 2PMj
Pmj

, E(z2
i j) � Cov(zi j , zi j) � P 2

M j
P 2

mj
, E(xi jxi l) �

Cov(xi j, xi l) � 2DM j M l
, E(zi j zi l) � Cov(zi j zi l) � D 2

M j M l
, E(xi jzi l) � Cov(xi j , zi l) � 0, Cov(y i , xi j) � E(yixi j) � 2DM j Q �Q ,

Cov(yi , zi j) � E(yi zi j) � D 2
MjQ�Q for j, l � 1, · · · , k, j � l. Plugging the above quantities into (A1) gives
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Therefore, the coefficients of (5) are derived.

APPENDIX B

To simplify notations, we omit subscripts ij from 
i j Q , 
i j M 1
, · · · , 
i j M k

, �i j M 1
, · · · , �i j M k

in appendixes b and c.
Taking variance-covariance among 
Q , 
M j

, y i of Equation 7 leads to
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)

(
Q , 
M 2
)

�
(
Q , 
M k

)

⎞
⎟
⎟
⎟
⎠

. (B1)

From Elston and Keats (1985) and Almasy and Blangero (1998), we have

Cov(
M i
, 
M i

) � 1/8, i � 1, · · · , k,

Cov(
M i
, 
 M j

) � (1 	 2�M i M j
)2/8, i � j � 1, · · · , k,

Cov(
Q , 
M i
) � (1 	 2�M i Q)2/8, i � 1, · · · , k.

Plugging the above quantities into Equation B1 gives

1
8

⎛
⎜
⎜
⎜
⎝

1 (1 	 2�M 1 M 2
)2 … (1 	 2�M 1 M k

)2

(1 	 2�M 1 M 2
)2 1 … (1 	 2�M 2 M k

)2

� � � �
(1 	 2�M 1 M k

)2 (1 	 2�M 2 M k
)2 … 1

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

�
 M 1

�
 M 2

�
�
 M k

⎞
⎟
⎟
⎟
⎠

�
1
8

⎛
⎜
⎜
⎜
⎝

(1 	 2�M 1 Q)2

(1 	 2�M 2Q)2

�
(1 	 2�M k Q)2

⎞
⎟
⎟
⎟
⎠

,

which leads to

⎛
⎜
⎜
⎜
⎝

�
 M 1

�
 M 2

�
�
 M k

⎞
⎟
⎟
⎟
⎠

�

⎛
⎜
⎜
⎜
⎝

1 (1 	 2�M 1 M 2
)2 … (1 	 2�M 1 M k

)2

(1 	 2�M 1M 2
)2 1 … (1 	 2�M 2 M k

)2

� � � �
(1 	 2�M 1 M k

)2 (1 	 2�M 2 M k
)2 … 1

⎞
⎟
⎟
⎟
⎠

	1 ⎛
⎜
⎜
⎜
⎝

(1 	 2�M 1 Q)2

(1 	 2�M 2 Q)2

�
(1 	 2�M k Q)2

⎞
⎟
⎟
⎟
⎠

.
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APPENDIX C

Taking variance-covariance among �Q , 
M j
, �M l

of Equation 8 leads to

Cov

⎛
⎜
⎜
⎜
⎜
⎜
⎝

(
M 1
, 
M 1

) … (
M k
, 
M 1

) (�M 1
, 
M 1

) … (�M k
, 
M 1

)
� � � � � �

(
M 1
, 
M k

) … (
M k
, 
M k

) (�M 1
, 
M k

) … (�M k
, 
M k

)
(
M 1

, �M 1
) … (
M k

, �M 1
) (�M 1

, �M 1
) … (�M k

, �M 1
)

� � � � � �
(
M 1

, �M k
) … (
M k

, �M k
) (�M 1

, �M k
) … (�M k

, �M k
)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝

�M 1

�
�M k

rM 1

�
rM k

⎞
⎟
⎟
⎟
⎟
⎟
⎠

� Cov

⎛
⎜
⎜
⎜
⎜
⎜
⎝

(�Q , 
M 1
)

�
(�Q , 
M k

)
(�Q , �M 1

)
�

(�Q , �M k
)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

. (C1)

As in appendix b, the following covariances are from Elston and Keats (1985), Almasy and Blangero (1998),
and Fan and Jung (2003),

Cov(�M i
, 
M i

) �
1
8
, i � 1, · · · , k,

Cov(�M i
, 
M j

) � Cov(�M j
, 
M i

) � (1 	 2�M i M j
)2/8, i, j � 1, · · · , k, i � j,

Cov(�M i
, �M i

) �
3
16

, i � 1, · · · , k,

Cov(�M i
, �M j

) �
3
16

�(�M i
, �M j

), i, j � 1, · · · , k, i � j

Cov(�Q , 
M i
) � (1 	 2�M i Q)2/8, i � 1, · · · , k,

Cov(�Q , �M i
) �

3
16

�(�Q, �M i
), i � 1, · · · , k,

where �(�1, �2) � 1 	 (16/3)�i j � (32/3)�2
i j 	 (32/3)�3

i j � (16/3)�4
i j . Plugging the above results into the equation

(C1), we have a submatrix block equation,

⎛
⎜
⎝
A A
A B

⎞
⎟
⎠

⎛
⎜
⎜
⎜
⎜
⎜
⎝
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�
�M k

rM 1

�
rM k

⎞
⎟
⎟
⎟
⎟
⎟
⎠

�

⎛
⎜
⎜
⎜
⎜
⎜
⎝

(1 	 2�M 1 Q)2

�
(1 	 2�M kQ)2

3�(�M i
, �Q)/2
�

3�(�M k
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⎞
⎟
⎟
⎟
⎟
⎟
⎠

,

where

A �

⎛
⎜
⎜
⎜
⎝

1 (1 	 2�M 1 M 2
)2 … (1 	 2�M 1 M k

)2

(1 	 2�M 1 M 2
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)2

� � � �
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)2 (1 	 2�M 2 M k
)2 … 1

⎞
⎟
⎟
⎟
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,

B �
3
2

⎛
⎜
⎜
⎜
⎝
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, �M 2
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)
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) 1 … �(�M 2
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)

� � � �
�(�M 1

, �M k
) �(�M 2

, �M k
) … 1

⎞
⎟
⎟
⎟
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.

Therefore, we have from Harville (1997) that
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�
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rM 1

�
rM k
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⎛
⎜
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⎞
⎟
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⎛
⎜
⎜
⎜
⎜
⎜
⎝

(1 	 2�M 1 Q)2
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3�(�M i
, �Q)/2
�

3�(�M k
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⎞
⎟
⎟
⎟
⎟
⎟
⎠

.

The equation 3�(�i, �j)/2 	 (1 	 2�ij)2 � (1 	 8�ij � 24�2
ij 	 32�3

ij � 16�4
ij)/2 � (1 	 2�ij)4/2 leads to



897Combined Linkage and Association Mapping of QTL

⎛
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⎜
⎜
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(1 	 2�M 2 Q)4

�
(1 	 2�M k Q)4

⎞
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.

Moreover, we have
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.

APPENDIX D

To derive a1, a2, a3 in approximation (9), we assume three subsamples of a population: n individuals; m trio
families, each having both parents and a single child; and s nuclear families, each having both parents and two
offspring.

a. For each yi of the n individuals, �i � �2 and Xi � (1, xi 1, · · · , xi k , zi 1, · · · , zi k), i � 1, · · · , n. When the sample
size n of individuals is large, the large number law leads to

1
n

XtX �
1
n�

n

i �1

⎛
⎜
⎜
⎜
⎜
⎝

n x i 1 x i 2 … x i k z i 1 … z i k

x i 1 x 2
i 1 x i 2x i 1 … x i kx i 1 z i 1x i 1 … z i kx i 1

x i 2 x i 1x i 2 x 2
i 2 … x i kx i 2 z i 1x i 2 … z i kx i 2

� � � … � � … �
z i k x i 1z i k x i 2z i k … x i k z i k z i 1z i k … z 2

i k

⎞
⎟
⎟
⎟
⎟
⎠

�

⎛
⎜
⎜
⎜
⎜
⎝

1 Ex i 1 Ex i 2 … Ex i k Ez i 1 … Ez i k

Ex i 1 Ex 2
i 1 Ex i 2x i 1 … Ex i kx i 1 Ez i 1x i 1 … Ez i kx i 1

Ex i 2 Ex i 1x i 2 Ex 2
i 2 … Ex i kx i 2 Ez i 1x i 2 … Ez i kx i 2

� � � … � � … �
Ez i k Ex i 1z i k Ex i 2z i k … Ex i k z i k Ez i 1z i k … Ez 2

i k

⎞
⎟
⎟
⎟
⎟
⎠

� diag(1, VA , VD).

Therefore, we have the approximation

1
n �

n

i �1

X �
i �	1

i X i �
1

n� 2 �
n

i �1

X �
i X i � 1

� 2
diag(1,VA ,VD), (D1)

where VA and VD are additive and dominance variance-covariance matrices defined by (4).

b. For the i th trio family, let (y f i , ym i , y i 1)� be the trait values and Xi � (Xf i , Xm i , Xi 1)� be the related model matrix,
i � n � 1, · · · , n � m. In the same way as that of Fan and Xiong (2003, Appendix A), the covariance matrix
between parents and their offspring can be shown to be

EX �
f i X i 1 � EX �

m iX i 1 �
⎛
⎜
⎝
VA/2 Ok

Ok Ok

⎞
⎟
⎠

, (D2)

where Ok is a zero k 
 k matrix. For each of the m trio families, the variance-covariance matrix

� i � � 2

⎛
⎜
⎜
⎝

1 0 �0

0 1 �0

�0 �0 1

⎞
⎟
⎟
⎠

.

The inverse matrix of �i is
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�	1
i �

1
(1 	 2�2

0)� 2

⎛
⎜
⎜
⎝

1 	 �2
0 �2

0 	�0

�2
0 1 	 �2

0 	�0

	�0 	�0 1

⎞
⎟
⎟
⎠

.

By the above formulas, we can show the following:

1
m �

n�m

i �n�1

X �
i �	1

i X i � 2
(1 	 2�2

0)� 2

⎛
⎜
⎜
⎝

3 	 4�0 0 0
0 (3 	 2�0 	 2�2

0)VA 0
0 0 (3 	 2�2

0)VD

⎞
⎟
⎟
⎠

. (D3)

c. For the i th family that is composed of both parents and two offspring, let (yf i , ym i , y i 1, y i 2)� be the trait values
and Xi � (Xf i , Xm i , Xi 1, Xi 2)� be the related model matrix, i � n � m � 1, · · · , n � m � s. In the same way as
that of Fan and Xiong (2003, Appendix C), it can be shown that

EX �
i 1 Xi 2 �

⎛
⎜
⎝
VA/2 Ok

Ok VD/4

⎞
⎟
⎠

. (D4)

For each of the s families, the inverse variance-covariance matrix

�	1
i �

1
� 2

⎛
⎜
⎜
⎜
⎜
⎜
⎝

1 � 2�0C 2�0C 	C 	C
2�0C 1 � 2�0C 	C 	C

	C 	C
C(1 	 2�2

0)
�0(1 	 �12)

	
C(�12 	 2�2

0)
�0(1 	 �12)

	C 	C 	
C(�12 	 2�2

0)
�0(1 	 �12)

C(1 	 2�2
0)

�0(1 	 �12)

⎞
⎟
⎟
⎟
⎟
⎟
⎠

, (D5)

where C � �0(1 	 �12)/[(1 	 2�2
0)2 	 (�12 	 2�2

0)2]. Using (D2), (D4), and (D5), we can show

1
s �

n�m�s

i�n�m�1

X �
i �	1

i X i � diag(d11 , d22VA , d44VD), (D6)

where the constants are given by d11 � 2[1 � 4C�0 	 4C � C/�0], d22 � 2 � 4C(�0 	 1) � C(2 	 �12 	 2�2
0)/[�0(1 	

�12)], d44 � 2(1 � 2C�0) � C[4(1 	 2�2
0) 	 (�12 	 2�2

0)]/[2�0(1 	 �12)]. Combining the n individuals, m trio families,
and s families with two offspring, the equations (D1), (D3), and (D6) lead to �n�m�s

i �1 X �
i �	1

i Xi � diag(a1, a2VA, a3VD)/�2,
where

a1 � n � m(1 	 2�2
0)	1(3 	 4�0) � sd 11,

a2 � n � m(1 	 2�2
0)	1(3 	 2�0 	 2�2

0) � sd 22, (D7)

a3 � n � m(1 	 2�2
0)	1(3 	 2�2

0) � sd 44.

APPENDIX E

Using (D2) and (D4), we can show approximation (10). The constants b1 and b2 are given by

b1 � �
l�2

j�1

�j j � (�13 � · · · � �1, l�2) � (�23 � · · · � �2, l�2) � �
l�2

h�3
�
l�2

j �h�1

�h j , (E1)

b2 � �
l�2

j �1

�j j � �
l�2

h�3
�
l�2

j �h�1

�h j/2.


