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ABSTRACT
Landscape genetics is a new discipline that aims to provide information on how landscape and environ-

mental features influence population genetic structure. The first key step of landscape genetics is the
spatial detection and location of genetic discontinuities between populations. However, efficient methods
for achieving this task are lacking. In this article, we first clarify what is conceptually involved in the spatial
modeling of genetic data. Then we describe a Bayesian model implemented in a Markov chain Monte
Carlo scheme that allows inference of the location of such genetic discontinuities from individual geo-
referenced multilocus genotypes, without a priori knowledge on populational units and limits. In this
method, the global set of sampled individuals is modeled as a spatial mixture of panmictic populations,
and the spatial organization of populations is modeled through the colored Voronoi tessellation. In addition
to spatially locating genetic discontinuities, the method quantifies the amount of spatial dependence in
the data set, estimates the number of populations in the studied area, assigns individuals to their population
of origin, and detects individual migrants between populations, while taking into account uncertainty on
the location of sampled individuals. The performance of the method is evaluated through the analysis of
simulated data sets. Results show good performances for standard data sets (e.g., 100 individuals genotyped
at 10 loci with 10 alleles per locus), with high but also low levels of population differentiation (e.g., F ST �
0.05). The method is then applied to a set of 88 individuals of wolverines (Gulo gulo) sampled in the north-
western United States and genotyped at 10 microsatellites.

RECENT developments in molecular markers and ers (e.g., microsatellites) and collected at a finer scale
than that typical of phylogeography. Therefore, in con-statistical tools, combined with powerful comput-

ers have led to the emergence of a new scientific field, trast to phylogenetics, landscape genetics tends to focus
on the understanding of the microevolutionary pro-landscape genetics, which is an amalgamation of popula-

tion genetics and landscape ecology (Manel et al. 2003). cesses that generate genetic structure across space. The
two key steps of landscape genetics are the detection andThis discipline aims to provide information on how

landscape and environmental features influence gene location of genetic discontinuities and the correlation of
these discontinuities with landscape and environmentalflow, population structure, and local adaptation. It also

aids in identifying cryptic genetic discontinuities, which features (e.g., mountains, rivers, roads, gradient of hu-
midity, and deforested areas) (Manel et al. 2003). Ide-are breaks in gene flow without any obvious cause, or

secondary contact among previously isolated popula- ally, the first step should be based on methods that
do not require assumptions of population boundariestions. The spatial delineation of genetic discontinuities

within a species allows that of operational units, an im- beforehand. This implies that the individual is the oper-
ational unit of study. However, this unit can be extendedportant issue for species management (i.e., for pest con-

trol, as well as the monitoring of game or threatened to a priori defined populations if enough populations
can be sampled and individuals are not too sparselyspecies). Moreover, identifying the abiotic and biotic

factors involved in evolutionary processes is essential distributed in space within each population sample.
Several recent methods based on cluster models andfor modeling and predicting the evolution of genetic

diversity under different scenarios, especially those re- likelihood computation have the potential to both
group individuals into populational units and detectlated to environmental changes due to human activity

(e.g., habitat fragmentation). Landscape genetics usu- migrants between those units, without requiring the a
priori definition of populational limits (Pritchard et al.ally makes use of data obtained at highly variable mark-
2000; Dawson and Belkhir 2001; Falush et al. 2003).
However, these methods do not explicitly take into ac-
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HIERARCHICAL SPATIAL MODELcoding the assignment to a population is a priori inde-
pendent and identically distributed among individuals. The global set of sampled individuals is viewed as rep-
As a consequence, they do not make use of spatial coor- resentative of one or several panmictic populations sepa-
dinates of sampled individuals, except in some ad hoc rated by geographic borders across space. Our modeling
postprocessing schemes like those consisting of drawing strategy is hierarchical in the sense that we first specify
by hand the spatial convex hull of each inferred popula- how the populations are spatially organized and then
tion. Hence these methods cannot objectively identify we specify the statistical genetic properties of each popu-
the spatial location of genetic discontinuities between lation conditionally on this spatial organization.
populations. Hidden model of spatial organization through Voro-

Although a large body of statistical literature is avail- noi tessellation: Let � be the geographical region under
able on the clustering of spatially explicit data (Lawson study. We denote by z � (z1, . . . , zn) the vector of geno-
and Denison 2002), the models available are devoted to types of the n diploid individuals (although other ploi-
the analysis of quantitative and univariate data, whereas dies could be considered) observed at L loci, z i being
genetic data are categorical and strongly multivariate a collection of pairs of alleles z i ,l � {a i ,l , b i ,l }, with l �
by nature. The work of Vounatsou et al. (2000) should, 1, . . . , L , and we denote by t � (t 1, . . . , t n) the vector
however, be mentioned, since it aims to relate haplotype of the two-dimensional spatial coordinates of these indi-
frequencies to spatial coordinates and environmental viduals.
covariates. Nevertheless, this method starts from a known We consider that there are K different populations
clustering of data, which is injected as a prior informa- present in the spatial domain under study and that those
tion on the spatial dependence through a conditional

populations occupy some subdomains �1, . . . , �K . The
autoregressive model. In a different spirit, Dupanloup

�k form a partition of �, namely � � �1 � . . . . � �Ket al. (2002) proposed to cluster populations by maximi-
with �k � �l � 0, for k � l . We consider the setting where

zation of a differentiation criterion between popula-
we have no knowledge about the shape and location oftion clusters, the criterion being the proportion of total
these subdomains, and part of this article is devoted togenetic variance due to differences between clusters. As
their estimation from spatial and genetic data t andthe effective maximization is numerically prohibitive,
z . A geographical subdomain being possibly extremelyDupanloup et al. (2002) suggest using a simulated an-
complex, we need to make a few assumptions on thenealing approach in which the random search strategy
shape and locations of the �k , to reduce the complexity,makes use of the spatial coordinates of the population
namely the number of parameters, of the problem. Forsamples (note that the unit of treatment could be an
several reasons discussed later, we assume that each sub-individual rather than a population). This can lead to
domain �k can be approximated by a union of convexcertain local maxima easy to reach from a given spatial
polygons. This assumption is not restrictive as any com-sampling configuration and to the identification of rele-
plex domain can be arbitrarily well approximated byvant genetic discontinuities between groups of popula-
such union of convex polygons provided enough poly-tions. However, their criterion does not rely on the
gons are considered. As we do not know where suchcoordinates in its definition; therefore the global maxi-
polygons should be placed to approximate some truemum searched does not depend itself on the coordi-
spatial organization of the population under study, wenates, and the method turns out to be spatial mainly
model the locations of these polygons as random vari-through the heuristic optimization strategy, whose con-
ables with uniform distribution over the whole spatialvergence properties still have to be assessed.
domain.In this article, we describe a new statistical model that

More formally, we consider that there is a point pro-aims at inferring and locating genetic discontinuities
cess (a set of random points in the spatial domain,between populations in space from individual multi-
the number of points itself being random) that haslocus genetic data. Our central assumption throughout
realization denoted by (u 1, . . . , um). Each ui (referredthis work is that some spatial dependence is often pres-
to hereafter as nucleus) defines a set Ai around it, de-ent among individuals. On the basis of this sensible as-
fined as Ai � {s , dist(s , ui) � dist(s , uj), ∀j � 1, . . . ,sumption, we developed a hierarchical spatial model in
m }. Namely, Ai is the set of geographical sites closer towhich we formally inject a priori information on how
ui than to any other points among (u 1, . . . , um). Eachthe individuals are spatially organized. In addition to
Ai is a convex polygon and the set A 1, . . . , Am is knownthe detection of genetic discontinuities between popula-
as the Voronoi tesselation of �, as it splits � in m non-tions, our method also addresses the following points:
overlapping subdomains. We now assume that each of(i) denoising blurred coordinates of sampled individuals,
these Ai contains individuals of one subpopulation only.(ii) estimating the number of populations in the studied
Hence, each Ai can be labeled by a number between 1area, (iii) quantifying the amount of spatial dependence
and K that we denote by c(ui).in the data, (iv) assigning individuals to their population

In mathematical terms, we parameterized these sub-of origin, and (v) detecting individual migrants between
populations. domains assuming that they are unions of some underly-
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Figure 1.—Random tessellation of a unit square into two spatial domains through a colored Voronoi tiling. Left, realization
of a Poisson point process with Voronoi tessellation induced. Right, partition obtained after union of tiles belonging to the same
population (coded as two colors).

ing Voronoi cells induced by a homogeneous Poisson tends to favor partitions that are spatially organized. To
a certain extent, our model is very similar in spirit topoint process. For any arbitrary point x in �, c(x) is

defined as the population of its closest nucleus. The those used in image analysis, where the purpose is to
retrieve a true scene blurred by a certain noise. In thisdomain finally covered by population k is the union of
context, it is widely admitted that even when very littlecells of the same population, namely �k � �c(ui )�kA i .
is known about the true scene, it is useful to use a priorThe belonging of any point of the domain to the popula-

tions can be thought of as a coloring; hence this model assuming some spatial organization; see Besag (1986)
or Hurn et al. (2003) for a recent review. The advantagesis sometimes referred to as colored Voronoi tiling. (See

Figure 1 for an illustration with K � 2 and m � 5.) It of our spatial model are (1) the possibility for better clas-
sification with limited data due to a more informativeis widely used in earth sciences to model spatial organiza-

tion of categorical variables such as geological forma- prior and (2) the direct inference about range bound-
aries. However, with large amounts of data (and a giventions, or soil occupation (Lantuéjoul 2002), and has

also been used in genetics in a different framework by K), the posterior assignments of individuals should be
the same under the spatial model as for the nonspatialDupanloup et al. (2002).

We assume that all populations have a priori equal model.
The amount of spatial dependence prescribed by theprobability; therefore, we assume that each tile belongs

to a population with probability 1/K , independently. colored Voronoi tesselation depends on how the do-
mains �k are themselves fragmented in smaller polygonsAlthough reasonably simple, our model allows depar-

ture from the so-called independent identically distrib- Ai . Let us denote by � the rate of the Poisson process
u 1, . . . , um . This parameter controls the number of poly-uted (i.i.d.) mixture model commonly used in nonspa-

tial cluster models (Pritchard et al. 2000; Falush et al. gons in � and hence the amount of spatial dependence
in the hidden clustering. Low values of � correspond2003). In the latter method, the joint prior probability

that individual i belongs to population k and individual to weakly fragmented partitions of � and thus to strong
dependence of the hidden spatial organization of pop-i � belongs to population k� is equal to 1/K 2 (the product

of the marginals) whatever the geographical distance ulations, whereas large values of � correspond to high
fragmentation and weak spatial dependence. When thebetween the individuals may be.

In the colored Voronoi tiling model that we propose number of points m is very large, each tile contains only
one sampled individual and our tessellation modelto use, the marginal is uniform, but the joint probability

does not factorize. More specifically, the joint probabil- behaves like an i.i.d. mixture model similar to the prior
on the clustering used by Pritchard et al. (2000),ity that any two individuals belong to the same popula-

tion decreases with the geographical distance between Corander et al. (2003), or Falush et al. (2003).
It is worth noting that the model allows the definitionthem. In other words, i.i.d. mixture models such as those

of Pritchard et al. (2000) or Falush et al. (2003) put of complex spatial domains including situations for
which those domains appear as unconnected pieces inequal prior weights to all partitions, whereas our model
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not take into account the fact that allele frequencies
tend to be similar in different populations.

Following this line of thought, Falush et al. (2003)
introduced interpopulation correlation in frequencies
by introducing a hypothetical ancestral population with
allele frequencies fAl j , l � 1, . . . , L , j � 1, . . . , J l (fre-
quency of allele j at locus l in the ancestral population,
where J l is the number of alleles at locus l), from which
present populations have diverged according to drift
factors d 1, . . . , dK . In this second model (referred to
as F-model and spatial F-model when embedded in our
spatial scheme), the frequencies at each locus in the
ancestral population follow a Dirichlet(1, . . . , 1) distri-
bution. Falush et al. (2003) relate frequencies in the
present populations to those of the ancestral population

Figure 2.—Illustration of the need for a tessellation prior and to the drift factors through
allowing nonconnected components.

fkl. � Dirichlet � fAl1
1 � dk

dk

, . . . , fA l J l

1 � dk

dk
�,

the sampling window (see Figure 2). Hence, our model
k � 1, . . . , K , l � 1, . . . , L . (2)should not overestimate the number of populations in

these particular although potentially frequent cases. This equation accounts for the fact that if a set of
Moreover, as is shown later, this feature makes it possi- populations have split from an ancestral population
ble to visually detect migrants and identify their spatial at a given time, their allele frequencies will differ. The
domain of origin. amount of differentiation depends on many factors

Although it can sometimes be relevant to model ani- that are quantitatively unknown. The vector d 1, . . . , dK

mal territories as Voronoi cells (Blackwell 2001), we parameterizes our uncertainty about the level of differ-
do not give to the cells any strong biological interpreta- entiation.
tion, neither do we see this tiling model as a realistic Anticipating the discussion that follows, we may fear
representation of the true organization of populations. that the F-model embedded in our full Bayesian inferen-
This prior on the partition allows penalizing only very tial scheme, including inference of K (see below), may
loosely spatially organized clustering, as we believe that be excessively flexible, since in contrast to Falush et al.
populations tend to be spatially organized in real life. (2003), we do not prescribe how many populations
However, our model does not penalize too strongly con- there are, and neither does the F-model state how differ-
nected components of small to moderate sizes. This entiated these populations are. This may lead to infer-
feature complies well with the fact that our prior knowl- ence of spurious populations. Therefore, although the
edge on the level of spatial fragmentation of popula- F-model sounds theoretically more appealing than the
tions is usually rather limited. Therefore, the colored D-model, we keep attention on both models throughout
Voronoi tiling model is a good trade-off between nu- this article.
merical tractability and more complicated partition mod- Conditional model for genotypes: Given the partition
els like those of Nicholls (1997), Møller and Waage- and the allele frequencies fklj , we assume that the geno-
petersen (1998), or Møller and Skare (2001). types in each population are independent draws from

Model for frequencies: It is commonly assumed in the discrete multivariate distribution specified by the fklj ,
population genetics that the allele frequencies follow which is equivalent to the assumption of Hardy-Weinberg
independent Dirichlet distributions, namely equilibrium within, and linkage equilibrium, between loci.

fkl. � Dirichlet(�, . . . , �), k � 1, . . . , K , l � 1, . . . , L ,
(1) FULL BAYESIAN SPECIFICATION

where fkl. denotes the vector whose entries are fklj (fre- All nonobserved quantities involved are treated as
quency of allele j at locus l in population k), (e.g., unknown. For full Bayesian inference we place priors
Rannala and Moutain 1997; Pritchard et al. 2000; on them, and the model can be summarized as follows.
Estoup et al. 2004). This model (referred to hereafter Number of populations: K � Uniform({Kmin , . . . ,
as D-model and spatial D-model when embedded in our Kmax}). This is a weakly informative prior for which the
spatial scheme) is attractive, because of its conjugacy only subjective inputs are Kmin , usually set to 1, and Kmax,
properties and its biological relevance according to the set to a large value as compared to the maximum num-
theory of evolutionary neutral mutation process of ber of populations that can be reasonably expected, so

that the choice is numerically inconsequential.Kimura (Tavaré and Zeitouni 2001). However, it does
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Number and location of tiles: We consider that m � case of units localized at a coarse administrative level
only, or simply the case of measurement errors. To ac-Poisson(�) and that (u 1, . . . , um) �

i.i.d.
Uniform(D). This

count for this uncertainty, each t i stands for the observedis the usual homogeneous Poisson process. The com-
location whereas the true location is denoted by s i .plete randomness of the locations of the points makes
These unobserved s i are treated as unknown hereafterthis prior noninformative about the locations of the
and are part of the parameters to be estimated. Theborders between populations, and it is numerically con-
true coordinates s i are naturally related to observedvenient. The unknown amount of spatial organization
coordinates t i throughis controlled by �, on which we place a flat hyper-prior,

assuming that � � u([0, �max]). As previously men- t i � s i 	 εi , (3)
tioned, for large �-values, the tessellation model behaves

where εi is an i.i.d. additive noise chosen in a suitablelike an i.i.d. mixture model. As �max should be taken
parametric distribution. Even when the coordinates arelarge enough to cover a large range of spatial organiza-
recorded with a good precision with respect to the sizetion from strong (� � 0) to weak spatial organization,
of the domain under study, it is useful to introduce suchwe suggest taking �max equal to the number of sampled
an additive noise to allow individuals with the sameindividuals.
coordinates to belong to different populations.Colors of tiles: c 1, . . . , cm �

i.i.d.
Uniform{1, . . . , K }.

Subdomains of populations: �k � �cj�k A j for k � 1,
. . . , K , where (A 1, . . . , Am) are the Voronoi tiles in- MARKOV CHAIN MONTE CARLO INFERENCE
duced by (u 1, . . . , um).

We denote by 
 � (K , m , u , c , d , f , fA , s) the vectorDrift: The drift parameters prescribe the amount of
of unknown parameters to be estimated. The likelihoodgenetic differentiation between the present-time popu-
of the data (t , z) islations and the ancestral population and, hence, be-

tween the present-time populations themselves. Although
�(t , z |
) � �(t |
)�(z |t , 
) � �(t |
)�

n

i�1
�
L

l�1

�(z i,l |
).it may be sometimes possible to have a rough idea of the (4)
amount of differentiation between populations under

The terms of the product are given by the allelicstudy (e.g., in terms of classical measures, such as F ST),
frequencies:

it seems, however, difficult to express this prior knowl-
edge in terms of a prior on the drift parameters. To

�(z i ,l � (�, �)|
) � �2fk l �fkl � if � � �

f 2
k l � if � � � .

(5)assess the relation between the drift factors and the
differentiation we carried out a small set of simulations.

The inference of 
 will be made through the investiga-We simulated 1000 data sets, each made of two popula-
tion of its posterior distribution �(
 |t , z). We considertions of 50 individuals genotyped at 10 loci with 10
a hybrid algorithm based on sequential updates of thealleles per locus. All frequencies were preliminarily sam-
various blocks of parameters. All parameters are ran-pled from the F-model with drift d 1 � d 2 uniform on
domly initialized from the prior. Then the moves are[0, 1]. The level of differentiation between population
proposed in a deterministic order as follows: (1) updatesamples was measured using the parameter FST estimated
d ; (2) update fAl (these two steps are skipped in thefollowing Weir and Cockerham (1984). Results show
D-model; see appendix, Details of MCMC computations);a close linear relation between d and F ST . It therefore
(3) update fkl. ; (4) update c j for j � 1, . . . , m ; (5) updatesounds natural to place a prior on dk , putting most
uj for j � 1, . . . , m ; (6) update s i for i � 1, . . . , n ; (7)weight on the left side of [0, 1] with a negligible weight
discard or add a tile (increase or decrease m by 1); andfor values 
0.3, instead of a prior uniform on [0, 1].
(8) split one existing population into two or merge twoAn independent Beta(2, 20) prior complies well with
into one (i.e., increase or decrease K by 1). Convergencethese requirements (see Figure 3). Note that a limited
follows from detailed balance, irreducibility, and aperio-number of test simulations indicated that the choice
dicity (see appendix for computational details).of prior on dk did not affect the results of the overall

In practice the number of populations is first esti-
algorithm (results not shown).

mated by computing the mode of the posterior distribu-
Frequencies in the ancestral population: fAl 1, . . . , fAl J l

� tion: K̂ � ArgmaxK �[K |t , z] from a first run (
t)t�1,...,T .
Dirichlet(1, . . . , 1), l � 1, . . . , L. Then, because it is meaningless to compute empirical

Frequencies in the present population: fk l. � Dirichlet means on values of 
t corresponding to different values
( fAl 1((1 � dk)/dk), . . . , fAl J l

((1 � dk)/dk)), k � 1, . . . , of K , one can either work on subsamples of (
 t)t�1,...,T

K , l � 1, . . . , L . obtained by restricting to the states corresponding to
Locations of individuals: The recorded location t i of K � K̂ or simply rerun the Markov chain Monte Carlo

sampled individual i may not be representative of the (MCMC) algorithm with fixed K set to K̂.
true location of the individual. Consider, for instance, As in all mixture problems, this model is not identifi-
the case of sedentary animals (where the true location able as the likelihood is invariant under any relabeling of

the populations (Celeux 1997; Stephens 1997; Robertmakes sense) that have moved during capture, or the
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Figure 3.—Relationship between drift fac-
tor and F ST. Results are from simulated data.
The drifts d 1 and d 2 were equal and sampled
from a Beta(2, 20) prior (x - axis).

and Mengersen 1999; Celeux et al. 2000; Stephens The whole algorithm has been programmed in For-
2000). Consequently, it may happen that along an MCMC tran 77, making use of the numerical library for random
run (especially if the numbers of loci and alleles are number generation, Randlib1.3. The machine time re-
small), a move from say state c i � k to c i � l does not quired for 105 iterations on a data set of 1000 individuals
correspond to a reassignment of the i th cell but to a genotyped at 10 loci with 10 alleles per locus with 10
relabeling of the populations (switch between k and l ). loci is typically of 1 hr on a PC equipped with a 2-GHz
Although more theoretically rooted methods are avail- chip set.
able (Celeux et al. 2000; Stephens 2000) we used the
expedient (when label switching was suspected), which
consists of imposing after the run the following identi-

RESULTS FROM SIMULATED DATA SETS
fying constraints on the frequency of the first locus,

Number of populations: A first interesting feature of
fk11 � fk �11 for all k , k �, k � k �, (6) this model is its ability to deal with an unknown number

of populations. Because the effective value of the modelwhere the loci are sorted by an increasing number of
depends on the precision in the estimation of K , thisalleles. This rule enabled us to fix the label-switching
key point has been investigated by analyzing data setsissue only when the frequencies did not overlap in the
simulated using the prior of the previously describedchains, and we found that it is advisable to check visually
spatial F-model. To retrieve the known K parameters thatthe trace of frequencies in the MCMC run to detect a
served to build the data set, we ran the MCMC schemepossible switch.
using the spatial F-model or the spatial D-model as aWe observed that label switching could be frequent
prior in the inference and computed K̂ after 50,000when working with small data sets (�100 individuals, 1
iterations.or 2 loci, few polymorphisms) and becomes rare with

We first started by building 50 data sets of n � 50larger and more traditional microsatellite data sets (e.g.,
individuals with K � 1 (only one population). For eachat least 100 individuals genotyped at 10 loci with 10
data set, we get estimated K , and thus we end up withalleles per locus). When such a relabeled sample is avail-
50 estimated values corresponding to the 50 simulatedable, the conditional posterior �[c(s)|K � K̂ , z , t] is
data sets. This procedure has been repeated for variousestimated by the corresponding empirical mean. Simi-
values of K with data sets of 50K individuals. Everywherelarly, d , fA , and f are estimated by their means over the

corresponding populations. the number of loci was L � 10 and the number of alleles
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Figure 5.—Empirical relationship between FST and the
number of populations K̂ estimated using the spatial F-model
(circle) and the spatial D-model (triangles) as a prior in the
MCMC inference. The 50 simulated data sets are made of K �
2 populations, with L � Jl �1,...,L � 10.

describe how the model behaves with respect to the
amount of spatial and genetic structure present in the
data. We simulated 1000 data sets using the spatial
F-model, with 100 individuals organized in two popula-
tions (50 individuals per population), with 10 loci and
10 alleles per locus and then with only 3 loci and 10

Figure 4.—Estimated number of populations K̂ . Each histo- alleles per locus. Each of these data sets has been first
gram shows estimates over 50 different simulated data sets analyzed using the spatial F-model as a prior in the
with K � 1, 2, 5, 9, first using the spatial F-model (left) and

MCMC scheme. However, since we know from the re-then using the spatial D-model (right) as a prior for the allele
sults of the previous section that using the F-model canfrequencies. The vertical dashed line depicts the true value.
be misleading about the number of populations, we
also analyzed our simulated data sets with the spatial
D-model as a prior in the MCMC scheme.per locus was Jl �1,...,L � 10. The simulation process is

An inference of all parameters (including the numberdescribed in the appendix.
of populations) could have been made. However, weThe histogram of estimated K is shown in Figure 4.
wished to compare our method to methods that doIt can be seen that the spatial D-model leads to excellent
not handle the inference of K . Therefore we chose toresults and whatever the level of differentiation between
consider K as a known parameter and to compare thepopulations is as measured by F ST (see Figure 5). In
different methods when K is known and equal to 2.contrast, very poor results were obtained when using
As already mentioned, most of the existing clusteringthe spatial F-model, although the latter model was used
models are based on i.i.d. mixtures. Therefore we haveto simulate the test data sets. The model tends to over-
compared our spatial model to nonspatial clusteringestimate systematically the true number of populations
models obtained by replacing our spatial prior on the(see Figure 4) and the overestimation is stronger on
clustering variable c by an i.i.d. prior, giving the non-weakly differentiated data sets (Figure 5). The spatial
spatial F-model and nonspatial D-model. The nonspa-F-model proved to work well only for data sets with a
tial D-model turns out to be the model described byhigh level of differentiation (F ST 
 0.5, data not shown).
Pritchard et al. (2000) in the no-admixture case,Results were improved for lower levels of differentiation
whereas the nonspatial F-model can be viewed as aby increasing the number of loci. However, even for
simplified version of the model of Falush et al. (2003),L � 200 and Jl �1,...,L � 10, the spatial F-model seems to
where linkage equilibrium is assumed.overestimate K by a factor of 5 when K � 2.

Each data set has been analyzed in parallel by theAssignment to population of origin: One other fea-
four methods, from which we can derive the false clas-ture on which our model can be evaluated is its ability
sification rate defined asto assign individuals to their population of origin. We

have several goals in mind here: (i) assessing the ability FCR � number of wrongly assigned individuals/
of the model to correctly classify individuals; (ii) com- total number of individuals. (7)
paring our model to nonspatial approaches suggested in
the literature; and (iii) as the model is specifically tai- Results on the whole set of simulations and on various

subsets with different levels of genetic and spatial struc-lored for populations displaying structure, we want to
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TABLE 1 Individual genotypes were obtained with the software
Easypop (Balloux 2001) by simulating two populationsAverage false classification rates (in percentage)
exchanging different numbers of migrants per genera-for all simulated data sets and subsamples with
tion. In a first data set (referred to hereafter as setvarious levels of genetic and spatial structure
A), the two populations are considerably differentiated

Structure Spatial Nonspatial (F ST � 0.16), in a second set (B) the populations are
less differentiated (F ST � 0.06), and in a third data setGenetic Spacial F-model D-model F-model D-model
(C), they are very weakly differentiated (F ST � 0.01). In

Results with 10 loci each set we have n � 200 individuals (with 100 individu-
All All 1.8 2.6 3.8 3.3 als per population) and L � 10 loci with Jl �1,...,L � 10
F ST � 0.04 All 7.8 14.2 15 13.5 alleles per locus. Individuals of each population were
F ST � 0.06 All 4.7 7.6 9 8.5 randomly located on each part of an oscillating curveF ST 
 0.11 All 0.3 0.3 0.2 0.2

on the unit square.All m � 12 2.3 1.9 11.4 6
The ability of the model to find the actual partitionAll m � 25 1.7 1.8 6.8 4.4

of space is illustrated in Figure 7, set A, which displaysAll m 
 80 2.2 3 2.8 3
F ST � 0.06 m � 25 2.7 5.3 11.8 9.5 the posterior probability �(c(s) � k |t , z) for any pixel
F ST � 0.04 m � 12 3.5 1 24 16.7 to belong to the two populations. We observe that the

true partition is very well detected. We obtained similar
Results with 3 loci results on the two other data sets, although the bound-All All 11.3 12.5 17.5 17.5

ary between the two domains was detected with less
The level of genetic and spatial structure increases with F ST precision with data sets B and C (results not shown).

and decreases with m , respectively. Results are shown from We then quantitatively assessed how the level of differen-
1000 simulated data sets of 100 individuals in two populations, tiation influences the precision in the estimation of thewith L � Jl �1,...,L � 10 and L � 3, Jl �1,...,L � 10.

border. This can be viewed from the map of �(s), where
�(s) is any suitable measure of the dispersion of �[c(s)|t ,
z , K]. As �[c(s) � j |t , z , K] is a probability measure onture are given in Table 1. The quantiles at levels (0.1,

0.25, 0.75) of the empirical distributions of F ST and m {1, . . . , K } whose weights can be zero, the entropy is
not defined, and therefore we used insteadwere used to obtain subsets with various levels of genetic

differentiation and of spatial organization, respectively.
�(s) � �

K

j�1

� 2[c(s) � k |t , z , K] (8)The quantiles at probabilities (0.1, 0.25, 0.75) were re-
spectively (0.04, 0.06, 0.1) for F ST and (12, 25, 80) for
m . For instance, subsets for which the number of Voro- as an index of the dispersion of the distribution �[c(s) �

k |t , z , K]. The right-hand side of Equation 8 is minimalnoi tiles m were less than 12 correspond to highly spa-
tially structured populations, whereas those for which when all the colors have equal probability, which corre-

sponds to a flat posterior. Thus, the points s for whichm 
 80 correspond to loose spatial organization. Exam-
ples illustrating simulated data sets with various levels �(s) is high are those confidently classified, whereas

those where �(s) is low correspond to poorly classifiedof spatial organization are shown in Figure 6.
Results from the whole data set show that spatial meth- points that might correspond to transition regions or

to sparsely sampled regions. The maps of �(s) given inods give lower FCR values than nonspatial methods and
that this trend is strengthened for a low number of loci Figure 8 for the three data sets show that the lower

values of �(s) are along the true line of discontinuity(e.g., three loci). The improvement of spatial as com-
pared to nonspatial methods is the greatest when both (darker color), and that the accuracy in the estimation

increases with the level of differentiation between popu-the level of spatial organization is large (m � 12) and
the level of differentiation is weak (F ST � 0.04). lations.

Detection of migrants: Since populations exchangeHence, in addition to giving better results than the
spatial F-model for the estimation of the number of pop- migrants, it is sensible to assess whether the presence

of such migrants would affect the spatial detection ofulations, the spatial D-model compares favorably with
the spatial F-model for the assignment of individuals to genetic discontinuities and whether migrants could be

detected and spatially located by our method, for differ-their populations, even when the data depart from the
model assumed in the inference (c f. the data sets that ent levels of differentiation between populations.

To address these points, we mimicked the presencewere simulated according to the spatial F-model). There-
fore in the following we focus on the spatial D-model of first-generation migrants in our previous data sets A,

B, and C by moving one individual from the upperonly.
Mapping borders between populations: Mapping bor- population to the lower population and another one in

the opposite direction. Figure 9 shows that the presenceders between populations represents one of the major
interests of our spatial model: it is presented through of these first-generation migrants did not affect the accu-

racy of the method to detect the two populations andgraphical outputs obtained from simulated data sets.
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Figure 6.—Examples of simulated spatial organization of
100 individuals (black dots) into two populations (coded as
two colors) with various levels of spatial dependence. This
level is controlled by parameter m (number of Voronoi tiles).
The nuclei of the tiles are not depicted for clarity.

to spatially locate the genetic discontinuity. The figure tion), L � Jl �1,...,L � 10, and the level of differentiation
between populations was relatively low (F ST � 0.08). Thealso shows that the two migrants are easily detected (i.e.,

visualized) for data sets A, B, and C. The population of true positions s i were blurred by an additive noise εi

uniform on [�0.15, 0.15]2, so that the observed posi-origin of each migrant could be easily deduced from
its coloring pattern, including when more than two pop- tions were t i � s i 	 εi . The model was first run con-

sidering that the given positions were true (ε � 0) andulations shared the domain (results not shown).
Effect of errors on the locations of individuals: We in a second run the uncertainty was accounted for by

injecting the information that εi � Uniform[�0.15,show here how errors on the locations of individuals may
lead to poor results and how accounting for errors in 0.15]2. We also considered the case where the true coor-

dinates were used whereas wrong coordinates were as-the positioning of individuals allows us to retrieve most
of the underlying signal. This question was addressed sumed, and finally we give the results for true coordi-

nates considered as true coordinates. The results arethrough the analysis of a new set of simulations.
Three independent populations separated by straight summarized in Figure 10. It can be clearly observed

from the figure that accounting for uncertainty in thelines were positioned on the unit square. The number
of individuals was n � 150 (50 individuals per popula- positioning of individuals substantially increases the pre-
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Figure 7.—Maps of posterior probabilities, simulated data set A. The dashed green line depicts the true sine-shaped line of
discontinuity. F ST � 0.16, L � Jl �1,...,L � 10.

cision in the detection of the true borders when some includes 200,000 iterations and a short burn-in period.
The posterior distribution gave a mode at K � 6, witherrors on the position of individuals exist (Figure 10,

line 1 vs. line 2). Moreover, adding position noise in a nonnegligible occurrence at K � 5 (Figure 11). Then
the model was rerun along 50,000 iterations with a fixedthe model does not alter the results for data sets without

position errors (Figure 10, line 3 vs. line 4). value for K � 6. Maps of the posterior probability for
any pixel of the domain to belong to each population
could then be derived (Figure 12).

APPLICATION TO MONTANA WOLVERINES We also computed for each pixel s the modal popula-
(GULO GULO)

tion, namely the population k for which �(c(s) � k |t ,
z) is maximum (Figure 13). Two of the six inferredWe now analyze a previously published data set on
populations (i.e., Figure 12, populations 2 and 5) dowolverines (Gulo gulo), a medium-sized carnivore wildly
not appear to be the modal population for any pixel.distributed in North America. Wolverines are highly mo-
Moreover, these two populations have very low posteriorbile, with the ability to disperse up to 300 km within a
probabilities and an analysis of a detailed map suggestsyear, but are also highly sensitive to habitat disturbance
that the areas of these populations are very similar.by humans. Eighty-nine individuals were sampled in
Although results from the Number of populations sectionMontana and genotyped at 10 microsatellite loci Cegel-
suggest that one can be very confident in the spatialski et al. (2003). Samples are nearly evenly distributed
D-model to infer the right number of populations, we doover an area that corresponds to a landscape highly
not have straightforward interpretation of the “ghost”fragmented by human development and disturbance.
populations 2 and 5 (but see discussion section).Using nonspatial Bayesian clustering procedures and

The spatial partition in four populations with highassignment tests implemented in the programs Structure
posterior probabilities considerably (but not entirely)(Pritchard et al. 2000) and Geneclass (Cornuet et al.
decreased genetic structure within samples from F IS �1999), Cegelski et al. (2003) provided some evidence
0.180 to 0.088, with single-population F IS values rangingfor the existence of three populations of wolverines in
from 0.038 to 0.110. Hardy-Weinberg equilibrium couldMontana, with F ST values ranging from 0.08 to 0.10. The
not be rejected in two of the four inferred populationsauthors also provided some evidence for the identifica-
(Fisher’s exact test, P 
 0.05; Raymond and Roussettion of 11–22 migrants or offspring of migrants (de-
1995). Hence, our spatial method gives strong evidencepending on the method used for migrant detection).
for the presence of (at least) one more population thanWe reanalyzed the Wolverine data set (excluding one
previously detected using nonspatial statistical approachessample whose spatial coordinates were missing) by pro-
(i.e., Figures 12 and 13, population 6). The three othercessing 10 independent MCMC runs of our spatial
populations occupy spatial domains rather similar toD-model. We used priors on K -uniform between 1 and

15 and on �-uniform between 0 and 100. Each run those previously determined by Cegelski et al. (2003).
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Figure 8.—Delineation of lines of discontinuities from the
dispersion �(s) of the posterior probability �[c(s)|t , z].

The main added value of our spatial approach is thus map in Figure 2 of Cegelski et al. (2003) shows that the
spatial domains of our populations 3 and 6 are separatedthe delineation of a fourth population located north

of population 3. Populations 3 and 6 were previously by a narrow extent of man-made habitats (i.e., grasslands
and grazing lands) that may have reduced wolverineconfounded using nonspatial methods. Pairwise F ST be-

tween the four populations inferred by our method are movements.
Our spatial approach also allows detection of five indi-F ST1–3 � 0.151, F ST1–4 � 0.13, F ST1–6 � 0.174, F ST3–4 � 0.108,

F ST3–6 � 0.079, and FST4–6 � 0.176. The F ST -value between viduals that genetically differ considerably from their
spatial neighbors (Figure 13). These individuals can bethe previously confounded populations is thus the low-

est of all pairwise F ST . interpreted as first-generation migrants as suggested by
our previous analysis of simulated data sets. Some ofInterestingly, a close examination of the land cover
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Figure 9.—Maps of posterior probabilities �(c(s)|t , z) in
the presence of one migrant on both sides of the line of
discontinuity. The migrants from the upper to lower popula-
tion and from the lower to upper population are depicted by
triangles and circles, respectively.

these putative individual migrants have been previously locus genotype data, without any a priori knowledge on
detected by Cegelski et al. (2003). the populational units and limits. Once genetic discon-

tinuities have been detected and spatially located using
the observed genetic data, accurate landscape descrip-

DISCUSSION tors implemented, for example, in a geographic infor-
mation system (GIS) can be used to associate the inferredThe two key steps of landscape genetics are the detec-
genetic discontinuities with landscape features and hencetion and location of genetic discontinuities and the cor-
generate hypotheses about the cause of genetic bound-relation of these discontinuities with landscape and en-
aries; see Piertney et al. (1998) for an attempt in thisvironmental features. Efficient methods to achieve the
direction.first step have been lacking so far; our method provides

Our spatial method appears well suited for revealingthe first efficient tool for locating genetic discontinuities
within a landscape from individual geo-referenced multi- cryptic spatial genetic structure and also provides a suit-
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Figure 10.—Maps of the posterior probability �[c(s) � k |t , z] when coordinates si are blurred by a uniform noise. First row,
wrong coordinates, assumed true; second row, wrong coordinates, assumed wrong; third row, true coordinates, assumed wrong;
fourth row, true coordinates, assumed true. F ST � 0.08, L � Jl �1,...,L � 10. Dashed black lines are the true borders.

able approach for the detection of migrants (i.e., individ- individuals sampled in the northwestern United States
and genotyped at microsatellite markers (Cegelski et al.uals poorly genetically related to their spatial neighbors)

and their assignment to their population of origin. This 2003). In addition to the populations previously identi-
fied by Cegelski et al. (2003) using nonspatial methods,has been illustrated by the analysis of a set of wolverine
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rium with one another within populations (the effect
of deviations from the second assumption is discussed
further in this section). The accuracy of our method
increases with the sampling effort (number of individu-
als and loci) as well as the strength of the genetic discon-
tinuity between populations. However, our analysis of
both simulated and real data sets showed good perfor-
mances of the method for data sets of standard size
(e.g., 100 individuals genotyped at 10 loci with 10 alleles
per locus), with mild to low levels of population differen-
tiation (e.g., F ST � 0.1). Regarding individual sampling
strategy, efficient inference in landscape genetics im-
plies random sampling across the entire study area and
not just sampling some individuals in each of several
a priori defined populations (Manel et al. 2003). This
also holds for our spatial method. Because methods to
treat spatially approximately evenly distributed individ-
ual genetic data sets have not been available so far, such
a sampling design has been rarely applied. We anticipate
that our spatial method will stimulate population geneti-
cists and ecologists interested in determining landscape
and environmental factors influencing population ge-

Figure 11.—Posterior distribution of the number of popula- netic structure to modify their sampling strategy. The
tions for the wolverine data. effect of a traditional sampling scheme (i.e., several

groups of individuals collected on a limited area) on
the performance of our method still needs to be assessed

our spatial approach allowed us to delineate a fourth using simulated data sets. However, preliminary tests
population separated from others by a narrow extent suggest that this effect may be small if enough of such
of human-made habitats. Our analysis hence strength- sampling groups have been collected.
ens the conclusion that, even for a highly mobile species, An interesting feature of our method is its propensity
habitat disturbance by humans may considerably limit to infer that several spatial domains that may be appar-
movements and creates spatial genetic structure. Our ently unconnected within the sampling window can be-
approach also allowed detection of migrants between long to the same population unit. This represents a
populations that were not previously distinguished, us- significant advantage in comparison to previous meth-
ing nonspatial approaches (e.g., Figure 13, two migrants ods that aimed to define population (or individual)
originating from population 6). The overall larger num- groups and hence genetic discontinuities. Hence our
ber of potential migrants detected by Cegelski et al. method is capable of treating complex spatial situations.
(2003) using assignment methods implemented in the In the meantime, we have demonstrated that our model
package Geneclass (Cornuet et al. 1999) may be due does not artificially enforce a spatial substructure when
to: (i) a lower power of our spatial method for detecting it does not exist (see especially case K � 1 in Figure 4).
migrants and offspring of migrants, although this re- Another major advantage of our approach as a whole
mains to be assessed; (ii) some Wahlund effect in at compared to earlier methods (Pritchard et al. 2000;
least one population identified by Cegelski et al. (2003); Dupanloup et al. 2002; Falush et al. 2003) is that the
and (iii) an excess of the first type of error (i.e., resident number of population units is treated here as an un-
individuals identified as migrants) produced by most known parameter. Although Corander et al. (2003) also
assignment methods, as previously shown from simu- did so, their method is not spatially explicit and aims
lated and empirical data sets (Berry et al. 2004; Paet- first at grouping populations rather than individuals.
kau et al. 2004). The exact behavior of our spatial Regarding inference of the number of population units,
method with respect to old migrants (e.g., F1, F2, and the spatial D-model was found to perform better than the
backcross migrants) still has to be assessed. Note that spatial F-model. The latter model tends to largely over-
these cases are explicitly treated in the admixture case estimate the number of population units, especially for
of the Structure approach (Falush et al. 2003). low levels of population differentiation. To capture sub-

Although theoretically applicable to any type of quali- tle genetic structures, the F-model gives a rather loose
tative variable, our method was more specifically designed definition of what a population is. Embedding it in a
for genetic codominant markers (e.g., allozymes, micro- fully Bayesian model where the number of these loosely
satellites, single nucleotide polymorphisms). It assumes defined populations is itself unknown seems to place too

much flexibility in the algorithm. These results are inthat the marker loci are unlinked and at linkage equilib-
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Figure 12.—Maps of the posterior probability to belong to each population for the wolverine data. Unit of axis is kilometers.

agreement with those of Falush et al. (2003), who found mated values, and graphical outputs about all parame-
ters involved can be derived from one single MCMCthat, in a nonspatial context, the F-model was in general

more permissive than the D-model (additional popula- run. However, from a user point of view, it is more con-
venient to launch a first run processing all parameterstions being fitted to a data set), as it permits the exis-

tence of two or more populations with very similar allele in 
, from which only K̂ is derived, and then to launch
a second run with K � K̂ , and from which all remainingfrequencies (particularly if the prior on the drift factor

is chosen to favor small values). parameters will be investigated. All computations de-
scribed in this article used the previous rule. It is worthWe proposed a full Bayesian inference of the parame-

ters of our spatial model through MCMC simulations. mentioning that additional test computations performed
on some other data sets for which some of the basicEstimation of parameters, uncertainty about the esti-
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Figure 12.—Continued.

assumptions of our model were somewhat violated have in such situations, more could be gained from model
improvement than from inference algorithm improve-shown that results from one single run could be mis-

leading, as the Markov chain could get stuck to some ment.
Postprocessing issues were also encountered whenlocal modes of the posterior. In this case we found,

in agreement with Corander et al. (2003, 2004), that computing modal populations on the wolverine data as
their number was smaller than the number of inferredprocessing several independent runs and ranking them

according to the posterior density could be an aid in populations. Such an issue has not been encountered
with simulated data. The reason why this has been ob-the interpretation of results. We believe, however, that
served in the wolverine data set has to be further as-
sessed. However, we may speculate that, as often in the
MCMC algorithm for mixture models (Falush et al. 2003),
some rarely visited states lead to inferred populations
that do not appear to be the modal population for
any individuals. Such populations may be interpreted
as spurious populations that have not been successfully
removed by the MCMC algorithm (and, hence, as a con-
vergence flaw of the algorithm) or as populations stand-
ing for complex multimodality in the posterior. From
a user point of view, these ghost populations have just
to be ignored, and focus can be restricted to modal
populations.

Some other forms of spatial dependence may occur
in addition to that due to the presence of genetic discon-
tinuities. These include isolation by distance between
individuals, i.e., a regular increase of differentiation be-
tween individuals with geographic distance due to lim-
ited dispersal (Rousset 2000; Leblois et al. 2003); kin
clustering, i.e., spatial clustering of highly related indi-
viduals at least before dispersal (e.g., Kelly 1994); and
a certain rate of selfing reproduction for some species

Figure 13.—Map of the mode of the posterior probability (Wolf and Takebayashi 2004). The problem of isola-to belong to each class for the wolverine data. Large character
tion by distance has been already mentioned by Dupan-numbers indicate population labels. Arrows indicate putative

migrants. loup et al. (2002), who showed that under a stepping-
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Geostatistics, edited by W. J. Kleingeld and D. G. Krige. De Beers,stone migration model, their method found significant
Cape Town.

clustering of populations in the absence of any genetic Balloux, F., 2001 EASYPOP (version 1.7), A computer program
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Berry, O., M. Tocher and S. Sarre, 2004 Can assignment testsclustering, or selfing decrease the performance of our
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APPENDIX

Description of simulation study: The exact algorithm described in Number of populations is detailed in pseudo-code
below:

do K in (1, 2, 5, 10)

do isim in 1:50

draw (m , u , c , d , f, fA , s) from �Fmodel
(m , u , c , d , f, fA , s |K)

draw z from �(z |
)

simulate sample (
)(t )
Dmodel

from �Dmodel
(
 |z)

compute K̂Dmodel
[isim] � posterior mode of K in (
)(t )

Dmodel

simulate sample (
)(t )
Fmodel

from �Fmodel
(
 |z)

compute K̂Fmodel
[isim] � posterior mode of K in (
)(t )

Fmodel

enddo

plot histogram of K̂D

plot histogram of K̂F

enddo

In words, we simulated spatialized data sets with various sets of parameters and tried to retrieve these parameters,
considered as unknown, via our algorithm with a special emphasis on the number of populations.

Details of MCMC computations: Six block updates (namely, those of u , c , p , f, fA , and s) do not change the
dimensionality of 
, and two updates (K and m) are of jump type, increasing or decreasing the length of 
.

Update of drifts: This is done through Metropolis-Hastings updates, as described by Falush et al. (2003).
Update of frequencies in the ancestral population: This is done through Metropolis-Hastings updates, as described by

Falush et al. (2003).
Update of frequencies in the present-time population: This is done through Gibbs updates, as described by Falush et al.

(2003).
Update of the colors of tile: This is a Metropolis-Hastings update. We make componentwise updates of c : sequentially

for each tile with color c j , we propose a new value c*j from the prior, namely �(c*j � l |K � k) � 1/k .
This proposal is accepted according to the usual M-H acceptance probability

�(
, 
*) � 1 ∧ �(t , z |K , m , u , c*, d , f, fA , s)
�(t , z |K , m , u , c , d , f, fA , s)

, (A1)

where c* � (c�j , c*j ), c�j denoting the vector c deprived from its j th entry (the one currently updated).
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Update of the locations of tiles: This is a Metropolis-Hastings random-walk update. We make a componentwise update
of u : sequentially for each tile centered in uj , we propose a new value u*j obtained by a small random perturbation
of the current position.

This proposal is accepted according to the usual M-H acceptance probability

�(
, 
*) � 1 ∧ �(t , z |K , m , u*, c , d , f, fA , s)
�(t , z |K , m , u , c , d , f, fA , s)

, (A2)

where u* � (u�j , u*j ), u�j denoting the vector u deprived from its j th entry (the one currently updated).
Update of the true unknown locations of individuals: This is a Metropolis-Hastings random-walk update. We make a

componentwise update of s : sequentially for each tile individual s j , we propose a new value s*i obtained by a small
random perturbation of the current position.

This proposal is accepted according to the usual M-H acceptance probability

�(
, 
*) � 1 ∧ �(t , z |K , m , u , c , d , f, fA , s*)
�(t , z |K , m , u , c , d , f, fA , s)

, (A3)

where s* � (s�i , s*i ), s�i denoting the vector s deprived from its i th entry (the one currently updated).
Birth or a death of a tile: In step (7) we first randomly choose between a birth or a death of a tile with equal

probability.
In the case where a birth is proposed, we have to propose a new random point to the current state u 1, . . . , um ,

which we denote by u*m	1 . This new proposed tile will also receive a color denoted by c*m	1 . u*m	1 and c*m	1 are drawn
from the prior. Namely, u*m	1 is uniform on the spatial domain and c*m	1 is uniform on the current set of colors {1,
. . . , K }.

We denote by 
 the current state and by 
* � (K , m*, u*, c*, d , fA , f, s) the proposed value. Since we consider
the case of adding a tile, m* � m 	 1, u* � (u , u*m	1), c* � (c , c*m	1), and the reversible jump acceptance probability
(see, e.g., van Lieshout 2000 or Roberts and Dellaportas 2003) takes the following form:

�(
, 
*) � 1 ∧ �(
*|z)q(
 |
*)
�(
 |z)q(
*|
)

(A4)

� 1 ∧ �(z |
*)
�(z |
)

�

m 	 1
. (A5)

In the case where a death is proposed, a tile is uniformly selected at random over (u 1, . . . , um), and the acceptance
probability takes a similar form (reverse expression, precisely; see Byers and Raftery 2002)).

Birth or death of a population: The strategy used here to draw a new population or to discard an existing one is
similar to the one described by Richardson and Green (1997), with three differences: we have to maintain a spatial
consistency within the geometry of the current state and the one of the proposed state (hence, not all proposals
will make sense), the data are categorical (there is no straightforward order between alleles), and they are also
multivariate (which makes it impossible even to sort quantitative mean parameters, like frequencies).

The strategy to draw a new population consists of splitting an existing population into two distinct populations.
Reversibly, a death of an existing population will be obtained by merging two existing ones. Thus, the first step
consists of choosing between splitting and merging. This is done with equal probability.

Then a step of, say, split type involves the following:

Propose a new allocation of individuals (over K 	 1 populations instead of K) through a new coloring c*, namely

propose the population k to be split with equal probability over the K existing populations (the split population
will give birth to two new populations labeled as k and K 	 1),

count the number of tiles �k belonging to population k (remember that their union forms the set �k),

choose a uniform number of tiles � between 0 and �k ,

select randomly � of those tiles in �k that will be given a new color,

propose a new allocation of individuals c* by changing deterministically colors of the � selected tiles of �k from
k to K 	 1.

Then propose frequencies f *k , f *K	1 and drifts d*k , d*K	1 .

The proposed state is denoted by 
* � (K*, m , u , c*, d*, fA , f *, s) with K* � K 	 1, f * � ( f�k , f *k , f *K	1), d* �
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(d�k , d*k , d*K	1), where f�k (resp. d�k) denotes the set f (resp. d) deprived of parameters corresponding to popula-
tion k .

The drifts d*k and d*K	1 are sampled from the prior [Beta(2, 20) in the present case]. And to have a fairly high
acceptance probability, the frequencies f *k and f *K	1 are sampled from the conditional distributions �( f *k |d*, fA ,
m , c*, u , z , t) and �( f *K	1 |d*, m , c*, u , z , t) (in the spirit of a Gibbs sampler).

The acceptance ratio for the birth of a population is as usual

�(
, 
*) � 1 ∧ R(
, 
*), (A6)

where

R(
, 
*) �
�(z |
*)
�(z |
)

�(
*)
�(
)

q(
 |
*)
q(
*|
)

. (A7)

Most of the terms in the ratio of the prior probabilities vanish, and we keep only

�(
*)
�(
)

� � K
K 	 1 �

m

�( f *k | fA , d*k )�( f *K	1| fA , d*K	1)/�( fk | fA , dk). (A8)

The same applies in the ratio of proposals and we get

q(
 |
*)
q(
*|
)

� 2
(�k 	 1)C �

�k

K 	 1
�( fk |d , fA , c , u , z , t)/�( f *k , f *K	1|d*k , d*K	1 , fA , m , u , c*, z , t) (A9)

while the last term in Equation A9 factorizes as

�( f *k , f *K	1|d*k , d*K	1, fA , m , u , c*, z , t) � �( f *k |d*k , fA , m , u , c*, z , t)�( f *K	1|d*K	1, fA , m , u , c*, z , t). (A10)

The likelihood in Equation A7 has the expression given in Equation 4.
We have just to give more explicit expressions for the terms involving frequencies in Equations A8 and A9. These

conditional distributions are Dirichlet by standard conjugacy properties. Denoting by nklj (resp. n*klj) the number of
copies for locus l observed in population k for the current state (resp. the proposed state), we get

�( fk | fA , d , c , u , z , t)
�( fk | fA , d)

� �
L

l�1

�(qk 	 nkl.)
�(qk)

�
Jl

j�1

�( fA l j qk)
�( fA l j qk 	 nklj)

f nkl j
kl j , (A11)

where nkl. � � Jl
j�1nklj and qk � dk/(1 � dk) (and similar obvious notation for n*kl. and q*k ).

Combined with Equations A7–A9 we end up with

R(
, 
*) � 2 � K
K 	 1 �

m (�k 	 1)C �
�k

K 	 1

� �
L

l�1
��(qk 	 nkl.)

�(qk)

�(q*k )

�(q*k 	 n*kl.)

�(q*K	1)

�(q*K	1 	 n*K	1l.)

� �
Jl

j�1
� �( fAl j qk)

�( fAl j qk 	 nklj)
f nklj

kl j
�( fAl jq*k 	 n*klj)

�( fAl j q*k )
f *�n *

k l jk l j
�( fAl j q*K	1 	 n*K	1l j)

�( fAlj q*K	1)
f *�n *

K	1l j
K	1l j �� . (A12)

Model nesting: The same computer code can be used to make inference in spatial and nonspatial models (i.e., with
i.i.d. class variable c) as well as in the F-model and D-model. The more general algorithm performs simulations of
the posterior in the spatial F-model. The nonspatial version can be obtained with � set to a very large value, but,
more efficiently, by initializing the number of tiles to the number of individuals, with the center of the tiles at the
position of the individuals (m � n and u � t), with εi to 0 (i � 1, . . . , n), and then by skipping steps (5)–(7).

Simulations of the posterior in the D-model instead of the F-model can be made by initializing dk � 0.5, fAl j � 1
and skipping steps (1) and (2).


